A TRIPLE IN CAT

by CHARLES WELLS

(Received 13th September 1978)

1. Introduction

A triple (or monad) in a category \boldsymbol{K} is a triple $\mathscr{T}=(T, \mu, \eta)$ where $T: K \rightarrow \boldsymbol{K}$ is a functor and $\mu: T T \rightarrow T, \eta: 1_{K} \rightarrow T$ are natural transformations for which (1.1) and (1.2) commute:

In these diagrams the component of a natural transformation α at an object x is denoted $x \alpha$. Thus for example $(k \eta) T$ is the value of the functor T applied to the component of η at k, whereas $(k T) \eta$ is the component of η at the object $k T$. I write functions and functors on the right and composition from left to right.

A pair (a, ξ) is a \mathscr{T}-algebra if a is an object of $K, \xi: a T \rightarrow a$, and (1.3) and (1.4) commute:

If $(a, \xi),(b, \zeta)$ are \mathscr{T}-algebras, an arrow $f: a \rightarrow b$ is a \mathscr{T}-algebra homomorphism if (1.5) commutes:

The \mathscr{T}-algebras and \mathscr{T}-algebra homomorphisms form a category $\boldsymbol{K}^{\mathscr{T}}$. Furthermore, the functor $U: \boldsymbol{K}^{\mathscr{G}} \rightarrow \boldsymbol{K}$ taking (a, ξ) to a and $(f, f T)$ to f has a left adjoint $F: \boldsymbol{K} \rightarrow \boldsymbol{K}^{\mathscr{G}}$ such that $T=F U$. Details may be found in MacLane (4, Ch. VI) or Manes (5).

It is well known (4, VI.4) that the functor *: Sets \rightarrow Sets which takes a set X to the set X^{*} or words (of finite length $\geqq 0$) in X, and a function $\phi: X \rightarrow Y$ to the obvious induced function $\phi^{*}: X^{*} \rightarrow Y^{*}$, is the functor part of a triple whose category of algebras is isomorphic to the category of monoids. (If the empty word is excluded one gets the category of semigroups.)

In this note I shall show how monoids "are" the algebras of a triple \mathscr{D} in Cat (the category of small categories and functors). I put "are" in quotes because one gets only an equivalence, not an isomorphism, between Mon and the category of \mathscr{D}-algebras.

The part of the triple that corresponds to the underlying set functor U for * is Leech's functor $D: \mathbf{M o n} \rightarrow \mathbf{C a t}$ (2), (3). Given a monoid M, the objects of the small category $M D$ are the elements of M, and the arrows are 3-tuples (k, m, n) of elements of M, with $\operatorname{dom}(k, m, n)=m, \operatorname{cod}(k, m, n)=k m n$, and composition satisfying

$$
\begin{equation*}
(k, m, n)^{\circ}\left(k^{\prime}, k m n, n^{\prime}\right)=\left(k^{\prime} k, m, n n^{\prime}\right) \tag{1.6}
\end{equation*}
$$

If $f: M \rightarrow M^{\prime}$ is a homomorphism, then the corresponding functor $f D: M D \rightarrow M^{\prime} D$ is defined by

$$
\begin{equation*}
(k, m, n) f D=(k f, m f, n f) \tag{1.7}
\end{equation*}
$$

I shall construct a functor $\Delta: \mathbf{C a t} \rightarrow$ Mon which is left adjoint to D; then by the general theory of triples it will follow that ΔD is the functor part of a triple \mathscr{D} in Cat. I shall then show directly that the category of \mathscr{D}-algebras is equivalent to Mon.

2. The functor Δ

Given a category \boldsymbol{C}, let \boldsymbol{C}^{L} and $\boldsymbol{C}^{\boldsymbol{R}}$ be two disjoint copies of the set of arrows of \boldsymbol{C}. If $f: b \rightarrow c$ in C I shall write f^{L} for f in its role as an element of \boldsymbol{C}^{L} and call it a "left arrow". and f^{R} for f as an element of \boldsymbol{C}^{R}, a "right arrow". Let \boldsymbol{C}^{o} denote the set of objects of \boldsymbol{C}, where \boldsymbol{C}^{o} is taken to be disjoint from each of \boldsymbol{C}^{L} and \boldsymbol{C}^{R}.

Let us write elements of the free monoid on $\boldsymbol{C}^{L} \cup \boldsymbol{C}^{\boldsymbol{R}} \cup \boldsymbol{C}^{o}$ in triangular brackets; thus $\left\langle f^{L}, g^{L}, c, f^{R}\right\rangle$ is a typical element if f, g are arrows of \boldsymbol{C} and c an object of \boldsymbol{C}.

Let \sim be the congruence relation on this free monoid generated by requiring, for arrows $f: b \rightarrow c, g: c \rightarrow d, h: d \rightarrow e$ of \boldsymbol{C},

$$
\begin{align*}
& \left\langle h^{L}, g^{L}\right\rangle=\left\langle(g \circ h)^{L}\right\rangle \tag{2.1}\\
& \left\langle f^{R}, g^{R}\right\rangle=\left\langle(f \circ g)^{R}\right\rangle \tag{2.2}\\
& \left\langle f^{L}, b, f^{R}\right\rangle=\langle c\rangle . \tag{2.3}
\end{align*}
$$

Finally, let $\boldsymbol{C} \Delta$ be the quotient monoid of the free monoid on $\boldsymbol{C}^{L} \cup \boldsymbol{C}^{R} \cup \boldsymbol{C}^{0}$ by the congruence \sim. Write equivalence classes in square brackets; thus for f, g as above, $\left[f^{L}, b, f^{R}, g^{R}\right]=\left[c, g^{R}\right]=\left[f^{L}, b,(f \circ g)^{R}\right] \in \boldsymbol{C} \Delta$. Multiplication is then by concatenation:

$$
\begin{equation*}
\left[f^{L}, b\right] .\left[c, b, g^{k}\right]=\left[f^{L}, b, c, b, g^{k}\right] \tag{2.4}
\end{equation*}
$$

If $F: \boldsymbol{C} \rightarrow \boldsymbol{D}$ is a functor, let $\bar{F}: \boldsymbol{C}^{L} \cup \boldsymbol{C}^{\boldsymbol{R}} \cup \boldsymbol{C}^{\boldsymbol{o}} \rightarrow \boldsymbol{D}^{L} \cup \boldsymbol{D}^{R} \cup \boldsymbol{D}^{0}$ be defined for an object c and an arrow f by

$$
\begin{equation*}
c \bar{F}=c F, f^{L} \bar{F}=(f F)^{L}, f^{R} \bar{F}=(f F)^{R}, \tag{2.5}
\end{equation*}
$$

and set

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n}\right] F \Delta=\left[x_{1} \bar{F}, x_{2} \bar{F}, \ldots, x_{n} \bar{F}\right] \tag{2.6}
\end{equation*}
$$

for $x_{i} \in \boldsymbol{C}^{L} \cup \boldsymbol{C}^{R} \cup \boldsymbol{C}^{o}$. This is well-defined and makes $\Delta: \operatorname{Cat} \rightarrow$ Mon a functor.
To show that Δ is left adjoint to D, it suffices (4, Theorem IV.2) to construct a natural transformation $\eta: 1_{\text {Cat }} \rightarrow \Delta D$ with the property that if M is any monoid and $F: M \rightarrow C D$ a functor, then there is a unique homomorphism $\phi: \boldsymbol{C} \Delta \rightarrow M$ such that

commutes. (This η will be the η of the triple.)
For a category \boldsymbol{C}, define $\boldsymbol{C} \boldsymbol{\eta}: \boldsymbol{C} \rightarrow \boldsymbol{C} \Delta D$ by

$$
\begin{gather*}
c . \boldsymbol{C} \boldsymbol{\eta}=[c] \tag{2.8}\\
f . \boldsymbol{C} \boldsymbol{\eta}=\left(\left[f^{L}\right],[\operatorname{dom} f],\left[f^{R}\right]\right) . \tag{2.9}
\end{gather*}
$$

It is straightforward to verify that $\boldsymbol{C} \eta$ is a functor and η is a natural transformation.
Given $F: C \rightarrow M D$, the requisite ϕ making (2.7) commute is defined this way: Suppose $f: b \rightarrow c$ in C and $f F=(k, m, n)$ in MD. Then $[b] \phi=m\left[f^{L}\right] \phi=k$, and $\left[f^{R}\right] \phi=n$.

3. The triple

By the general theory of triples the adjunction $\Delta \vdash D$ gives rise to a triple $\mathscr{D}=$ ($\Delta D, \eta, \mu$) where ΔD and η have already been defined. Following (4, p. 134), μ must be
defined in terms of the co-unit $\varepsilon: D \Delta \rightarrow 1_{\text {Mon }}$ of the adjunction, which is defined for each monoid M on the generators of $M D \Delta$ by

$$
\begin{align*}
& {[m] M \varepsilon=m} \tag{3.1}\\
& {\left[(k, m, n)^{L}\right] M \varepsilon=k, \text { and }} \tag{3.2}\\
& {\left[(k, m, n)^{R}\right] M \varepsilon=n .} \tag{3.3}
\end{align*}
$$

The value of $M \varepsilon$ on the equivalence class of a string is obtained by multiplying (in M) the values at each entry.

The natural transformation μ is by definition $\Delta \varepsilon D: \Delta D \Delta D \rightarrow \Delta D$; that is, for a category $\boldsymbol{C}, \boldsymbol{C} \mu: \boldsymbol{C} \Delta D \Delta D \rightarrow \boldsymbol{C} \Delta D$ is the result of applying D to the component at $\boldsymbol{C} \Delta$ of the natural transformation ε : thus $\boldsymbol{C} \mu=(\boldsymbol{C} \Delta) \varepsilon D$.

The way $\boldsymbol{C} \mu$ acts is best illustrated by an example. A typical object of the category $C \Delta D \Delta D$ is a string of equivalence classes of strings and "left" and "right" triples of equivalence classes of strings like

$$
\Gamma=\left[\left[f^{L}, c\right],\left(\left[c, b, f^{R}\right],\left[f^{L}\right],\left[g^{R}, f^{L}, c\right]\right)^{R},\left(\left[g^{L}\right],\left[c, f^{R}\right],\left[b, g^{R}\right]\right)^{L}\right]
$$

where b, c are objects of \boldsymbol{C} and f and g are arrows. Then $\Gamma \boldsymbol{C} \mu=\left[f^{L}, c, g^{R}, f^{L}, c, g^{L}\right]$, an object of $C \Delta D$. An arrow of $C \Delta D \Delta D$ is an ordered triple of such strings, on which because of (1.7) $\boldsymbol{C} \boldsymbol{\mu}$ acts coordinatewise by the same rule.

4. The main theorem

Theorem. The category CAT $^{\mathscr{D}}$ of \mathscr{D}-algebras is equivalent to the category of monoids and monoid homomorphisms by a functor E making

commute.

Proof. The functor E is the well known comparison functor (4, VI.3), (5, 2.2.21) which takes a monoid M to the algebra $M \varepsilon D: M D \Delta D \rightarrow M D$ and a homomorphism $f: M \rightarrow M^{\prime}$ to ($f D, f D \Delta D$). One could presumably deduce that E is an equivalence by using one of the criteria developed by Beck (1), (4, VI.7, Exercise 6), (6, 21.5.7), but that involves coequalizers in Cat, which I hate, so I shall prove directly that E is an equivalence by showing that it is full and faithful and that every \mathscr{D}-algebra is isomorphic to an algebra of the form ($M D, M \varepsilon D$).

That E is faithful follows from the fact that D is faithful.
Suppose $H: M D \rightarrow M^{\prime} D$ is a functor such that $(H, H \Delta D)$ is a morphism of \mathscr{D}-algebras from $M E$ to $M^{\prime} E$, so that

commutes. To show that E is full, it is sufficient to show (for every such H) that $H=h D$ for some monoid homomorphism $h: M \rightarrow M^{\prime}$.

I shall first show that for all $k, m, n \in M$,

$$
\begin{equation*}
(k, m, n) H=(k H, m H, n H) \tag{4.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
(k, m, n) H=\left(k^{\prime}, m H, n^{\prime}\right) \tag{4.3}
\end{equation*}
$$

for some $k^{\prime}, n^{\prime} \in M^{\prime}$ (we know the domain of $(k, m, n) H$ is $m H$). Then

$$
\begin{aligned}
n H & =\left[(k, m, n)^{R}\right] M \varepsilon D \cdot H & & \\
& =\left[(k, m, n)^{R}\right] H \Delta D \cdot M^{\prime} D & & \text { by }(4.1) \\
& =\left[\left(k^{\prime}, m H, n^{\prime}\right)^{R}\right] M^{\prime} \varepsilon D & & \text { by (2.5) and (4.3) } \\
& =n^{\prime} & & \text { by (3.3). }
\end{aligned}
$$

Similarly $k H=k^{\prime}$, so (4.2) is proved.
Applying this to $\left(1_{M}, 1_{M}, 1_{M}\right)$ it follows that $1_{M} H$ is the unity of M^{\prime}. Also

$$
\begin{align*}
(m n) H & =[m, n] M \varepsilon D \cdot H & & \text { (definition of } \varepsilon \text {) } \\
& =[m, n] H \Delta D \cdot M^{\prime} \varepsilon D & & (4.1) \tag{4.1}\\
& =[m h, n h] M^{\prime} \varepsilon D & & (2.6) \tag{2.6}\\
& =m H n H & & \text { (definition of } \varepsilon),
\end{align*}
$$

so that H restricted to the objects of $M D$, i.e. to M, is a monoid homorphism from M to M^{\prime}, which I shall denote h. It is then immediate from (1.7) and (4.2) that $h D=H$.

Finally, given a \mathscr{D}-algebra $\xi: \boldsymbol{C} \Delta D \rightarrow \boldsymbol{C}$, it is necessary to construct a monoid M such that the algebra ($M D, M \varepsilon D$) is isomorphic in $\mathbf{C a t}^{\mathscr{D}}$ to (\boldsymbol{C}, ξ). For this purpose, I shall repeatedly need formulas (4.4) through (4.8) below.

For any object k of \boldsymbol{C},

$$
\begin{equation*}
[k] \xi=k \tag{4.4}
\end{equation*}
$$

This follows from (1.3) with $a=C, T=\Delta D$.
Let $w_{1}, w_{2}, \ldots, w_{s}$ be elements of $\boldsymbol{C} \Delta$ and W their product in $\boldsymbol{C} \Delta$. Then

$$
\begin{equation*}
W \xi=\left[w_{1} \xi, w_{2} \xi, \ldots, w_{s} \xi\right] \xi \tag{4.5}
\end{equation*}
$$

(Note that W is an object of $\boldsymbol{C} \Delta D$ so that the left side makes sense.) This is obtained from (1.4) with $a=C, T=\Delta D$ by chasing the object $\left[w_{1}, w_{2}, \ldots, w_{s}\right]$ around the diagram.

If $w_{1}, w_{2}, w_{3} \in C \Delta$. then

$$
\begin{equation*}
\left(w_{1}, w_{2}, w_{3}\right) \xi=\left(\left[w_{1} \xi\right],\left[w_{2} \xi\right],\left[w_{3} \xi\right]\right) \xi \tag{4.6}
\end{equation*}
$$

similarly obtained from (1.4) by chasing the arrow ($\left.\left[w_{1}\right],\left[w_{2}\right],\left[w_{3}\right]\right)$.
Finally, by using (1.4) on $\left[([k],[m],[n])^{L}\right]$ and $\left[([k],[m],[n])^{R}\right]$, one has

$$
\begin{align*}
& k=\left[([k],[m],[n])^{L} \xi \Delta\right] \xi \text { and } \tag{4.7}\\
& n=\left[([k],[m],[n])^{R} \xi \Delta\right] \xi . \tag{4.8}
\end{align*}
$$

Now let M be the set of objects of \boldsymbol{C}, and for $m, n \in M$, let

$$
\begin{equation*}
m n=[m, n] \xi . \tag{4.9}
\end{equation*}
$$

Then $(k m) n=[[k, m] \xi, n] \xi=[[k, m] \xi,[n] \xi] \xi=[k, m, n] \xi$ by (4.4) and (4.5) and similarly $k(m n)=[k, m, n] \xi$, so the multiplication is associative. The unity is $\wedge \xi$, where \wedge is the empty word.

Define a functor $\Phi: M D \rightarrow C$ by making Φ be the identity map on objects and for an arrow (k, m, n) : $m \rightarrow k m n$,

$$
\begin{equation*}
(k, m, n) \Phi=([k],[m],[n]) \xi \tag{4.10}
\end{equation*}
$$

It follows from (4.4) that the domain of the right side is $[m] \xi=m$ and from a remark in the preceding paragraph that the codomain is $[k, m, n] \xi=k m n$.

It follows from (4.10), (4.6) and (4.4) that

$$
\left(k^{\prime}, k m n, n^{\prime}\right) \Phi=\left(\left[k^{\prime}\right],[k, m, n],\left[n^{\prime}\right]\right) \xi
$$

and

$$
\left(k^{\prime} k, m, n n^{\prime}\right) \Phi=\left(\left[k^{\prime}, k\right],[m],\left[n, n^{\prime}\right]\right) \xi
$$

so that by (1.6) and the fact that ξ is a functor, Φ preserves composition.
I shall now construct an inverse $\Psi: C \rightarrow M D$ to Φ (so I need not show Φ preserves identity arrows). Ψ is (naturally) the identity on objects, and for $f: m \rightarrow p$ in \boldsymbol{C},

$$
\begin{equation*}
f \Psi=\left(\left[f^{L}\right] \xi, m,\left[f^{R}\right] \xi\right) \tag{4.11}
\end{equation*}
$$

The domain of f is obviously m, and the codomain is

$$
\begin{aligned}
{\left[f^{L}\right] \xi \cdot m \cdot\left[f^{R}\right] \xi } & =\left[\left[f^{L}\right] \xi,\left[f^{R}\right] \xi\right] \xi \\
& =\left[f^{L}, m, f^{R}\right] \xi=[p] \xi=p
\end{aligned}
$$

where the second equality comes from (4.4) and (4.5) and the third from (2.3).
Then

$$
\begin{align*}
(k, m, n) \Phi \Psi & =\left(\left[([k],[m],[n]) \xi^{L}\right] \xi, m,\left[([k],[m],[n]) \xi^{R}\right] \xi\right] \tag{4.10}\\
& =(k, m, n) \tag{2.6}
\end{align*}
$$

and for $f: m \rightarrow p$ in C,

$$
\begin{align*}
f \Psi \Phi & =\left(\left[\left[f^{L}\right] \xi\right],[[m] \xi],\left[\left[f^{R}\right] \xi\right]\right) \xi \tag{4.11}\\
& =\left[\left[f^{L}\right],[m],\left[f^{R}\right]\right) \xi \tag{4.6}\\
& =f \cdot C \eta \cdot \xi=f
\end{align*}
$$

(2.8) and (1.3).

Thus Ψ is the inverse of Φ.
I shall now show that the diagram

commutes, so that Ψ (hence also Φ) is a morphism in $\mathbf{C a t}^{* D}$. This will complete the proof of the Theorem.

If m is an object of \boldsymbol{C} and f, g arrows, then $\left[m, f^{L}, g^{R}\right]$ is an object of $\boldsymbol{C} \Delta D$ sufficiently general to illustrate the commutativity of (4.12) without involving us in subscripts. On the one hand,

$$
\begin{aligned}
{\left[m, f^{L}, g^{R}\right] \Psi \Delta D \cdot M \varepsilon D } & =\left[m,\left(\left[f^{L}\right] \xi, \operatorname{dom} f,\left[f^{R}\right] \xi\right)^{L},\left(\left[g^{L}\right] \xi, \operatorname{dom} g,\left[g^{R}\right] \xi\right)^{R}\right] M \varepsilon D \\
& =m \cdot\left[f^{L}\right] \xi \cdot\left[g^{R}\right] \xi
\end{aligned}
$$

whereas because Ψ is the identity on objects,

$$
\begin{align*}
{\left[m, f^{L}, g^{R}\right] \xi \Psi } & =\left[[m] \xi,\left[f^{L}\right] \xi,\left[g^{R}\right] \xi\right] \xi \tag{4.5}\\
& =m \cdot\left[f^{L}\right] \xi \cdot\left[g^{R}\right] \xi \tag{4.4}
\end{align*}
$$

Thus (4.12) commutes for objects.
If w_{1}, w_{2}, w_{3} are elements of $\boldsymbol{C} \Delta$, then

$$
\begin{align*}
& \left(w_{1}, w_{2}, w_{3}\right) \Psi \Delta D \cdot M \varepsilon D \\
& \quad=\left(w_{1} \Psi \Delta \cdot M \varepsilon, w_{2} \Psi \Delta \cdot M \varepsilon, w_{3} \Psi \Delta \cdot M \varepsilon\right) \tag{1.7}\\
& \quad=\left(w_{1} \xi, w_{2} \xi, w_{3} \xi\right)
\end{align*}
$$

which follows from the commutativity of (4.12) for objects (w_{i} is both an element of $\boldsymbol{C} \Delta$ and an object of $C \Delta D$).

On the other hand, by (4.6)

$$
\left(w_{1}, w_{2}, w_{3}\right) \xi \Psi=A \xi \Psi
$$

where $A=\left(\left[w_{1} \xi\right],\left[w_{2} \xi\right],\left[w_{3} \xi\right]\right)$. Then by (4.11),

$$
\begin{align*}
A \xi \Psi & =\left(\left[A \xi^{L}\right] \xi, w_{2} \xi,\left(A \xi^{R}\right] \xi\right) \\
& =\left(w_{1} \xi, w_{2} \xi, w_{3} \xi\right) \tag{4.7}
\end{align*}
$$

This proves the Theorem.

5. Remarks

1. Mon is not isomorphic to $\mathbf{C a t}^{\text {® }}$; this follows from the precise tripleability theorem, since any parallel pair in Cat has a coequalizer which is not D of anything.
2. There are triples \mathscr{L} and \mathscr{R} corresponding to Leech's functors L and R in the same way that \mathscr{D} corresponds to D, and a proof very similar to the one given here shows that

Cat $^{\mathscr{L}}$ and Cat $^{\text {g }}$ are both equivalent to Mon. The left adjoint to R, for example, is constructed from the free monoid on $\boldsymbol{C}^{R} \cup C^{o}$ using a congruence satisfying (2.2) and

$$
\left\langle b, f^{R}\right\rangle=\langle c\rangle
$$

for $f: b \rightarrow c$ in C.
3. The extension theory which corresponds to \mathscr{D} will be developed in a later paper. The extension theory for ${ }^{*}$ is discussed in (7).

REFERENCES

(1) J. BECK, Triples, Algebras and Cohomology (Dissertation, Columbia Univ., 1962), University Microfilms \#67-14,023.
(2) J. Leech, \mathscr{H}-coextensions of monoids, Mem. Amer. Math. Soc. 157 (1975).
(3) J. LEECH, The cohomology of monoids (Preprint).
(4) S. MACLANE, Categories for the Working Mathematician (Springer-Verlag, 1971).
(5) E. Manes, Algebraic Theories (Springer-Verlag, 1976).
(6) H. Schubert, Categories (Springer-Verlag, 1972).
(7) C. Wells, Extension theories for monoids, Semigroup Forum 16 (1978), 13-35.

Department of Mathematics and Statistics
Case Western Reserve University
University Circle
Cleveland, Ohio, 44106, U.S.A.

