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A TRIPLE IN CAT

by CHARLES WELLS

(Received 13th September 1978)

1. Introduction

A triple (or monad) in a category K is a triple 3~={T, /x, 17) where T: K^*K is a
functor and /x: TT^> T, TJ : ljf—»• T are natural transformations for which (1.1) and (1.2)
commute:

(kr,)T

kTTT *-kTT

(1.1) (1.2)

In these diagrams the component of a natural transformation a at an object x is
denoted xa. Thus for example (fcTj)T is the value of the functor T applied to the
component of 17 at fc, whereas (kT)ri is the component of TJ at the object kT. I write
functions and functors on the right and composition from left to right.

A pair (a, £) is a ST-algebra if a is an object of K, £: aT^>a, and (1.3) and (1.4)
commute:

flT)
aTT

(1.3) (1.4)
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262 C. WELLS

If (a, £), (b, £) are ^"-algebras, an arrow / : a—* bis a ST-algebm homomorphism if (1.5)
commutes:

aT

(1.5)

The ^"-algebras and ^-algebra homomorphisms form a category K3. Furthermore,
the functor U: K3'^- /Staking (a, £) to a and (/, /T) to / has a left adjoint F: K-* K3' such
that T= FU. Details may be found in MacLane (4, Ch. VI) or Manes (5).

It is well known (4, VI.4) that the functor *: Sets—* Sets which takes a set X to the set
X* or words (of finite length ^ 0) in X, and a function <£: X—» Y to the obvious induced
function </>*: X*—> Y*, is the functor part of a triple whose category of algebras is
isomorphic to the category of monoids. (If the empty word is excluded one gets the
category of semigroups.)

In this note I shall show how monoids "are" the algebras of a triple 3) in Cat (the
category of small categories and functors). I put "are" in quotes because one gets only an
equivalence, not an isomorphism, between Mon and the category of 2>-algebras.

The part of the triple that corresponds to the underlying set functor U for * is Leech's
functor D: Mon—» Cat (2), (3). Given a monoid M, the objects of the small category MD
are the elements of M, and the arrows are 3-tuples (k, m, n) of elements of M, with
dom (k, m, n) = m, cod (k, m, n)= kmn, and composition satisfying

(*, m, n)°(k', kmn, ri) = (k'k, m, nn'). (1.6)

If f-.M^M1 is a homomorphism, then the corresponding functor fD:MD^>MD is
defined by

(k,m,n)fD = (kf,mf,nf). (1.7)

I shall construct a functor A: Cat—»Mon which is left adjoint to D; then by the general
theory of triples it will follow that AD is the functor part of a triple 3) in Cat. I shall then
show directly that the category of @-algebras is equivalent to Mon.

2. The functor A

Given a category C, let CL and CR be two disjoint copies of the set of arrows of C. If
/ : b—* c in Cl shall write fL for / in its role as an element of CL and call it a "left arrow",
and fR for / as an element of CR, a "right arrow". Let C° denote the set of objects of C,
where C° is taken to be disjoint from each of CL and CR.

Let us write elements of the free monoid on CLUCRUC° in triangular brackets; thus
(fL, gL, c, fR) is a typical element if /, g are arrows of C and c an object of C.
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Let ~ be the congruence relation on this free monoid generated by requiring, for
arrows / : b—*c, g: c—»d, h: d—»e of C,

(hL,gL) = ((g°h)L) (2.1)

(fR,gR) = ((f°g)R) (2.2)
(fL,b,fR) = (c). (2.3)

Finally, let CA be the quotient monoid of the free monoid on CLUCRUC° by the
congruence ~ . Write equivalence classes in square brackets; thus for f,g as above,
[fL, b,fR, gR] = [c, gR] = [fL, b, (f°g)R] e CA. Multiplication is then by concatenation:

[/L,fo].[c,fc,5
k] = [Afc,c,fc,5

fc]. (2.4)

If F: C-*D is a functor, let F: CLL)CR\JC°^>DLUDR\JD° be denned for an object
c and an arrow / by

cF=cF,fLF=(fF)I-,fRF=(fF)R, (2.5)
and set

[xu x2,..., xjFA = [xjF, x2F,..., xnF] (2.6)

for xi e C L U C R u r . This is well-defined and makes A: Cat^Mon a functor.
To show that A is left adjoint to D, it suffices (4, Theorem IV.2) to construct a natural

transformation 17: lca«~* AD with the property that if Mis any monoid and F: M—> CD a
functor, then there is a unique homomorphism <f>: CA—>Msuch that

•CAD

<t>D

MD

commutes. (This 17 will be the 17 of the triple.)
For a category C, define C17: C—> CAD by

c. CTJ = [c]

([/*•], [dom /],[/*]).

(2.7)

(2.8)

(2.9)

It is straightforward to verify that C17 is a functor and TJ is a natural transformation.
Given F: C—» AiD, the requisite </> making (2.7) commute is defined this way: Suppose

/ : b-^ c in C and / F = (fc, m, n) in MD. Then [*>]<£ = m, [/L]</> = fc, and [/R]</> = n.

3. The triple

By the general theory of triples the adjunction AHD gives rise to a triple 2) =
(AD, 17, jx) where AD and 17 have already been defined. Following (4, p. 134), /LA must be
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defined in terms of the co-unit e: DA—»lMon of the adjunction, which is defined for each
monoid M on the generators of MDA by

[m]Me = m, (3.1)
[(k, m, n)L~\Me = k, and (3.2)
[(k, m, n)R]Me = n. (3.3)

The value of Me on the equivalence class of a string is obtained by multiplying (in M) the
values at each entry.

The natural transformation ft is by definition AeD: ADAD—>AD; that is, for a
category C, C/i.: CADAD—» CAD is the result of applying D to the component at CA of
the natural transformation e: thus C/x = (CA)eD.

The way C/x acts is best illustrated by an example. A typical object of the category
CADAD is a string of equivalence classes of strings and "left" and "right" triples of
equivalence classes of strings like

T = [[/L, c], ([c, b, fRl \_n, [gR, f\ cV, ([gLl [c, / * ] , [b, gR])L],

where b, c are objects of C and / and g are arrows. Then FC/u = [/*", c, gR, fL, c, gL], an
object of CAD. An arrow of CADAD is an ordered triple of such strings, on which because
of (1.7) C/A acts coordinatewise by the same rule.

4. The main theorem

Theorem. The category CAT21 of 3)-algebras is equivalent to the category of monoids
and monoid homomorphisms by a functor E making

Mon ». Cata

Cat

commute.

Proof. The functor E is the well known comparison functor (4, VI.3), (5, 2.2.21)
which takes a monoid M to the algebra MeD: MDAD—*MD and a homomorphism
/ : M-* M to (/D, /DAD). One could presumably deduce that E is an equivalence by using
one of the criteria developed by Beck (1), (4, VI.7, Exercise 6), (6, 21.5.7), but that
involves coequalizers in Cat, which I hate, so I shall prove directly that E is an equivalence
by showing that it is full and faithful and that every S-algebra is isomorphic to an algebra
of the form (MD, MeD).

That E is faithful follows from the fact that D is faithful.
Suppose H: MD—> MD is a functor such that (H, HAD) is a morphism of 2)-algebras

from ME to ME, so that
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\TDbD

MD

M"eD

(4.1)

Commutes. To show that E is full, it is sufficient to show (for every such //) that H= hD for
some monoid homomorphism h: M—» M\

I shall first show that for all k, m, n e M,

(k, m, n)H=(kH, mH, nH).
Let

(k,m,n)H=(k',mH,nl)

for some k', n' e M1 (we know the domain of (k, m, n)H is mH). Then

nH = [(k, m, n)R]MeD.H

= [_(k,m,n)R]HAD.MD by (4.1)
= [(k',mH,n')R]M>eD by (2.5) and (4.3)
= n' by (3.3).

Similarly kH= k', so (4.2) is proved.
Applying this to (1M, 1M, 1M) it follows that 1MH is the unity of M1. Also

(mn)H=[m, n]MeD.H
= [m,n]HAD.MeD
= [mh, nh]MeD
= mHnH

(4.2)

(4.3)

(definition of e)
(4.1)
(2.6)
(definition of e),

so that //restricted to the objects of MD, i.e. to M, is a monoid homorphism from Mto M,
which I shall denote h. It is then immediate from (1.7) and (4.2) that hD = H.

Finally, given a S-algebra £: CAD—> C it is necessary to construct a monoid Msuch
that the algebra (MD, MeD) is isomorphic in Cat® to (C, £). For this purpose, I shall
repeatedly need formulas (4.4) through (4.8) below.

For any object k of C,

This follows from (1.3) with a = C, T= AD.
Let wi, w2,..., ws be elements of CA and W their product in CA. Then

(4.4)

., ws£]£ (4.5)

(Note that Wis an object of CAD so that the left side makes sense.) This is obtained from
(1.4) with a = C T— AD by chasing the object [wx, w2, • • •, ws] around the diagram.

If wu w2, vv3 e CA. then

(WU W2, (4.6)
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similarly obtained from (1.4) by chasing the arrow ([wi], [vv2], [w3]).
Finally, by using (1.4) on [([fc], [m], [n])L] and [([fc], [m], [n])R], one has

(4.7)

(4.8)

Now let M be the set of objects of C, and for m, n e M, let

(4.9)

Then(fcm)n=[[fc, m]£ n]£ = [[fc, m]£ [n]£|f = [*, m, n]£by (4.4) and (4.5) and similarly
k(mn) = [k, m, n]£ so the multiplication is associative. The unity is / \£ where A is the
empty word.

Define a functor <P: MD-* C by making <J> be the identity map on objects and for an
arrow (k, m, n): m—» kmn,

(fc,m,n)<D = ([fc],[ml [«])£. (4.10)

It follows from (4.4) that the domain of the right side is [m]£ = m and from a remark in the
preceding paragraph that the codomain is [k, m, n]£= kmn.

It follows from (4.10), (4.6) and (4.4) that

(*', kmn, n ' ) * = ([k'l [k,m,n], [n'])£
and

(k'k, m, nn')<& = ([k', k], [m], [n, n'])£

so that by (1.6) and the fact that £ is a functor, $ preserves composition.
I shall now construct an inverse ^ : C—» MD to $ (so I need not show <I> preserves

identity arrows). ^ is (naturally) the identity on objects, and for / : m—>p in C,

/ * = ( [ f ]£m, [/*]£)• (4.11)

The domain of / is obviously m, and the codomain is

where the second equality comes from (4.4) and (4.5) and the third from (2.3).
Then

(k, m, n)1>^ = ([([/c],[m],[n])^]^ m,[([fc],[m],[n])^R]^] (4.10) and (4.11)

= (k,m,n) (2.6) (4.7), and (4.8)

and for / : m—>p in C,

/*<& = (KfLm [ [mM [[/R]£K (4.11) and (4.10)

= [[n[m],[/RM (4-6)
= / . C T , . ^ = / (2.8) and (1.3).

Thus ^ is the inverse of <E>.
I shall now show that the diagram
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CAD MDbD

meD

MD (4.12)

commutes, so that W (hence also $) is a morphism in Cat .̂ This will complete the proof of
the Theorem.

If m is an object of Cand /, g arrows, then [m, fL, gR] is an object of CAD sufficiently
general to illustrate the commutativity of (4.12) without involving us in subscripts. On the
one hand,

[m, fL, gR]VAD. MeD = [m, ([/-]£ dom /, [/R]£)L, ([gL]£, dom g, fo R ] 0

whereas because ty is the identity on objects,

[m, f\ 0R]

Thus (4.12) commutes for objects.
If w-i, vv2, w3 are elements of CA, then

, w2, w3)VAD.MeD
.Me, ^ ^ A . M e , w3VA.Me)

(4.5)

(4.4)

(1.7)

which follows from the commutativity of (4.12) for objects (w, is both an element of CA
and an object of CAD).

On the other hand, by (4.6)

where A = , [w2£l, [w3£|). Then by (4.11),

(4.7), (4.8), (2.6).

This proves the Theorem.

5. Remarks

1. Mon is not isomorphic to Cat®; this follows from the precise tripleability theorem,
since any parallel pair in Cat has a coequalizer which is not D of anything.

2. There are triples 5£ and St corresponding to Leech's functors L and R in the same
way that 3) corresponds to D, and a proof very similar to the one given here shows that
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and Cat91 are both equivalent to Mon. The left adjoint to R, for example, is
constructed from the free monoid on CR U C° using a congruence satisfying (2.2) and

(b,fR) = (c)
for / : b—»c in C.

3. The extension theory which corresponds to 2 will be developed in a later paper.
The extension theory for * is discussed in (7).
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