Proceedings of the Edinburgh Mathematical Society (1980), 23, 261-268 ©

A TRIPLE IN CAT

by CHARLES WELLS

(Received 13th September 1978)

1. Introduction

A triple (or monad) in a category **K** is a triple $\mathcal{T} = (T, \mu, \eta)$ where $T: \mathbf{K} \to \mathbf{K}$ is a functor and $\mu: TT \to T, \eta: 1_{\mathbf{K}} \to T$ are natural transformations for which (1.1) and (1.2) commute:

In these diagrams the component of a natural transformation α at an object x is denoted $x\alpha$. Thus for example $(k\eta)T$ is the value of the functor T applied to the component of η at k, whereas $(kT)\eta$ is the component of η at the object kT. I write functions and functors on the right and composition from left to right.

A pair (a, ξ) is a \mathcal{T} -algebra if a is an object of K, $\xi: aT \rightarrow a$, and (1.3) and (1.4) commute:

If (a, ξ) , (b, ζ) are \mathcal{T} -algebras, an arrow $f: a \rightarrow b$ is a \mathcal{T} -algebra homomorphism if (1.5) commutes:

The \mathcal{T} -algebras and \mathcal{T} -algebra homomorphisms form a category $\mathbf{K}^{\mathcal{T}}$. Furthermore, the functor $U: \mathbf{K}^{\mathcal{T}} \to \mathbf{K}$ taking (a, ξ) to a and (f, fT) to f has a left adjoint $F: \mathbf{K} \to \mathbf{K}^{\mathcal{T}}$ such that T = FU. Details may be found in MacLane (4, Ch. VI) or Manes (5).

It is well known (4, VI.4) that the functor $*: Sets \rightarrow Sets$ which takes a set X to the set X^* or words (of finite length ≥ 0) in X, and a function $\phi: X \rightarrow Y$ to the obvious induced function $\phi^*: X^* \rightarrow Y^*$, is the functor part of a triple whose category of algebras is isomorphic to the category of monoids. (If the empty word is excluded one gets the category of semigroups.)

In this note I shall show how monoids "are" the algebras of a triple \mathcal{D} in **Cat** (the category of small categories and functors). I put "are" in quotes because one gets only an equivalence, not an isomorphism, between **Mon** and the category of \mathcal{D} -algebras.

The part of the triple that corresponds to the underlying set functor U for * is Leech's functor $D: Mon \rightarrow Cat(2), (3)$. Given a monoid M, the objects of the small category MD are the elements of M, and the arrows are 3-tuples (k, m, n) of elements of M, with dom (k, m, n) = m, cod (k, m, n) = kmn, and composition satisfying

$$(k, m, n) \circ (k', kmn, n') = (k'k, m, nn').$$
 (1.6)

If $f: M \to M'$ is a homomorphism, then the corresponding functor $fD: MD \to M'D$ is defined by

$$(k, m, n)fD = (kf, mf, nf).$$
 (1.7)

I shall construct a functor Δ : Cat \rightarrow Mon which is left adjoint to D; then by the general theory of triples it will follow that ΔD is the functor part of a triple \mathcal{D} in Cat. I shall then show directly that the category of \mathcal{D} -algebras is equivalent to Mon.

2. The functor Δ

Given a category C, let C^L and C^R be two disjoint copies of the set of arrows of C. If $f: b \rightarrow c$ in C I shall write f^L for f in its role as an element of C^L and call it a "left arrow". and f^R for f as an element of C^R , a "right arrow". Let C^o denote the set of objects of C, where C^o is taken to be disjoint from each of C^L and C^R .

Let us write elements of the free monoid on $C^L \cup C^R \cup C^o$ in triangular brackets; thus $\langle f^L, g^L, c, f^R \rangle$ is a typical element if f, g are arrows of C and c an object of C.

262

Let ~ be the congruence relation on this free monoid generated by requiring, for arrows $f: b \rightarrow c, g: c \rightarrow d, h: d \rightarrow e$ of C,

$$\langle h^L, g^L \rangle = \langle (g \circ h)^L \rangle \tag{2.1}$$

$$\langle f^R, g^R \rangle = \langle (f \circ g)^R \rangle \tag{2.2}$$

$$\langle f^L, b, f^R \rangle = \langle c \rangle. \tag{2.3}$$

Finally, let $C\Delta$ be the quotient monoid of the free monoid on $C^L \cup C^R \cup C^0$ by the congruence \sim . Write equivalence classes in square brackets; thus for f, g as above, $[f^L, b, f^R, g^R] = [c, g^R] = [f^L, b, (f \circ g)^R] \in C\Delta$. Multiplication is then by concatenation:

$$[f^{L}, b].[c, b, g^{k}] = [f^{L}, b, c, b, g^{k}].$$
(2.4)

If $F: \mathbb{C} \to \mathbb{D}$ is a functor, let $\overline{F}: \mathbb{C}^L \cup \mathbb{C}^R \cup \mathbb{C}^o \to \mathbb{D}^L \cup \mathbb{D}^R \cup \mathbb{D}^0$ be defined for an object c and an arrow f by

$$c\bar{F} = cF, f^L\bar{F} = (fF)^L, f^R\bar{F} = (fF)^R,$$
 (2.5)

and set

$$[x_1, x_2, ..., x_n] F \Delta = [x_1 \bar{F}, x_2 \bar{F}, ..., x_n \bar{F}]$$
(2.6)

for $x_i \in C^L \cup C^R \cup C^o$. This is well-defined and makes Δ : Cat \rightarrow Mon a functor.

To show that Δ is left adjoint to D, it suffices (4, Theorem IV.2) to construct a natural transformation $\eta: 1_{Cat} \rightarrow \Delta D$ with the property that if M is any monoid and $F: M \rightarrow CD$ a functor, then there is a unique homomorphism $\phi: C\Delta \rightarrow M$ such that

commutes. (This η will be the η of the triple.)

For a category C, define $C\eta: C \rightarrow C\Delta D$ by

$$c. C\eta = [c] \tag{2.8}$$

$$f. C\eta = ([f^L], [dom f], [f^R]).$$
(2.9)

It is straightforward to verify that $C\eta$ is a functor and η is a natural transformation.

Given $F: \mathbb{C} \to MD$, the requisite ϕ making (2.7) commute is defined this way: Suppose $f: b \to c$ in \mathbb{C} and fF = (k, m, n) in MD. Then $[b]\phi = m$, $[f^L]\phi = k$, and $[f^R]\phi = n$.

3. The triple

By the general theory of triples the adjunction $\Delta \vdash D$ gives rise to a triple $\mathcal{D} = (\Delta D, \eta, \mu)$ where ΔD and η have already been defined. Following (4, p. 134), μ must be

defined in terms of the co-unit $\varepsilon: D\Delta \to 1_{Mon}$ of the adjunction, which is defined for each monoid M on the generators of $MD\Delta$ by

$$[m]M\varepsilon = m, \tag{3.1}$$

$$[(k, m, n)^{L}]M\varepsilon = k, \text{ and}$$
(3.2)

$$[(k, m, n)^R]M\varepsilon = n.$$
(3.3)

The value of M_{ε} on the equivalence class of a string is obtained by multiplying (in M) the values at each entry.

The natural transformation μ is by definition $\Delta \varepsilon D : \Delta D \Delta D \rightarrow \Delta D$; that is, for a category $C, C\mu : C\Delta D\Delta D \rightarrow C\Delta D$ is the result of applying D to the component at $C\Delta$ of the natural transformation ε : thus $C\mu = (C\Delta)\varepsilon D$.

The way $C\mu$ acts is best illustrated by an example. A typical object of the category $C\Delta D\Delta D$ is a string of equivalence classes of strings and "left" and "right" triples of equivalence classes of strings like

$$\Gamma = [[f^{L}, c], ([c, b, f^{R}], [f^{L}], [g^{R}, f^{L}, c])^{R}, ([g^{L}], [c, f^{R}], [b, g^{R}])^{L}],$$

where b, c are objects of C and f and g are arrows. Then $\Gamma C\mu = [f^L, c, g^R, f^L, c, g^L]$, an object of $C\Delta D$. An arrow of $C\Delta D\Delta D$ is an ordered triple of such strings, on which because of (1.7) $C\mu$ acts coordinatewise by the same rule.

4. The main theorem

Theorem. The category $CAT^{\mathcal{D}}$ of \mathcal{D} -algebras is equivalent to the category of monoids and monoid homomorphisms by a functor E making

commute.

Proof. The functor E is the well known comparison functor (4, VI.3), (5, 2.2.21) which takes a monoid M to the algebra $M \in D: MD \Delta D \rightarrow MD$ and a homomorphism $f: M \rightarrow M'$ to $(fD, fD\Delta D)$. One could presumably deduce that E is an equivalence by using one of the criteria developed by Beck (1), (4, VI.7, Exercise 6), (6, 21.5.7), but that involves coequalizers in **Cat**, which I hate, so I shall prove directly that E is an equivalence by showing that it is full and faithful and that every \mathcal{D} -algebra is isomorphic to an algebra of the form $(MD, M \in D)$.

That E is faithful follows from the fact that D is faithful.

Suppose $H: MD \to M'D$ is a functor such that $(H, H\Delta D)$ is a morphism of \mathcal{D} -algebras from ME to M'E, so that

 $MD \xrightarrow{H} MD \tag{4.1}$

commutes. To show that E is full, it is sufficient to show (for every such H) that H = hD for some monoid homomorphism $h: M \to M'$.

I shall first show that for all $k, m, n \in M$,

$$(k, m, n)H = (kH, mH, nH).$$
 (4.2)

Let

$$(k, m, n)H = (k', mH, n')$$
 (4.3)

for some $k', n' \in M'$ (we know the domain of (k, m, n)H is mH). Then

$$nH = [(k, m, n)^{R}]M\varepsilon D. H$$

= [(k, m, n)^{R}]H\Delta D. M'D by (4.1)
= [(k', mH, n')^{R}]M'\varepsilon D by (2.5) and (4.3)
= n' by (3.3).

Similarly kH = k', so (4.2) is proved.

Applying this to $(1_M, 1_M, 1_M)$ it follows that $1_M H$ is the unity of M'. Also

$$(mn)H = [m, n]M\varepsilon D. H \qquad (definition of \varepsilon)$$
$$= [m, n]H\Delta D. M'\varepsilon D \qquad (4.1)$$
$$= [mh, nh]M'\varepsilon D \qquad (2.6)$$
$$= mHnH \qquad (definition of \varepsilon),$$

so that *H* restricted to the objects of *MD*, i.e. to *M*, is a monoid homorphism from *M* to *M'*, which I shall denote *h*. It is then immediate from (1.7) and (4.2) that hD = H.

Finally, given a \mathcal{D} -algebra $\xi: C\Delta D \rightarrow C$, it is necessary to construct a monoid M such that the algebra $(MD, M_{\mathcal{E}}D)$ is isomorphic in **Cat**^{\mathcal{D}} to (C, ξ) . For this purpose, I shall repeatedly need formulas (4.4) through (4.8) below.

For any object k of C,

$$[k]\xi = k. \tag{4.4}$$

This follows from (1.3) with a = C, $T = \Delta D$.

Let w_1, w_2, \ldots, w_s be elements of $C\Delta$ and W their product in $C\Delta$. Then

$$W\xi = [w_1\xi, w_2\xi, \dots, w_s\xi]\xi.$$
(4.5)

(Note that W is an object of $C\Delta D$ so that the left side makes sense.) This is obtained from (1.4) with a = C, $T = \Delta D$ by chasing the object $[w_1, w_2, ..., w_s]$ around the diagram.

If $w_1, w_2, w_3 \in C\Delta$. then

$$(w_1, w_2, w_3)\xi = ([w_1\xi], [w_2\xi], [w_3\xi])\xi,$$
(4.6)

similarly obtained from (1.4) by chasing the arrow $([w_1], [w_2], [w_3])$. Finally, by using (1.4) on $([k_1], [w_1], [w_1])^{k_1}$ and $[(k_1], [w_2], [w_3])$.

Finally, by using (1.4) on $[([k], [m], [n])^L]$ and $[([k], [m], [n])^R]$, one has

$$k = [([k], [m], [n])^{L} \xi \Delta] \xi$$
 and (4.7)

$$n = [([k], [m], [n])^{R} \xi \Delta] \xi.$$
(4.8)

Now let M be the set of objects of C, and for $m, n \in M$, let

$$mn = [m, n]\xi. \tag{4.9}$$

Then $(km)n = [[k, m]\xi, n]\xi = [[k, m]\xi, [n]\xi]\xi = [k, m, n]\xi$ by (4.4) and (4.5) and similarly $k(mn) = [k, m, n]\xi$, so the multiplication is associative. The unity is $\bigwedge \xi$, where \bigwedge is the empty word.

Define a functor $\Phi: MD \rightarrow C$ by making Φ be the identity map on objects and for an arrow $(k, m, n): m \rightarrow kmn$,

$$(k, m, n)\Phi = ([k], [m], [n])\xi.$$
 (4.10)

It follows from (4.4) that the domain of the right side is $[m]\xi = m$ and from a remark in the preceding paragraph that the codomain is $[k, m, n]\xi = kmn$.

It follows from (4.10), (4.6) and (4.4) that

$$(k', kmn, n')\Phi = ([k'], [k, m, n], [n'])\xi$$

and

$$(k'k, m, nn')\Phi = ([k', k], [m], [n, n'])\xi$$

so that by (1.6) and the fact that ξ is a functor, Φ preserves composition.

I shall now construct an inverse $\Psi: \mathbb{C} \to MD$ to Φ (so I need not show Φ preserves identity arrows). Ψ is (naturally) the identity on objects, and for $f: m \to p$ in \mathbb{C} ,

$$f\Psi = ([f^L]\xi, m, [f^R]\xi).$$
 (4.11)

The domain of f is obviously m, and the codomain is

$$[f^{L}]\xi \cdot m \cdot [f^{R}]\xi = [[f^{L}]\xi, [f^{R}]\xi]\xi$$
$$= [f^{L}, m, f^{R}]\xi = [p]\xi = p,$$

where the second equality comes from (4.4) and (4.5) and the third from (2.3).

$$(k, m, n)\Phi\Psi = ([([k], [m], [n])\xi^{L}]\xi, m, [([k], [m], [n])\xi^{R}]\xi]$$
(4.10) and (4.11)
= (k, m, n) (2.6) (4.7), and (4.8)

and for $f: m \rightarrow p$ in C,

Then

$$f\Psi\Phi = ([[f^{L}]\xi], [[m]\xi], [[f^{R}]\xi])\xi \qquad (4.11) \text{ and } (4.10)$$
$$= [[f^{L}], [m], [f^{R}])\xi \qquad (4.6)$$

$$= f. C\eta. \xi = f$$
 (2.8) and (1.3).

Thus Ψ is the inverse of Φ .

I shall now show that the diagram

266

commutes, so that Ψ (hence also Φ) is a morphism in **Cat**^{ω}. This will complete the proof of the Theorem.

If *m* is an object of *C* and *f*, *g* arrows, then $[m, f^L, g^R]$ is an object of $C\Delta D$ sufficiently general to illustrate the commutativity of (4.12) without involving us in subscripts. On the one hand,

$$[m, f^{L}, g^{R}]\Psi\Delta D. M\varepsilon D = [m, ([f^{L}]\xi, \text{dom } f, [f^{R}]\xi)^{L}, ([g^{L}]\xi, \text{dom } g, [g^{R}]\xi)^{R}]M\varepsilon D$$
$$= m \cdot [f^{L}]\xi \cdot [g^{R}]\xi,$$

whereas because Ψ is the identity on objects,

$$[m, f^{L}, g^{R}]\xi\Psi = [[m]\xi, [f^{L}]\xi, [g^{R}]\xi]\xi$$
(4.5)

$$= m \cdot [f^L] \xi \cdot [g^R] \xi \tag{4.4}$$

Thus (4.12) commutes for objects.

If w_1 , w_2 , w_3 are elements of $C\Delta$, then

$$(w_1, w_2, w_3)\Psi\Delta D. M\varepsilon D$$

= $(w_1\Psi\Delta. M\varepsilon, w_2\Psi\Delta. M\varepsilon, w_3\Psi\Delta. M\varepsilon)$ (1.7)
= $(w_1\xi, w_2\xi, w_3\xi)$

which follows from the commutativity of (4.12) for objects (w_i is both an element of $C\Delta$ and an object of $C\Delta D$).

On the other hand, by (4.6)

$$(w_1, w_2, w_3)\xi\Psi = A\xi\Psi$$

where $A = ([w_1\xi], [w_2\xi], [w_3\xi])$. Then by (4.11),

$$A\xi\Psi = ([A\xi^{L}]\xi, w_{2}\xi, (A\xi^{R}]\xi)$$

= (w_{1}\xi, w_{2}\xi, w_{3}\xi) (4.7), (4.8), (2.6).

This proves the Theorem.

5. Remarks

1. Mon is not isomorphic to Cat^{∞} ; this follows from the precise tripleability theorem, since any parallel pair in **Cat** has a coequalizer which is not D of anything.

2. There are triples \mathcal{L} and \mathcal{R} corresponding to Leech's functors L and R in the same way that \mathcal{D} corresponds to D, and a proof very similar to the one given here shows that

Cat^{\mathscr{R}} and **Cat**^{\mathscr{R}} are both equivalent to **Mon**. The left adjoint to *R*, for example, is constructed from the free monoid on $C^{\mathbb{R}} \cup C^{\circ}$ using a congruence satisfying (2.2) and

$$\langle b, f^{\kappa} \rangle = \langle c \rangle$$

for $f: b \rightarrow c$ in **C**.

3. The extension theory which corresponds to \mathcal{D} will be developed in a later paper. The extension theory for * is discussed in (7).

REFERENCES

(1) J. BECK, *Triples, Algebras and Cohomology* (Dissertation, Columbia Univ., 1962), University Microfilms #67-14,023.

(2) J. LEECH, *H*-coextensions of monoids, Mem. Amer. Math. Soc. 157 (1975).

- (3) J. LEECH, The cohomology of monoids (Preprint).
- (4) S. MACLANE, Categories for the Working Mathematician (Springer-Verlag, 1971).
- (5) E. MANES, Algebraic Theories (Springer-Verlag, 1976).
- (6) H. SCHUBERT, Categories (Springer-Verlag, 1972).
 - (7) C. WELLS, Extension theories for monoids, Semigroup Forum 16 (1978), 13-35.

DEPARTMENT OF MATHEMATICS AND STATISTICS CASE WESTERN RESERVE UNIVERSITY UNIVERSITY CIRCLE CLEVELAND, OHIO, 44106, U.S.A.

268