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A TRIPLE IN CAT

by CHARLES WELLS
(Received 13th September 1978)

1. Intreduction

A triple (or monad) in a category K is a triple 9 =(T, u, n) where T: K=K is a
functor and w: TT— T, n: 1x— T are natural transformations for which (1.1) and (1.2)
commute:

T
kT (kn) KTT e kD7 kT
KTTT (k) T - kTT
Lir ke Lir
(kTp kp
kp
kT (1.1) kTT kT (1.2)

In these diagrams the component of a natural transformation « at an object x is
denoted xa. Thus for example (kn)T is the value of the functor T applied to the
component of 7 at k, whereas (kT)7 is the component of n at the object kT. I write
functions and functors on the right and composition from left to right.

A pair (a, &) is a T-algebra if a is an object of K, £: aT— a, and (1.3) and (1.4)
commute:

an aTT an i aT
a - —aT
1. £ &r £
! T d |
1 a > a
a (1.3) (1.4)
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If (a, &), (b, {) are T-algebras, an arrow f: a—> b is a I-algebra homomorphism if (1.5)

commutes:

T
aT f > bT

(1.5)
a b

The J-algebras and J-algebra homomorphisms form a category K?. Furthermore,
the functor U: K7 — K taking (a, £) to a and (f, fT) to f has a left adjoint F: K— K7 such
that T= FU. Details may be found in MacLane (4, Ch. VI) or Manes (5).

It is well known (4, VI.4) that the functor * : Sets— Sets which takes a set X to the set
X* or words (of finite length = 0) in X, and a function ¢ : X— Y to the obvious induced
function ¢*: X*— Y*, is the functor part of a triple whose category of algebras is
isomorphic to the category of monoids. (If the empty word is excluded one gets the
category of semigroups.)

In this note I shall show how monoids “are” the algebras of a triple 9 in Cat (the
category of small categories and functors). I put “are” in quotes because one gets only an
equivalence, not an isomorphism, between Mon and the category of ®-algebras.

The part of the triple that corresponds to the underlying set functor U for * is Leech’s
functor D : Men— Cat (2), (3). Given a monoid M, the objects of the small category MD
are the elements of M, and the arrows are 3-tuples (k, m, n) of elements of M, with
dom (k, m, n) = m, cod (k, m, n) = kmn, and composition satisfying

(k, m, n)o(k', kmn, n') = (k'k, m, nn'). (1.6)

If f: M— M is a homomorphism, then the corresponding functor fD: MD— M'D is
defined by

(k, m, n)fD = (kf, mf, nf). (1.7)

I shall construct a functor A : Cat— Mon which is left adjoint to D; then by the general
theory of triples it will follow that AD is the functor part of a triple & in Cat. I shall then
show directly that the category of &-algebras is equivalent to Mon.

2. The functor A

Given a category C, let C* and C* be two disjoint copies of the set of arrows of C. If
f:b— cin CIshall write f" for f inits role as an element of C" and call it a “left arrow”’.
and f* for f as an element of CR, a “right arrow”. Let C° denote the set of objects of C,
where C° is taken to be disjoint from each of C* and C¥.

Let us write elements of the free monoid on C*UCXU C” in triangular brackets; thus
(f*, g%, ¢, fX) is a typical element if f, g are arrows of C and c an object of C.
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Let ~ be the congruence relation on this free monoid generated by requiring, for
arrows f:b—c¢, g:¢c—>d, h:d—eof C

(h*, g“y={(go ") (2.1
(F%, gy =((fo9)®) (2.2)
(f", b, fRy=(c). (2.3)

Finally, let CA be the quotient monoid of the free monoid on C*UCRXUC® by the
congruence ~. Write equivalence classes in-square brackets; thus for f, g as above,
[f5 b, fR, g%1=[c, g®1=[f" b, (fog)%] € CA. Multiplication is then by concatenation:

[fL7 b]'[c’ b’ gk]=[fL’ b’ C’ b’ gk]' (2‘4)

If F: C— Dis afunctor, let F: C"UC®U C°— D*UDRUD® be defined for an object
¢ and an arrow f by

cF= cF, f-F=(fP", fRF=(fA~, (2.5)
and set N B
[x1, x2, ..., x,]JFA =[X1F, xF, ..., x,F] (2.6)

for x; € C*UCRUC°. This is well-defined and makes A: Cat— Mon a functor.

To show that A is left adjoint to D, it suffices (4, Theorem IV.2) to construct a natural
transformation 7 : 1ca— A D with the property that if M is any monoid and F: M— CD a
functor, then there is a unique homomorphism ¢: CA— M such that

G
c 7 -+ CAD

MD 2.7
commutes. (This n will be the 5 of the triple.)
For a category C, define Cn: C— CAD by
c.Cn=[c] (2.8)
f-Cn=(f"1, [dom f],[f*D. (2.9)

It is straightforward to verify that Cn is a functor and 7 is a natural transformation.
Given F: C— MD, the requisite ¢ making (2.7) commute is defined this way: Suppose
f:b—>cin Cand fF=(k, m, n) in MD. Then [bl¢=m, [f*]¢ =k, and [fR]¢ = n.

3. The triple

By the general theory of triples the adjunction Al D gives rise to a triple @ =
(AD, m, n) where AD and 7 have already been defined. Following (4, p. 134), u must be
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defined in terms of the co-unit g : DA— 1y, Of the adjunction, which is defined for each
monoid M on the generators of MDA by

[mIMe=m, (3.1
[(k, m, n)*]Me = k, and (3.2)
[(k, m, n)¥]Me = n. (3.3)

The value of Me on the equivalence class of a string is obtained by multiplying (in M) the
values at each entry.

The natural transformation p is by definition AeD: ADAD—AD; that is, for a
category C, Cu: CADAD— CAD is the result of applying D to the component at CA of
the natural transformation g: thus Cu = (CA)eD.

The way Cp acts is best illustrated by an example. A typical object of the category
CADAD is a string of equivalence classes of strings and “left”” and “right” triples of
equivalence classes of strings like

L=[[f" cl, (e b, f*L U1, g% £ cDF, Lg") [, ), [b, g°D"),

where b, ¢ are objects of C and f and g are arrows. Then T'Cu=[f", ¢, g%, f-, ¢, g*], an
object of CAD. Anarrow of CADAD is an ordered triple of suchstrings, on which because
of (1.7) Cp acts coordinatewise by the same rule.

4. The main theorem

Theorem. The category CAT? of 9-algebras is equivalent to the category of monoids
and monoid homomorphisms by a functor E making

E
Mon Cat®
\ /
Cat

Proof. The functor E is the well known comparison functor (4, V1.3), (5, 2.2.21)
which takes a monoid M to the algebra MeD: MDAD— MD and a homomorphism
f: M— M to (fD, fDAD). One could presumably deduce that E is an equivalence by using
one of the criteria developed by Beck (1), (4, V1.7, Exercise 6), (6, 21.5.7), but that
involves coequalizers in Cat, which I hate, so I shall prove directly that E is an equivalence
by showing that it is full and faithful and that every $%-algebra is isomorphic to an algebra
of the form (MD, MgD).

That E is faithful follows from the fact that D is faithful.

Suppose H: MD— M D is a functor such that (H, HA D) is a morphism of &-algebras
from ME to M'E, so that

commute.
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MDAD HaD M DAD
MeD MeD
H
MD MD 4.1)

commutes. To show that E is full, it is sufficient to show (for every such H) that H= hD for
some monoid homomorphism h: M— M.
I shall first show that for all kK, m, n € M,

(k, m, n)H=(kH, mH, nH). (4.2)
Let
(k, m, n)H=(k', mH, n’) (4.3)

for some k', n' € M’ (we know the domain of (k, m, n)H is mH). Then
nH=[(k, m, n)*|MeD. H
=[(k, m, )R]JHAD.M'D by (4.1)
=[(k', mH, n)RIM e¢D by (2.5) and (4.3)
=n' by (3.3).

Similarly kH = k', so (4.2) is proved.
Applying this to (1ns, 154 1ag) it follows that 1,,H is the unity of M'. Also

(mn)H=[m, n]MeD.H (definition of )
=[m, n]HAD. M eD (4.1)
=[mh, nh]M gD (2.6)
= mHnH (definition of ¢),

so that H restricted to the objects of MD, i.e. to M, is a monoid homorphism from M to M,
which I shall denote h. It is then immediate from (1.7) and (4.2) that hD = H.

Finally, given a @-algebra ¢: CAD— ( it is necessary to construct a monoid M such
that the algebra (MD, MeD) is isomorphic in Cat? to (C, £). For this purpose, I shall
repeatedly need formulas (4.4) through (4.8) below.

For any object k of C

[k]€= k. (4.4)

This follows from (1.3) with a= C, T=AD.
Let wy, ws, ..., w, be elements of CA and W their product in CA. Then

W§=[W1§, W2§, ey st]f. (45)

(Note that W is an object of CAD so that the left side makes sense.) This is obtained from
(1.4) with a = C, T=AD by chasing the object [w,, w2, ..., w,] around the diagram.
If Wi, W, W3 € CA. then

(wla wa, W3)§= ([wl g]’ [W2§], [W3§])§, (46)
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similarly obtained from (1.4) by chasing the arrow ([w;], [w2], [ws]).
Finally, by using (1.4) on [([k], [m], [r])*] and [((k], [m], [n])®], one has

k=[(k],[m], [n])*£A)¢ and 4.7
n=[([k],[m],[nD"¢A]& (4.8)

Now let M be the set of objects of C, and for m, n € M, let
mn=[m, n)é& (4.9)

Then (km)n =[{ k, m}& n]é=[[k, m]¢ [n}€]é=[k, m, n]€é by (4.4) and (4.5) and similarly
k(mn)=[k, m, n]& so the multiplication is associative. The unity is A& where A is the
empty word.

Define a functor ®: MD-> C by making ® be the identity map on objects and for an
arrow (k, m, n): m— kmn,

(k, m, n)® = ([k],[m], [n])é (4.10)

It follows from (4.4) that the domain of the right side is [ m]£€ = m and from a remark in the
preceding paragraph that the codomain is [k, m, n]¢é= kmn.
It follows from (4.10), (4.6) and (4.4) that

(k', kmn, n'Y® =([K'), [k, m, n],[n'])¢

(k'k, m, nn")® = (K, k], [m], [n, n'D¢

and

so that by (1.6) and the fact that £ is a functor, @ preserves composition.
I shall now construct an inverse ¥: C— MD to & (so I need not show @ preserves
identity arrows). ¥ is (naturally) the identity on objects, and for f: m— p in C,

F=(f"1¢ mf~19. (4.11)

The domain of f is obviously m, and the codomain is
[fF1€- m-[fR1€=[f"1& [f*1€1¢
=[f" m fRlé=[plé=p,

where the second equality comes from (4.4) and (4.5) and the third from (2.3).

Then
(k, m, n)®W = (([k], [m], [nD&"1& m, [([k], [m], [nD&"]é] (4.10) and (4.11)
=(k, m, n) (2.6)(4.7), and (4.8)
and for f: m—pin C,
f¥o=([f"1€), ([m]é€], [[f*1D¢ (4.11) and (4.10)
=[[f*1,[m),[f*Dé& (4.6)
=f.Cn.E=f (2.8) and (1.3).

Thus W is the inverse of ®.
I shall now show that the diagram
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YAD

CAD —s MDAD
3 meD
v
¢ MD (4.12)

commutes, so that ¥ (hence also ®) is a morphism in Cat®. This will complete the proof of
the Theorem.

If mis an object of Cand f, g arrows, then [m, f*, g®]is an object of CAD sufficiently
general to illustrate the commutativity of (4.12) without involving us in subscripts. On the
one hand,

[m, f*, g"]WAD. MeD =[m, ([f*1¢ dom f, [f*1&)", (g"1& dom g,[g"19)*IMeD
=m-[f"1¢-[g"]§
whereas because ¥ is the identity on objects,
[m, 5, g"1€¥ =[[m]& [f"1& [g71€)¢ (4.5)
=m-[f1¢[g")¢ (4.4)

Thus (4.12) commutes for objects.
If wy, wy, wy are elements of CA, then

(w1, wo, w3)WAD. MeD
=(w;VA. Mg, w, WA . Mg, ws WA . Mg) (1.7)
=(W1§, w2, W3§)

which follows from the commutativity of (4.12) for objects (w; is both an element of CA
and an object of CAD).
On the other hand, by (4.6)

(w1, wa, w3)§¥ = ALY
where A = ([w;£], [w2£], [ws€]). Then by (4.11),
ALY = ([AE")E wa€ (AER19)
= (w16 w2 § w3é) (4.7), (4.8), (2.6).
This proves the Theorem.

5. Remarks

1. Mon is not isomorphic to Cat?; this follows from the precise tripleability theorem,
since any parallel pair in Cat has a coequalizer which is not D of anything.

2. There are triples & and & corresponding to Leech’s functors L and R in the same
way that & corresponds to D, and a proof very similar to the one given here shows that
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Cat? and Cat® are both equivalent to Mon. The left adjoint to R, for example, is
constructed from the free monoid on C®U C° using a congruence satisfying (2.2) and

(b, f*y=(c)
for f:b—cin C

3. The extension theory which corresponds to & will be developed in a later paper.
The extension theory for * is discussed in (7).
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