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Let R be an associative, commutative ring with identity, and let A be a (unitary)
i?-module. It is well known that if A is a Noetherian J?-module then every
submodule of A has a primary decomposition in A. The object of the present
paper is to dualise this result; that is, to show that if A is an Artinian i?-module
then every submodule of A can be expressed as the sum of a finite number of
coprimary submodules of A.

There are two possible approaches to this problem. Firstly we could tackle
the problem directly, attempting to give statements and proofs of results that
are, in some sense, duals of the corresponding results from the classical theory.
The second alternative is the one we shall adopt. We shall develop a theory of
primary decompositions for an object of an abelian category over the ring R.
(For the definition, see (3).) Using the formal duality of abelian categories, we
shall then obtain the theory of coprimary decompositions that we require.

The first three sections of this paper are concerned with establishing existence
and uniqueness theorems for primary and coprimary decompositions. In the
fourth section we obtain a standard result for Noetherian .R-modules, together
with its dual. The dual result is a generalisation of a result obtained by Matlis
in (2) by using the first approach suggested above. The paper concludes with
a simple example to illustrate the ideas we have previously introduced.

I would like to thank Professor D. G. Northcott for his help in the prepara-
tion of that part of this paper which is contained in my thesis (Sheffield, 1971).

1. Primary and coprimary subobjects
Henceforth R will always denote an associative, commutative ring with

identity, and "U will denote an abelian category, <<? will denote the centre of aU,
see (1), and ^>:R-^(6 will be a mapping such that {<%, <j>) is an abelian category
over R, see (3).

If °U* denotes the dual abelian category of aU, there is an obvious mapping
<f>* :R-*'g* (the centre of %*) such that (^*, <j>*) is also an abelian category over
R. In this situation (<&*, <p*) will be called the dual of (<8r, <j>).

For reR and any ^-object A (f>(r) induces a morphism <f>(r)A:A-+A. If
fe H{A, B), where H{A, B) denotes the set of ^-morphisms with domain A and
codomain B, then we set
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H(A, B) thus becomes an i?-rnodule. Also

(r/)* = rf*

(rf)g = r(fg)=f(rg),

for any ̂ -morphism with codomain A, and

r\A = <j>{r)A.

We refer to the morphism r\A:A-*A as " multiplication of A by r ".
Let AT be a subobject of A. Then we shall denote the kernel of the composite

morphism A rlA >A->A/K by K:Ar, or by r~l{K) if there is no danger of con-
fusion, and we shall denote the image of the composite map K-*A rlA >A by rK.

If O. is an ideal of R, which is finitely generated by {co,, co2, ..., con}, and Kis
a subobject of the ^-object A, then we shall set

...+a>nK
and

K:AQ = (K:Aco1)n(K:Aw2)n...n(K:Acon).

These definitions may be seen to be independent of the particular finite generating
set chosen for the ideal Q.

We shall adopt the convention that the intersection of an empty set of sub-
objects of an ^-object A equals A, and that the sum of an empty set of subobjects
of A is the null object.

Our first result will give us basic identities needed to interpret results and
their duals.

Lemma 1. Let K be a subobject of the ^-object A and let r e R. Then

[AI(K:Ar)l* = r(A/K)*
and

(AlrK)*=(AlK)*:A.r.

Proof. [AI(K :Ar)~]* = [Coim ^

= Im

= r(A/K)*.

Also (A/rK)* = [Coker (K

= Ker (A*-^

= Ker (A*-^>A*-+A*I(A/K)*)

= (AlK)*:A.r.

Definition. Let A be an ^-object, and let A" be a proper subobject of A.
Then K is said to be a. primary subobject of A if, for any subobject N of A such
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that N 3= K and any re R such that rN ^ K, there exists a positive integer n
such that r"A ^ K.

Definition. The subobject K of the ^-object A is said to be a coprimary sub-
object of A if the subobject (A/K)* of the ^*-object A* is primary.

This definition can be expressed in a more convenient form as a consequence
of the following result.

Lemma 2. The subobject K of A is coprimary if and only if the following
conditions are satisfied:

(a) K is non-null,
(b) for any subobject N of A such that K ^ N, and any r e R such that

K ^ (N:Ar), there exists a positive integer n such that K ^ (Q:Arn).

Proof. Note firstly that K is null if and only if (A/K)* is not a proper sub-
object of A*.

Assume now that AT is a coprimary subobject of A and that N is a subobject
of A, with r e R, such that K S (N:Ar), while K $ N. Then (A/K)* is a primary
subobject of A*, (A/N)* is a subobject of A* such that (A/N)* $ (A/K)*, and
reRis such that r(A/N)* :g (A/K)*. Hence there exists a positive integer n
such that r"A* ^ (A/K)*. Therefore K g, (0:Arn), as required.

Conversely, suppose (a) and (6) are satisfied. Let X* be a subobject of A*,
and let r e i i , such that X* $ 04/AT)*, while rX* ^ (/!/#)*. There exists a
subobject JV of A such that Z* = (A/N)*. Since 04/W)* ^ (/f/AT)* it follows
that K $ N, while r(A/N)* ^ 04/AT)* implies that A: ^ (7V:xr). By (b), there
exists a positive integer n such that K ̂  (0: ̂ r"), which, by Lemma 1, implies that
r"A* ^ 04/AT)*. Thus (A/K)* is a primary subobject of A*, so that A: is a
coprimary subobject of A. This completes the proof of the lemma.

Let K be an arbitrary subobject of the ^-object A. We set

&A, K = {r e R'- r"A ̂  K for some positive integer n}
and

>̂* K = {r e R: AT s; (0:xr
n) for some positive integer «}.

Since K ^ (0:Arn)ornA* ^ (A/K)* we deduce that <2»*>K = 0>A.AA/K),.

Lemma 3. Let Kbe a subobject of A. Then 0>
Ai K and ^ * K are ideals of R.

Further, if K is a primary (respectively, coprimary) subobject of A, then 0>
A>K

(respectively, 0>*A K) is a prime ideal of R.

Proof. We shall leave the proof that SPAt K is an ideal to the reader.

Suppose that A? is a primary subobject of A. Then S?At K is a proper ideal of
R, since 1 $ S?At K. Next assume that rxr2 e {?At K while r2 $ @'At K. Suppose that
n is a positive integer such that (rir2)

nA ^ K. Then r^(r^/4) ^ K. However,
r"2A $ K since r1^0>

A< K. Since AT is a primary subobject of A it follows that
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there exists a positive integer m for which {f[)mA ^ K. Thus r1e3PAt K, so
that &At K is a prime ideal of R.

The results for ^"* K follow from this and from the result immediately
preceding this lemma. This completes the proof.

Let P be a prime ideal of R. The subobject K of A is said to be P-primary
(respectively, P-coprimary) if K is a primary (respectively, coprimary) subobject
of A and 0>

AtK = P (respectively, ^ ] J t = P).
The following three results have proofs which are very similar to the corres-

ponding results from commutative algebra (see, for example, (4), pp. 99-100) so
we omit these proofs.

Lemma 4. Let Kbe a proper subobject of A, and let n be a proper ideal of R.
Assume also that the following conditions hold:

(a) for any subobject N of A and any r e R such that rN ^ K, either N ^ K
or ren.

(6) nSPAtK.

Then n is a prime ideal of R and K is a n-primary subobject of A.

Lemma 5. Let Kt, K2, ••., Km be a non-empty finite set of P-primary subobjects
of A. Then K = K1r\K2r\...r\Km is a P-primary subobject of A.

Lemma 6. Suppose that K and N are subobjects of A. Suppose further that
N is a 0>At ^-primary subobject of A. Then either KnN = K or KnN is a
0>A>N-primary subobject of K.

2. Existence theorems
Let A be an object of the abelian category (< ,̂ <j>) over the ring R, and let K

be a subobject of A.

Definition. K is said to have a primary decomposition in A if K can be ex-
pressed as the intersection of a finite number of primary subobjects of A.

Definition. Suppose that K = N1nN2n...nNm is a primary decomposi-
tion of K in A. We say this is a reduced primary decomposition of K in A if the
following further conditions are satisfied:

(b) no proper subset of {Nu N2, •••, Nm} has intersection equivalent to K.

By virtue of Lemma 5, and by omitting any superfluous terms, we can obtain
a reduced primary decomposition of Kin A from any given primary decomposi-
tion of Kin A.

Definition. A is said to be a. fully structured object of <% if every subobject of
A has a primary decomposition in A.
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Definition. A is said to be Noetherian if, for every ascending chain

A1^A2^A3^ ...

of subobjects of/4, there exists an integer n such that An = An+pforp = 0,1,2, . . . .

We shall show that every Noetherian ^-object is fully structured. In order
to achieve this we shall introduce one auxiliary concept.

Definition. We shall say that A'is an irreducible subobject of A if Kis a proper
subobject of A and if, whenever K = KlnK2, where Ku K2 are subobjects of A,
then either K = KY or K = K2.

Lemma 7. Let Abe a Noetherian object ofU, and K a subobject of A. Then
K can be expressed as a finite intersection of irreducible subobjects of A.

Proof. To obtain a contradiction, we suppose that K cannot be expressed as a
finite intersection of irreducible subobjects of A. Then K must be a proper
subobject of A, since A is by convention an empty intersection of subobjects of
itself. Also K must be non-irreducible. Therefore there exist Nu Ku proper
subobjects of A, neither of which is equivalent to K, such that K = A^n/f,.
We may assume that Kt cannot be expressed as a finite intersection of irreducible
subobjects of A. We may repeat this argument to generate inductively an
arbitrarily long non-stationary sequence A" ^ Kx ^ K2 ^ ... ^ Kp ^ Kp+1 ^ ...
of subobjects of A. Thus A is not a Noetherian ^-object, which is the required
contradiction.

Lemma 8. Let A be a Noetherian ^-object. Then any irreducible subobject
of A is primary.

Proof. Let Kbe a proper subobject of A which is not primary. We shall
show that K is not an irreducible subobject of A.

Let Af be a subobject of A, with reR, such that N £ K, rN ^ K, and
r"A%K for every positive integer n. Consider the ascending sequence

K:Ar ^ K:Ar2 ^ ... ^ K:Ar" ^ K:Arn+1 ^ ...

of subobjects of A. Let n be the smallest positive integer such that

K:Ar" = K:Ar'+>
for/) = 0, 1, 2, ....

We consider the subobject X = (K: Arn)n(K+ r"A) of A. Obviously K S X.
From N g K:Ar" and r"A $ Kit follows that K:Ar" =£ K&nd K+r"A ^ K.

It remains to show only that X ^ K. Since K g K:Ar", we may apply the
" modular law", so that X=K+\_(K:Ar")nrnA~\. It will suflice to show that
Xl={K:Ar")nrnA-^K. Now Xy:Arn ^ (K:Ar"):Arn = K:Ar2n = K:Arn. Hence
r"{Xi ••Arn) S r"{K:Ar") ^ K. But r"^ :Arn) = Xxc\rnA = Z, . Thus Xx ^ K,
as required. This completes the proof.

As an immediate consequence of Lemmas 7 and 8 we deduce
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Theorem 1. Let A be a Noetherian object of the abelian category (%, <j>) over R.
Then A is fully structured.

We shall now begin an examination of the dual situation. To help with this
we prove first of all the following result.

Lemma 9. Let K and {Nu N2, ..., Nm} be subobjects of A. Then

K=

as subobjects of A if and only if (A/K)* = (A/Nl)* + (A/N2)*+ ...+(A/NJ* as
subobjects of A*. Dually, K = Nt + N2 +... + Nm as subobjects of A if and only
if (A/K)* = (A/Nl)*n(A/N2)*n...n(A/Nm)* as subobjects of A*.

Proof. These results follow readily from the equivalences

(N1nN2n...nNJ* = A*/{(A/Nl)* + (A/N2)*+... + (A/Nm)*}
and

(JV1+tf2+...+iVJ* = A*/{(A/N1)*n(A/N2)*n...n(A/NJ*}.

Definition. The subobject K of A is said to have a coprimary decomposition
in A if the subobject (A/K)* of A* has a primary decomposition in A*.

Lemma 10. The subobject K of A has a coprimary decomposition in A if and
only if K is equivalent, as a subobject of A, to the sum of a finite number of co-
primary subobjects of A.

Proof. K has a coprimary decomposition in A if and only if

where N? is a /"(-primary subobject of A* (1 1 1 ^ m), which is so when and only
when K = (A*/N*l)* + (.A*/N*2)* + ...+(A*/NZ)*. Furthermore, by definition,
(A*/N?)* is a Prcoprimary subobject of A (1 ^ i ^ m).

Definition. The coprimary decomposition K = Nt+N2 + ...+Nm of AT in
A is said to be a coreduced coprimary decomposition of K in A if

(A/K)* EE (A/Nl)*n(A/N2)*n...n(A/Nmr

is a reduced primary decomposition of (A/K)* in A*.

Lemma 11. The coprimary decomposition K= Nt+N2 + ...+Nm of K in
A is coreduced if and only if the following conditions are satisfied:

(b) no proper subset pf{N1, N2, ..., Nm} has sum equivalent to K.

Proof. This result follows readily from Lemma 9, the deduction made
immediately before Lemma 3, and the definition of a reduced primary decom-
position.
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Given a coprimary decomposition of a subobject Kof A,v/e obtain from it a
primary decomposition of the subobject (A/K)* of A*, and thence a reduced
primary decomposition of (A/K)* in A*. Finally, we may then obtain a co-
reduced coprimary decomposition of AT in A. Thus, given any coprimary
decomposition we may refine it to yield a coreduced coprimary decomposition.

We now define an ^-object A to be Artinian if and only if the dual object A*
of the dual abelian category (?ll*, <j>*) over R is Noetherian. Equivalently, we
have the following

Definition. A is said to be Artinian if, for every descending chain

At ^ A2 ^ A3 ^ ...

of subobjects of A, there exists an integer n such that An = An+P for
p = 0, 1, 2, ....

Our next definition is of the dual property to that of being fully structured.
An ^-object A is said to be fully costructured if and only if the ^"-object A*
is fully structured. We may rephrase this definition in the following equivalent
form.

Definition. An ^-object A is fully costructured if and only if every sub-
object of A has a coprimary decomposition in A.

The above definitions enable us to state the dual result to Theorem 1, which is

Theorem 2. Let A be an Artinian object of the abelian category (%, <j>) over R.
Then A is fully costructured.

3. Uniqueness theorems
Let A be an object of the abelian category (?U, <j>) over the ring R.

Lemma 12. Let N be a P-primary subobject of A, and let O. be a finitely
generated ideal of R such that Q $ P. Then N:AQ = N.

Proof. Suppose that reQ.\P. To obtain a contradiction, suppose that
N:Ar=£N. The force of this assumption lies in the statement N:Ar ^ N. Now

r(N:Ar) = NnrA^N,

and so, since N is a P-primary subobject of A, it follows that r e P. This contra-
dicts the choice of r, and so we deduce that N:Ar = N, and hence that N:AQ. = N.

Proposition 1. Let K be a subobject of A and let K = N1r\N2n...r>Nm be
a primary decomposition of K in A, where Nt is a P(-primary subobject of
A (1 ^ / ^ m). Then ifQ. is a finitely generated ideal of R such that

Q $ {/>,uP2u...uJPm}, K:AQ = K.
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Proof. Let to be generated by {a>lt a>2, ..., con}. Then

K:AQ = fl (K:A(Oi)
i = 1

= n n "A
i = 1 Li'= 1 J

- n c/
i

n
y = i

= n Nj

by Lemma 12 above.

Lemma 13. Let N be a P-primary subobject of A, and let SI be a finitely
generated ideal of R such that N:ACl = N. Then Q $ P.

Proof. Suppose {cou co2, ..., con} generates the ideal Q. Assume, to obtain
a contradiction, that Q ^ P. Since Q c pt there exist positive integers

mu m2, ..., mn

such that co?"A ^ N (1 ^ i ^ «). Setting m = «21+m2 + . . .+m n we have
QmA ^ iV. Let fc be the smallest positive integer such that Q.kA ^ N. Then
Qfc-M $ iV, and, for 1 ^ i ^ n,

Hence Q*"1^ ^ f) (N:Acot) = N:AQ. Thus we have Q"" 1 ^ ^ A^:A^> and
i = 1

Q*1"1/! ^ TV, so that (A^^Q) i= N, from which contradiction it follows that
Q $ P.

Proposition 2. Le/ Âe subobject K of A have a reduced primary decomposition
K = Nir\N2r

>i...r\Nm in A, where N{ is a P'(-primary subobject of A (1 ^ i ^ /w).
Lef Q 6e a finitely generated ideal of R such that (K:AQ) — K. Then

n $ {p1u?2u...u/>.}.

Proof. We may assume that Kis a proper subobject of ^4. By induction we
know that K:AQ" = AT for every integer «, since A ^ Q = K.

Let /denote the subset of {1, 2 , . . . , m} consisting of those integers i for which
Q £ Pt. Suppose that / is non-empty. We shall assume that / = {1, 2, . . . , / }
and set / = {/+1,1+2, ..., m}. Now by Lemma 13 there exist positive integers
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rt1,«2,...,«,suchthatfi'Mg JVj(l^ i ^ 1). Hence (A^fi"') ^ Afor 1 g i g /.
Setting « = max {nu n2, ..., «,}, we see that A^fi" = .4 (1 ^ / ^ /). Now

K = K:AQ"

n
i = 1

0

But Q $ .P, (/+1 g; 7 g «J), and each Pj is a prime ideal, so that it follows that
fi" $ Pj (/+1 Sj S m). Hence, by Lemma 12, A ^ O " = Â . (/+1 ^j^ m).
Therefore K = Nl+1nNl+2n...nNm, contradicting the fact that

K= N1nN2n...nNm

was a reduced primary decomposition of AT in A. Thus / must be empty, as
required.

We shall now assume that ^Tis a subobject of A, and that K has two reduced
primary decompositions in A,

K =
and

K = 1 2 ^ ,

where Â  is a P,-primary subobject of A (1 S i ^ /) and Â ,' is a Pj-primary
subobject of A (1 g y ^ w). Let r e ^ \ { P 1 u ? 2 u . . . u ? J . By Proposition 1
we know that K:Ar = K, so that from Proposition 2 we have

r e R\{P[UP'2KJ...u?:}.

Hence it follows that {/)JuP2U...ui>^} £ {i>
1u7)

2^---^'-Pi}- The opposite
inclusion follows similarly so that we have {P1KJP2U...KJP1} = {P[KJP2V...VP^.
Therefore we make the following

Definition. Let the subobject K of A have a reduced primary decomposition
K = N1nN2nl...nNm in 4̂, where A7^ is a ZVprimary subobject of A (1 ^ / ^ m).
Then the prime set of A' in A is defined to be the set-theoretic union of the prime
ideals PUP2, ...,Pm.

From Propositions 1 and 2 we deduce

Lemma 14. Suppose that the subobject K of A has a reduced primary de-
composition in A. Then the prime set of K in A is {r e R:(K:Ar) # K}.
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We again suppose that
K = NlnN2n...nNl

and

are reduced primary decompositions of K in A, where Nt is a P,-primary sub-
object of A (1 ̂  ii ^ /) and iVj is a Pj-primary subobject of A (1 ^ jr g w).
Suppose that {Pi,P2, •••,Pq}

 an<i {•?!, P^. •••, K} a r e t n e maximal members of
{PUP2, ..., P,} and {P{, P2', ..., P;} respectively. Now

Px £ {PiUPaU.-.u?,} = {P(uP2u...uP;}

so that there exists 1 ^j^m such that P t s i>j. We may choose j so that Pj
is maximal in {PJ, P'2, ..., P^}. Similarly,

so that there exists 1 ^ i ^ / such that Pj £ Pf. Since Px is a maximal member
of {Pl5 P2, ..., P,}, and Px c pj c p., it follows that P t = Pj,

Repeating the above argument a suitable number of times we deduce that
the two sets of prime ideals {Pl5 P2, ..., Pq} and {P'u P2, ..., P't) must be the
same.

This result may however be generalised in the following manner.

Theorem 3. Let the subobject KofA have two reduced primary decompositions

and

in A, where &>AiNi = P, (1 ^ i ^ /) and &A, N) = Pj (1 ^ J ^ m). 7%en / = m
and there is a permutation a of {I, 2, ..., /} such that P{ = P'a(i) (1 ^ i ^ /).

Proof. The proof is by induction on the integer n = min (/, m). If n = 0
then AT = 4̂, and the result is therefore trivially true in this case.

Assume now that n is a positive integer and that the required result holds
for any subobject of A having at least one reduced primary decomposition as the
intersection of at most n— 1 primary subobjects of A.

Consider the set {Pl5 P2, ..., P(, P[, P'2, ..., P'm) of prime ideals. Let P be a
maximal member of this set. P must belong to both {Pl5 P2, ..., P(} and to
{P'x, P'2, ...,P^,}. Assume without loss of generality that iV̂  and N[ are
P-primary subobjects of A. We may choose r eP such that

and such that r $P'2,r $ P'3, ..., r $P'm. Now there exist positive integers
vu v2 such that rv'A g Nt and rV2A g N\. Setting v = max {vu v2}, we have
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and

But rv $Pj for any j satisfying 2 £ j ^ I, and so

Hence

K:Arv= H (Nj:Arv)=N2nN3n...nN,.
j = i

Similarly

But each of these primary decompositions of K:Arv in /4 is reduced. By the
inductive hypothesis, it follows that /—I = AM— 1, so that / = m, and also there
is a permutation a of {2, 3, ..., /} such that Pt = P'em (2 ^ j ^ /). Setting
CT(1) = 1, we obtain the required permutation of {1, 2, ..., /}. This completes
the proof of the theorem.

Definition. Let Kbe a subobject of A having a reduced primary decomposi-
tion

in A. Then the ideals &A<Ni, &>A,N2> •••> ^ A , Nm w îll be called the prime ideals
belonging to K in A.

From Theorem 3 the concept just introduced is well-defined.
We turn now to the dual theory. From Lemma 1 and the equivalences

stated in the proof of Lemma 9, we may readily deduce that if K is a subobject
of the ^-object A, and Q is a finitely generated ideal of R, then the subobjects
(A/Q.K)* and {AjK)*:ASl of A* are equivalent. This enables us to deduce
Propositions 3 and 4, which are the duals of Propositions 1 and 2.

Proposition 3. Let Kbe a subobject of A, having K = Nt+N2 + ...+Nm as
a coprimary decomposition in A, where Ni is a Prcoprimary subobject of
A (1 g i ^ m). Then, i/Cl is a finitely generated ideal of R such that

, CIK = K.

Proof. By Lemma 9, (A/K)* = (A/N1)*n(A/N2)*n...n(A/NJ*, where
* is a iVprimary subobject of A* (1 ^ i ^ m), since

Since SI £ {i)
1uP2u...uPffl}, we deduce from Proposition 1 that

(A/K)* :A.£1 = (A/K)*,

and so (A/SIK)* = (A/K)*, which is equivalent to SIK = K.

Proposition 4. Let K be a subobject of A, having a cor educed coprimary
decomposition K = Nt+N2 + ...+Nm in A, where Nt is a Prcoprimary subobject
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of A (1 ^ i ^ m). Let Q be a finitely generated ideal of R such that Q.K = K.
Then Q $ {P1uP2u...uPm}.

Proof. This is deduced from Proposition 2 in a similar manner to that in
which Proposition 3 resulted from Proposition 1.

Suppose now that AT is a subobject of A having a coreduced coprimary
decomposition in A. Then we define the coprime set of K in A to be the prime
set of (A/K)* in A*. By duality we are able to express this in a different form.
This is the aim of

Lemma 15. Let the subobject K of A have a coreduced coprimary decomposi-
tion K= N1+N2 + ...+Nm in A, where Nt is a P\-coprimary subobject of
A (1 ^ i ^ ni). Then the coprime set of K in A is the union of the prime ideals
{Pu P2, .., Pm}- It is also characterised as {r e R:rK # K), and is therefore
independent of the particular coprimary decomposition of K in A under considera-
tion.

We shall now conclude this section with the dual of Theorem 3, and the defi-
nition of the resulting dual concept.

Theorem 4. Let K be a subobject of A having two coreduced coprimary
decompositions

K = N1+N2 + .
and

in A, where 0>\ Ni = Pt (1 <; i ^ /) and 0>\ ̂  = P] (1 g j <; m). Then I = m
and there is a permutation a of {I, 2, ..., 1} such that Pt = P'a(i) (1 ^ i ^ I).

Definition. Let the subobject K of A have a coreduced coprimary decompo-
sition K= Ni +N2 +... + Nm in A. Then the ideals 0>*AjNi, 0>\N2, ..., 0>*A>Nm

are called the prime ideals cobelonging to K in A.

4. An application
We now make an application of our earlier results to obtain a well-known

result from commutative algebra, together with its dual.

Theorem 5. Let the subobject K of A have a primary decomposition in A, and
let Q be a finitely generated ideal of the ring R. Then K:A£l = K when and
only when there exists w e Q such that K:Aco = K.

Proof. Let K = ^ n ^ n . - . n ^ be a reduced primary decomposition of
K in A, where Nt is a Prprimary subobject of A. From Propositions 1 and 2,
K:AQ = Kit and only if Q $ Pu Q $ P2,..., Q $ Pm. But by induction on m,
this is so when and only when we can choose co e Q such that

co<£Pu <o4P2, ..., co$Pm.

Again using Propositions 1 and 2, this is so if and only if K:Aco = K.
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Theorem 6. Let the subobject K of A have a coprimary decomposition in A
and let Q be a finitely generated ideal of R. Then CIK — K if and only if there
exists a>eQ such that a>K = K.

Proof. This follows from Theorem 5 and the equivalence of the subobjects
(A/QK)* and (AjK)*:A£l of A*.

5. An example
In this section we give a simple example of the use of the ideas that we have

encountered.
Letpup2> •••,/>/* be distinct prime integers, and let nt,n2, ...,nk be non-nega-

tive integers. We shall let A denote the additive group of integers modulo
PniPn2---PT- A can then be regarded as a Z-module in the usual manner, where
Z denotes the ring of integers. Every submodule of A may be singly generated,
and we shall use (d) to denote the submodule of A which is generated by the
integer d.

The primary submodules of the Z-module A are those generated by an element
of A of the form p11pli2...Pkk, where all but one of the nt's is zero, and the single
non-zero nt satisfies I ^ p, £ «,-.

The coprimary submodules of A are those generated by elements of A of
the form p?'p§2...pjfk, where this time all but one of the fifs equals the corres-
ponding «;, and the single exception satisfies 0 ^ Hi<nt.

A, being a finite Z-module, is both Noetherian and Artinian, and so each
submodule of A has a primary and a coprimary decomposition in A. The sub-
module of A generated by p™'p™2.-.Pk"k, where 0 ^ mt ^ nt (1 ^ i ^ k), has a
primary decomposition

(PT1^22-PT)= 0 WO
i = 1

mt * 0

in A. Again, it is easily seen that
k

i.pTpT---p'kk)= + (pV---p"-'iPT'p"i'+\1---Pkk)
i = 1

Tttt ^ B |

is a coprimary decomposition of CPT'P™2-••.?«!*) m A.
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