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ABSTRACT: Articular surfaces reflect the relative movements between adjacent bones, and

the ones involved in the elbow joint provide information about forelimb movements and may be

useful for making inferences about the substrate use. The proximal articular surface of the ulna

was examined through 3-D geometric morphometrics, in order to assess its usefulness as a proxy

for paleoecological interpretations; particularly for two small mammals from the early Miocene

of Patagonia. The sample was composed of 22 extant small mammals (rodents, carnivorans and

primates) and two extinct typotheres: Hegetotherium mirabile (Hegetotheriidae) and Interatherium

robustum (Interatheriidae). Forty-five landmarks were taken and principal component analysis

(PCA) was used to explore the morphospace structure. The results of PCA for the whole surface

were inconclusive; therefore, successive analyses were made, subdividing the surface into sub-units.

The PCA for the proximal part of the trochlear notch was the most informative, allowing the recogni-

tion of morphospaces with functional value: one for digging rodents and another for most climbers.

Neither typothere would have had a specialisation for climbing or digging in the features analysed.

This study allows morphological patterns on different parts of a joint to be detected; interpreted, at

least partially, as differential responses to different kinds of mechanical stress.
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Articular surfaces of limb bones are very informative in mor-

phofunctional studies, providing insights about the relative

movements between adjacent bones. Consequently, they are a

main subject in many contributions on the limbs of extant and

extinct tetrapods (Jenkins 1973; Argot 2001; Szalay & Sargis

2001; Sargis 2002; Candela & Picasso 2008; Toledo et al.

2013). In mammals, the elbow joint is a particularly complex

hinge, widely used to characterise the forelimb functionality

(Jenkins 1973; Argot 2001; Andersson 2004; Candela & Picasso

2008; Drapeau 2008; Ercoli et al. 2012; Fabre et al. 2013), be-

cause it is involved in flexion–extension movements between

humerus and ulna, as well as rotational movements between

these two and the radius. This triosseal relationship is clearly

reflected in the proximal ulnar articular surface, making it a

particularly interesting feature to study.

Studies on the correlation between form and function of the

limbs usually rely on classifications in locomotor categories.

However, there is much controversy about the category, or

categories, in which an animal should be classified; generally

because the terms used do not always describe strictly locomo-

tion, but rather other aspects of the relation of the animal with

the substrate. Miljutin (2009) claimed that, frequently, the

typology of ecological strategies used is logically incorrect,

sometimes mixing essentially different terms; for instance, using

‘aquatic’ and ‘fossorial’ instead of ‘aquatic and subterranean’

(habitat) or ‘natatorial and fossorial’ (locomotion) in the same

classification. Furthermore, in relation to the correlation be-

tween form and function, Toledo et al. (2012) highlighted the

difference between substrate preference (arboreal, terrestrial,

etc.) and substrate use (climbing, digging, etc.), noting that

substrate preference categories are frequently used as locomotor

categories, although they are not locomotor modes.

Morphofunctional studies on extinct species normally require

the study of extant species, to validate hypotheses on the func-

tion of the feature of interest. In the last decade, a considerable

focus has been made on the palaeobiology of early Miocene

palaeocommunities of Patagonia, using this approach (see

Vizcaı́no et al. 2012 and chapters therein). Amongst the char-

acteristic mammals in this assemblage are the South American

native ungulates. Their phylogenetic affinities have been con-

troversial; Horovitz (2004) found no association with any

particular modern mammal order and proposed a polyphyletic

origin for the South American native ungulates. Other authors

related them to Afrotheria (O’Leary et al. 2013) and, recently,
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they were associated with modern perissodactyls (Welker et al.

2015), based on collagen amino acid sequences.

Amongst South American native ungulates, the most mor-

phologically diverse group is the Notoungulata (Simpson

1936; Patterson & Pascual 1968; Cifelli 1985; Croft 1999),

which includes toxodonts and typotheres, considered tradi-

tionally as inhabitants of open plains (Patterson & Pascual

1968; Billet et al. 2009). Typotheres are small to medium-sized

animals which bear little resemblance to extant ungulates.

Instead, they have been described as similar to hyraxes and

mustelids (in the case of Interatheriidae), lagomorphs (for

Hegetotheriidae) and capybaras (for Mesotheriidae) (Ameghino

1889; Cope 1897; Sinclair 1909; Bond et al. 1995; Croft 1999;

Elissamburu 2004; Elissamburu & Vizcaı́no 2004; Croft &

Anderson 2008; Cassini et al. 2012a). Two typotheres from the

early Miocene of Patagonia well represented in the collections

are Hegetotherium mirabile (Hegetotheriidae) and Interatherium

robustum (Interatheriidae), which were traditionally considered

saltatorial and cursorial, respectively (Sinclair 1909). Using

ratios with functional importance, of both forelimb and hind-

limb, applied in living caviomorph rodents (Elissamburu &

Vizcaı́no 2004), the larger H. mirabile (body mass around 5 kg;

Cassini et al. 2012b) has been characterised as a digger (Elissam-

buru 2004) or an occasional digger (Cassini et al. 2012a), and

the smaller I. robustum (body mass around 2 kg; Cassini et al.

2012b) as a digger (Elissamburu 2004) or an occasional digger

with putative swimming or climbing capabilities (Cassini et al.

2012a).

In this contribution, we focus on the relationship between

the proximal ulnar articular surface of the ulna and the sub-

strate use by small to medium-sized mammals, in order to

assess its usefulness as a proxy for interpreting this disputed

paleoecological aspect of H. mirabile and I. robustum.

1. Materials and methods

We analyzed specimens of 22 living species of eutherians (ten

rodents, ten carnivorans and two primates) and two fossil species

(typotheres). The comparative sample is composed mostly of

rodents and carnivorans, based on the morphological similarities

between these and the typotheres, whilst the two primates were

included to represent the morphology from an order specialised

in climbing. (Table 1).

The ulnae were digitised using a NextEngine Desktop 3-D

Scanner, and a 3-D surface mesh was generated (meshes of

the fossil ulnae are depicted in Figure 1). The 3-D landmarks

coordinates were taken from the mesh using the Landmark

editor software (Wiley 2006). Given the complexity of the

articular facets and the absence of enough recognisable land-

marks, 3-D semi-landmarks were sampled to capture the shape

of the proximal articular surfaces. Three landmarks were placed

on the most anterior point of the proximal end of the trochlear

notch (L1; type II mathematical), the most anterior contact

point between the trochlear and radial notches (L2; type I ana-

tomical), and the most lateral contact point between trochlear

and radial notches (L3; type I anatomical). L1 coincides with

the anconeal process and L2 with the coronoid process (Fig. 1).

Forty-two semi-landmarks (type III) were collected on the

whole articular surface and three units were defined and sepa-

rately analysed (Fig. 1): the radial unit comprised the radial

notch (L2–3 and 13 semi-landmarks); the distal unit comprised

the distal segment of the trochlear notch (L2–3 and 17 semi-

landmarks); and the proximal unit comprised the proximal

segment of the trochlear notch (L1 and 15 semi-landmarks).

The ecomorphological analytical procedures evaluate the

relationships of the elbow articular surface with the substrate

use. In doing so, we defined five categories: (1) climber; (2)

Table 1 Species of the sample, numerical code used in the PCAs, taxonomic group (order), substrate use and specimen number.

Code Order Species Substrate use Specimen

1 Rodentia Cuniculus paca ambulatory MMP-Ma 22

2 Rodentia Callosciurus erythraeus climber MACN 23565

3 Rodentia Coendou villosus climber MCN 2681

4 Rodentia Ctenomys australis digger MLP 7.XI.95.7

5 Rodentia Dasyprocta azarae runner CNP 896

6 Rodentia Dolichotis patagonum runner MLP 252

7 Rodentia Hystrix cristata ambulatory MACN 5.51

8 Rodentia Lagidium viscacia jumper MLP 29.XII.00.3

9 Rodentia Lagostomus maximus digger MLP 27.IV.95.1

10 Rodentia Myocastor coipus digger MLP 09.IX.97.02

11 Carnivora Arctictis binturong climber MACN 43.67

12 Carnivora Conepatus chinga ambulatory MLP 1.II.95.1

13 Carnivora Galictis cuja ambulatory MLP 2020

14 Carnivora Leopardus geoffroyi ambulatory MLP 27.XII.01.15

15 Carnivora Lontra longicaudis swimmer MLP 1959

16 Carnivora Lycalopex gymnocercus cursorial MLP 1896

17 Carnivora Meles meles digger MACN 5.36

18 Carnivora Nasua nasua ambulatory MACN 5.12

19 Carnivora Potos flavus climber MLP 1740

20 Carnivora Procyon cancrivorus ambulatory MLP 2110

21 Primates Cebus apella climber MLP 18.XI.99.8

22 Primates Daubentonia madagascariensis climber MACN 12.16

23 Notoungulata Hegetotherium mirabile _ MPM-PV 4173

24 Notoungulata Interatherium robustum _ MPM-PV 3527
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digger; (3) swimmer; (4) runner; (5) jumper; and (6) ambula-

tory, for those with no clear predominant activity (following, in

part, Morgan & Álvarez 2013). Substrate use assignation was

based on information available in the literature (Van Valken-

burgh 1987; Nowak & Walker 1991; McClearn 1992; Samuels

& Van Valkenburgh 2008; Seckel & Janis 2008; Meachen-

Samuels & Van Valkenburgh 2009) (Table 1). We note that

Myocastor coypus is considered here to be a digger because

this species uses its forelimb to dig. However, this rodent could

be classified also as a swimmer (Samuels & Van Valkenburgh

2008). The latter option is considered as well (see below).

The whole landmark configurations were superimposed using

the generalised Procrustes analysis (GPA) and semi-landmarks

were relaxed at the same time using the geomorph 2.1.3 package

(Adams & Otárola-Castillo 2013) in R software 3.1.5 (R De-

velopment Core Team 2015). The semi-landmarks on the limits

of each surface (trochlear and radial) were treated as curves,

and the ones inside the limits were treated as surfaces (giving

them more degrees of freedom to slide). The landmarks be-

longing to each articular unit (radial, distal and proximal)

were selected from the superimposed and relaxed configura-

tion, and a new GPA without relaxation was made in order to

generate their own shape space (accounting for four shape

spaces). We performed a principal component analysis (PCA)

to identify the major components of the variation related to

taxonomic and ecological distribution of extant taxa and the

constitution of informative morphospaces.

Four PCA analyses were undertaken: (1) for the whole

articular facet (PCAw); (2) for the radial notch (PCAr); (3)

for the distal segment of the trochlear notch (PCAd); and

(4) for the proximal segment of the trochlear notch (PCAp).

Following Cardini et al. (2010) and Abba et al. (2015), the

correlation between two distance matrices, euclidean distances

(PCs) and procrustes distances in the full shape space, was

calculated and used to determine the number of principal com-

ponents to explore. The correlation coefficients were plotted

onto the number of PCs, and the PC at the ‘‘elbow’’ in the

plot was taken as the highest PC to retain (Cardini et al.

2010). Visualisation and graphics were made using the Morpho

R package 2.3.1.1 (Schlager 2013), which allowed the colour

pattern to be associated with the shape changes. Statistical

analyses were performed using R software.

Institutional abbreviations. The specimens are housed in the

following institutions: Centro Nacional Patagónico, Puerto

Madryn, Argentina (CNP); Museo Argentino de Ciencias

Naturales ‘‘Bernardino Rivadavia’’, Ciudad Autónoma de

Buenos Aires, Argentina (MACN); Museu de Ciencias Naturais,

Porto Alegre, Brasil (MCN); Museo de La Plata, La Plata,

Argentina (MLP); Museo Municipal de Ciencias Naturales

Lorenzo Scaglia (MMPMa); Museo Regional Provincial Padre

M. Jesús Molina, Rı́o Gallegos, Argentina (MPM-PV).

2. Results

In the bi-plot of the correlation coefficients versus the number

of PCs for each PCA, the ‘‘elbow’’ point was at the fifth PC.

Therefore, the first five PCs were selected to explore the

morphospace structure (Table 2). The correlations between

the distance matrix of the first five PCs and the full shape

space distance matrix was greater than 0.95 in every case.

In all PCAs, the first component shows a strong taxonomic

signal, distinguishing carnivorans from rodents and, amongst

all the analyses, only PCAp showed a clear functional signal

in both PC1 and PC2 individually. However, on the other

PCAs, an unclear functional pattern sometimes emerged only

in the morphospace depicted by PC1 and 2 taken together.

The remaining principal components were uninformative,

with the exception of PC3 in PCAw and PCAr, which in both

cases presented a similar taxonomic signal to that seen on PC1

of all analyses. As no PC beyond PC2 showed functional

signal (see Table 2), only PC1 and PC2 of each analysis are

described and used in the following interpretations.

The first five PCs of the whole articular surface analysis

(PCAw; Fig. 2) account for P75 % of cumulative variance

(Table 2), and the first two PCs account for P40 % of the total

variance. On PC1 (P24 %), there is a variation from strong

proximodistal difference in the width (with a narrower proximal

part), a high trochlear notch, a strong mediolateral convexity and

a quadrangular radial notch in negative values, to sub-equal

distal and proximal widths, low trochlear notch mediolateral

convexity and a more triangular radial notch toward positive

values. The carnivorans mostly have negative values, the primates

are close to zero, and the rodents have mostly positive values.
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Figure 1 (1) Ulna of Interatherium robustum. (2) Ulna of Hegetotherium mirabile. (3) Detail of ulnar proximal
articular surface of H. mirabile. Abbreviations: Ancp ¼ anconeal process; Cp ¼ coronoid process; Rn ¼ radial
notch; Tn ¼ trochlear notch. (4) Same detail showing the three landmarks (red); the 42 semi-landmarks (black);
and the three units of analysis: radial (yellow), distal (green) and proximal (light blue). Scale bar ¼ 10 mm.
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On PC2 (P17 %), there is variation in width (from wide to

narrow), in the proximodistal curvature in the sagittal plane

(from high to low concavity) and in the anterior projection of

the coronoid process (from more to less projected). There is no

clear taxonomic pattern on PC2 in the PCAw analysis.

The only substrate use category identifiable on PC1 and

PC2 of the PCAw morphospace is represented by the digging

rodents of this sample (including the coypu, M. coypus), which

have high values of PC1 and mid-range values of PC2. The

typotheres fall in the boundary of the morphospace of the

total extant sample, with negative values of both PCs, sharing

the PC1 values with the carnivorans. The PCAw does not

show a clear functional segregation (with exception of digging

rodents), but there is an identifiable taxonomic cluster on PC1.

In the radial notch unit analysis (PCAr; Fig. 3), the first five

PCs account for almost 90 % of cumulative variance (Table 2),

with the first two accounting for P64 % of the total variation.

On PC1 (P40 %), the shape of the radial notch varies from

quadrangular and elongated, with no curvature on the nega-

tive side, to semi-triangular and broad, with some degree of

proximodistal concavity in the sagittal plane on the positive

side. Most of the carnivorans have negative values on PC1,

whereas primates and most rodents tend to have positive

values. On PC2 (P24 %), the shape varies, starting on the

negative and ending on the positive side, from oval-shaped to

elongated semi-triangular; but the more conspicuous change is

seen in the curvature: from flat to concave (both mediolaterally

in the transversal plane and proximodistally in the sagittal

Table 2 Explained variances and reduced space-full space correlation of all PCAs. % Var. ¼ percent of variance explained by each PC;
Cum.Var. % ¼ Cumulative variance percent; Space Corr. ¼ correlation coefficients between the reduced space (first five PCs) and full shape space;
* ¼ presence of functional signal; ‡ ¼ presence of taxonomic signal.

PCAw PCAr PCAd PCAp

% Var.

PC1 23.528‡ 40.164‡ 25.759‡ 34.666*/‡

PC2 16.674 23.515 22.334 20.387*

PC3 15.458‡ 12.441‡ 21.208 14.983

PC4 10.723 7.194 10.558 10.056

PC5 8.497 6.375 6.588 5.731

Cum. Var. % 74.88 89.688 86.448 85.822

Space Corr. 0.9721 0.9928 0.9905 0.9839
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Figure 2 PCAw. Taxa distribution in the morphospace defined by the first two PCs. Shape (lateral, anterior
and medial views) of extreme negative and positive values of each component (PC1, bottom; PC2, right). Taxa
reference: squares ¼ rodents; pentagons ¼ primates; circles ¼ carnivorans; triangle ¼ H. mirabile; inverted
triangles ¼ I. robustum. Substrate use reference: green ¼ climbers; yellow ¼ diggers; light blue ¼ swimmers;
grey ¼ runners; brown ¼ jumpers; violet ¼ ambulatory.
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plane). On this PC, no taxonomic or functional arrangement is

detected. The morphospace depicted by PC1 and PC2 partially

reflects a shared morphology between several climbers and dig-

gers. The typotheres lie outside the point cloud of the extant

sample, with I. robustum on the extreme negative value of

PC1 and H. mirabile on the extreme negative value of PC2,

both sharing partially the carnivoran values of PC1.

For the distal unit analysis (PCAd; Fig. 4), the first five PCs

account for P87 % of the total variation (Table 2), with a

cumulative variance of P48 % on the first two PCs. On PC1

(P26 %), shape variables associated with low values include

distally protruding medial and lateral borders, more proximo-

distal convexity in the sagittal plane, less projecting coronoid

processes, and a mediolateral curvature in the anteroposterior

plane approaching 180�. Conversely, high PC1 values reflect

less protruding medial and lateral borders, lower proximodistal

convexity in the sagittal plane, a slightly more projecting

coronoid process and a mediolateral curvature in the antero-

posterior plane closer to 90�. Most of the carnivorans have

negative values and most of the rodents have positive values,

with the primates occupying the middle values.

On PC2 (P22 %), shape varies from more proximodistally

convex in the sagittal plane and proportionally narrower inter-

mediate width to less proximodistally convex and wider inter-

mediate width towards the positive end. There is no evident

taxonomic or functional arrangement on this PC. Typotheres

lie among the rodents in the morphospace depicted by the first

and second PCs. The PCAd is the one with the more obscure

pattern, with most of the functional types mixed and occupy-

ing and extended area of this morphospace.

In the proximal unit analysis (PCAp; Fig 5), the first five

PCs account for P86 % of the cumulative variance (Table 2),

with the first two PCs accounting for P55 % of the total varia-

tion. On PC1 (P35 %), the shapes associated with low values

have a narrower trochlear notch, whereas those with higher

values have a wider notch. There is a taxonomic pattern, with

most of the carnivorans on the negative side and the primates

and most of the rodents on the positive side. Amongst rodents,

diggers lie on the extreme positive values, separated from the

other categories.

On PC2 (accounting for P20 % of the variance), higher values

correspond to mediolaterally convex surfaces with the proximal

width greater than intermediate width, whilst lower values corre-

spond to mediolaterally flattened surfaces and proximal versus

intermediate width being sub-equal. Most climbers (from three

different orders) have positive values, whereas runners and

jumpers have negative values (although mixed with some am-

bulatory species); the lowest value is for the runner Lycalopex

gymnocercus.

In the morphospace depicted by the first two PCs taken

together, two categories are distinct: climbers (except for the

squirrel Callosciurus erythraeus) have midrange values of PC1

and high values of PC2; digging rodents have high values of

PC1 and midrange values of PC2. Amongst the carnivorans,

there is a gradient starting with runners (low values of PC1

and PC2), passing through ambulatory and digging taxa and

swimmers and culminating with climbers. Considering only

the rodents, there is no clear separation between runners and

ambulatory taxa. The typothere H. mirabile lies closest to

ambulatory carnivorans and ambulatory and running rodents.
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Figure 3 PCAr. Taxa distribution in the morphospace defined by the first two PCs. Shape (lateral, anterior,
distal and anterolateral views) of extreme negative and positive values of each component (PC1, bottom; PC2,
right). Taxa reference: squares ¼ rodents; pentagons ¼ primates; circles ¼ carnivorans; triangle ¼ H. mirabile;
inverted triangles ¼ I. robustum. Substrate use reference: green ¼ climbers; yellow ¼ diggers; light blue ¼
swimmers; grey ¼ runners; brown ¼ jumpers; violet ¼ ambulatory.
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I. robustum has its own morphospace, with low values of PC2,

like the runner L. gymnocercus and the jumper Lagidium

viscacia.

3. Discussion

The PCAr does not show a clear functional pattern. Accord-

ing to Taylor (1974), the supination of the antebrachium is

facilitated by a shallow radial notch, a feature shown by the

shape change toward the negative PC2. This characteristic is

expected in climbers, because of the need for a greater degree

of supination. As can be seen on the PCAr (Fig. 3), climbers

and diggers share the morphospace depicted by negative values

of PC2 and positive of values PC1 (with the exception of the

digging carnivore Meles meles). The shape associated with this

quadrant is a triangular and flattened radial notch. Taylor

(1974) also stated that the radial notch is flatter in fossorial

species that require a flexible manus for digging, in agreement

with our results. Typotheres occupy an exclusive morphospace,

with a flattened and quadrangular radial notch, quite distant

from the extant digger-climber morphospace. Consequently,

our results from the study of the ulna do not suggest that

typotheres had good digging capabilities (Elissamburu 2004).

Nor is there evidence from the ulna of climbing activities

for I. robustum (Cassini et al. 2012a). We point out, however,

that that M. meles (digger) also deviates from the expected

morphology.

In the PCAd (Fig. 4), there is an evident segregation on

PC1 between carnivorans (negative side) and rodents (positive

side). Typotheres fall in the rodent morphospace sharing

their shape characteristics: they have a narrow distal width

with a pronounced mediolateral curvature in the anteroposte-

rior plane. According to the literature, climbers from different

lineages should lie together, sharing an expanded protruded

coronoid process related to supporting the weight and liberat-

ing the radius when climbing (Argot 2001; Sargis 2002), but

we do not find this to be the case in our analysis. As our

results do not reflect a functional pattern, the question of why

typotheres are convergent with rodents in this feature remains

unresolved. However, an interesting hypothesis to test with

future work is the possible correlation of these morphologies

and the distribution of weight in the body (i.e., the position

of the centre of mass). The expansion of this feature could be

related to a more anterior position of the centre of mass

on carnivorans, whilst the reduction could relate to a more

posterior one on rodents and typotheres, where the forelimb

would be supporting a smaller proportion of the weight.

In the PCAp (Fig. 5), climbers and diggers occupy distinct

areas of the morphospace depicted by PC1 and PC2. Climbers

include primates, carnivorans and rodents, with the exception

of the squirrel C. erythraeus. This species may be distinct

owing to its ability to run at high speed over the branches,

an activity described by Aprile & Chico (1999). The fact that

different orders with the same substrate use group appear in

the same morphospace suggests underlying functional reasons.

Wide trochleas increase the contact surface at the elbow joint,

which would be effective for resisting the forces generated

during climbing. Additionally, a flattened proximal surface

would allow a wide range of movements at the elbow joint,
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Figure 4 PCAd. Taxa distribution in the morphospace defined by the first two PCs. Shape (lateral, anterior
and medial views) of extreme negative and positive values of each component (PC1, bottom; PC2, right). Taxa
reference: squares ¼ rodents; pentagons ¼ primates; circles ¼ carnivorans; triangle ¼ H. mirabile; inverted
triangles ¼ I. robustum. Substrate use reference: green ¼ climbers; yellow ¼ diggers; light blue ¼ swimmers;
grey ¼ runners; brown ¼ jumpers; violet ¼ ambulatory.
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required to grasp new supports and to facilitate directional

changes during climbing (see Fig. 5). In the case of most fore-

limb diggers (again with the exception of M. meles), a wide

trochlea increases the contact surface at the elbow joint, an

advantageous feature both for stability and to provide more

robusticity for resisting the large forces produced during

digging. In addition, the mediolateral convexity of the proxi-

mal trochlear (including the anconeal process) would improve

the stability and minimise possible dislocations (increasing the

congruence between humerus and ulna) at the elbow joint.

If we had classified M. coypus as a swimmer (Samuels & Van

Valkenburgh 2008), our results would be consistent with pre-

vious studies that indicate convergent features between diggers

and swimmers associated with large forces produced by the

forelimbs (Elissamburu & Vizcaı́no 2004).

The fact that the group of diggers in this area of the mor-

phospace is composed only of rodents (Ctenomys australis,

Lagostomus maximus and M. coypus) may suggest that they

group together due to phylogenetic reasons. However, it must

be considered that they belong to different families and that

other rodents with different substrate use are not near them.

In contrast, phylogenetic effects can be acting in the case of

M. meles, which groups together with the remaining carni-

vorans at the opposite end of PC1 (reflecting the strong taxo-

nomic segregation seen in all analyses). On the other hand,

runners do not cluster together. Both running rodents group

with ambulatory rodents, and are distinct from carnivorans.

The only running carnivoran (Lycalopex gymnocercus) occupies

its own morphospace, far from the ambulatory carnivorans.

Therefore, the specialisation for running in each clade must

have been achieved through different morphological pathways.

Amongst typotheres, H. mirabile lies near ambulatory and

running species, as would be expected for an small ungulate

living in an open habitat (Cassini 2013). For I. robustum, the

results are not conclusive, because it is in its own morphospace

and has no clear resemblance to any known substrate-use cate-

gory. Furthermore, neither typothere can be characterised as a

climber or digger, as they are far apart from the corresponding

morphospace, in disagreement with previous hypotheses on

substrate use for these species.

In summary, runners seem to have different proximal ulnar

morphologies in different clades. For example, in our sample,

the running carnivore L. gymnocercus never shares a restricted

morphospace with the running rodents Dolichotis patagonum

and Dasyprocta azarae. Consequently, there is no common

morphology clearly related with this particular mode of loco-

motion within the substrate use. Something similar occurs

with diggers, with the carnivore M. meles positioned apart

from other diggers. Nonetheless, there is a similarity among

digging rodents and they are distinct with respect to the other

groups. None of the analyses recovers a gradient or sequence

from running to the rest of specialisations, such the cursorial–

generalise–occasional digging–diggers functional sequence de-

scribed by Elissamburu & Vizcaı́no (2004).

We identify a convergent morphology for the proximal unit

of the proximal ulnar articular surface amongst all climbers in

our sample, with the exception of the squirrel. This morphology

varies between narrow and wide, but mostly is intermediate, and

tends to present a less mediolaterally convex surface in the

anteroposterior plane in comparison with the rest of the sample,
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Figure 5 PCAp. Taxa distribution in the morphospace defined by the first two PCs. Shape (lateral, anterior
and medial views) of extreme negative and positive values of each component (PC1, bottom; PC2, right). Taxa
reference: squares ¼ rodents; pentagons ¼ primates; circles ¼ carnivorans; triangle ¼ H. mirabile; inverted
triangles ¼ I. robustum. Substrate use reference: green ¼ climbers; yellow ¼ diggers; light blue ¼ swimmers;
grey ¼ runners; brown ¼ jumpers; violet ¼ ambulatory.
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and a wider proximal moiety compared to the intermediate

width. In the same unit, there is a morphological congruence

for digging rodents, with wide and convex morphologies.

Neither typothere would have been specialised for either

climbing or digging in the proximal ulnar articular facet

morphology analysed here. Furthermore, depending on the

unit of analysis, they can have their own morphospace or

share it with carnivorans or rodents. This segregation of carni-

vorans and rodents on PC1 is shown on every analysis, and

reflects a considerable amount of taxonomic influence in the

morphospace.

As the first PCA (PCAw; Fig. 2) does not show any clear

functional arrangement on the morphospace, it was assumed

that different patterns could be interfering with each other. If

there are different morphological change trends in different

portions of a joint, a whole facet analysis could show mixed

results. These trends could exist due to dissimilar mechanical

stress, or to phylogenetic constraints (or a combination of

both). Notably, in the set of analysis, there is much variation

between PCAs, with a substantially different arrangement de-

pending on the set of landmarks analysed. These morphological

dissimilarities are interpreted, at least partially, as differential

responses to different kinds of mechanical stress (e.g., climbing

morphology for the proximal unit).

Further work must be done, including the study of more

species and analysing other joints of the forelimb and hindlimb.

Interpreting the results of several articular facets will help eluci-

date substrate use and locomotion in extinct mammals.
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