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Energetic electrons do not deposit their energy locally at their Point of Entry (PoE) into the detector 

volume but produce three-dimensional tracks. The energy deposition happens along these tracks, 

typically extending over several pixels. The structure of these tracks is caused by multiple scattering of 

the primary electron with the detector material and, therefore, statistically. The output of the pixelated 

semiconductor-based detector system is a binned two-dimensional projection of the energy deposition. 

However, to get images with a good spatial resolution, not the energy deposition into the detector 

volume is of interest but the PoE of the primary electrons into the detector volume. 

 

We present a convolutional neural network (CNN) which reconstructs a frame-wise probability map. 

The probability describes for each physical pixel the probability that it contains a PoE map with values 

between zero and one. The CNN has no fully-connected layers and applies to different physical detector 

sizes without retraining. The basis of the CNN is a modified u-net [1]. The modular design of the CNN 

also enables the fast adaptation to different primary energies and physical pixel sizes via transfer 

learning. 

 

Moreover, the CNN can be expanded by a super-resolution module to enable probability maps with 

subpixel resolution of a factor of four by four. The super-resolution shows its full power for primary 

energies below 120 keV. For these energies, the shape of the energy deposition arriving in the pixel 

structure is dominated by systematic effects like diffusion and repulsion and not by stochastic effects 

like multiple scattering. Therefore, a more precise reconstruction of the PoE is possible. 

 

The training of the neural networks is realized in a highly automated pipeline which can be fed with data 

obtained by Monte Carlo simulation. A PoE reconstruction of individual PoEs requires the identifiability 

of tracks in the frames and no intensity images. Combined with the long individual tracks, each frame 

contains many pixels with no PoE and only a few pixels containing a PoE. The consequence is a so-

called unbalanced data set. A specially designed loss function using the confusion matrix is used to 

handle this unbalanced data set. This loss function   contains three components [2]: 
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TPR is derived from the Rate of the True Positives of the confusion matrix, TNR from the Rate of the 

True Negatives, and   explicitly handles the difference between the number of PoEs of the prediction   

and the ground truth   per frame. The inverse of the prediction and the ground truth are defined as  

 ̅      and   ̅     . The prefactors a, b, and c can be individually adjusted to the used training 

set. The ratio between a and b should be in the ratio between pixels with PoE and pixels with no PoE. 

The choice of c should be between a and b or smaller. A too-large factor c potentially leads to 

https://doi.org/10.1017/S1431927622011357 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1431927622011357&domain=pdf
https://doi.org/10.1017/S1431927622011357


Microsc. Microanal. 28 (Suppl 1), 2022 3041 

 

 

disregarding the TPR and TNR. The choice of these prefactors has a large influence on the multiplicity, 

which describes the ratio between reconstructed PoEs and PoEs in the ground truth. A multiplicity of 

one means that each primary electron creates one reconstructed PoE on average. 

 

The other parameter significantly influences the multiplicity is the applied threshold to the neural 

network's output. The applied threshold transfers the probability map into a binary response for each 

pixel. For a probability above the threshold, the binary response of a pixel is one, and for a probability 

below the threshold, the binary response is zero. Fig. 1a shows the influence of the applied threshold on 

the multiplicity and the modulation transfer function (MTF) value at 0.5 times the Nyquist frequency. 

With higher thresholds, the multiplicity decreases, and the MTF increases. For thresholds close to zero 

and larger than 0.85, the contrast, respectively, the statistic is worse, and it is impossible to determine 

the MTF via the slanted edge method [3]. Typically, the applied threshold is around 0.5. However, the 

choice of the applied threshold depends on the application. A higher threshold leads to a better 

resolution since only pixels are considered where the probability is high that the pixel contains a PoE. 

However, a higher threshold can only be used if the measurement statistic is high enough that it is 

tolerable not to consider pixels with a PoE with a lower probability containing a PoE.  

 

Fig. 1b depicts the multiplicity and the MTF value at 0.5 times the Nyquist frequency for different 

primary electron rates for a constantly applied threshold. The multiplicity is one for very low particle 

rates since the event patterns are easily separable. With increasing rate, more overlapping events occur 

and, therefore, the ratio of pattern pile-up events increases rapidly. The consequence of pattern pile-up 

events is a decreasing multiplicity. The multiplicity is for low rates higher than one to compensate for 

the decrease. This ensures a multiplicity of one at the average primary particle rate of the training 

dataset. The MTF is constant up to a rate of 0.04 e - /pix/frame and decreases slowly for higher rates. 

Therefore, even with higher electron rates, the CNN is able to separate so-called pattern pile-up events 

and reconstruct the PoE of the individual contributing electrons. A pattern pile-up event is a cluster of 

adjacent pixels containing the energy deposition of two or more primary electrons. 

 

Using the presented CNN to reconstruct frame-wise the PoE of individual primary electrons enables a 

high spatial resolution, which can be extended to subpixel resolution for lower primary energies. 

Application examples will be provided. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Multiplicity (solid line) and MTF (dashed line) for a simulated primary energy of 300 keV. The 

MTF is obtained via the slanted edge method and graphed at 0.5 times the Nyquist frequency [3]. 

a: Quantities as a function of the applied threshold for a primary particle rate of 0.01 e/pix/frame. 

b: Quantities as a function of the primary electron rate for an applied threshold of 0.5. 
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