
428 Book reviews

Programming” framework, Yampa. If you like little languages, you’ll appreciate how useful

Haskell is for embedded domain specific languages. It may be even more useful now that

Template Haskell is in the works.

Isaac Jones

Inductive Synthesis of Functional Programs by U. Schmid, Springer Verlag,

2003, 420pp, ISBN 3540401741.

doi:10.1017/S0956796807006296

Program synthesis is one of those deceptively simple propositions: say what you want some

program to do, turn the handle and out pops the program. The problem, of course, is to

determine what the handle drives, if not a skilled human being.

Deductive synthesis, with which JFP readers will be most familiar, concerns the generation

of programs using rigorous techniques that ensure that that they satisfy initial specifications.

This approach received an enormous boost when declarative programming emerged from the

labs in the late 1970s, egged on by various 5th Generation Programmes in the early 1980’s,

most significantly in Japan and the UK. The attendant hype, that in declarative programming

one identified what to do rather than how to do it, seemed to offer a seamless link between

specification and implementation, through the mediation of theoretically grounded logic and

functional languages.

Alas, Hayes & Jones (HJ89) influential 1989 paper effectively ended research into so-called

executable specifications. In rightly cautioning that specifications were typically undetermined

and infinitary, and hence not directly amenable to unique or indeed correct implementations,

they also reasserted the highly contentious Oxford-school idealism that ranks mathematics

over computation. Thus, today, it is salutary that there are no mainstream tools for

generating implementations from, say, Z specifications, and that “formal methods” of program

construction, like program refinement (Mor90), type theory programming (NPS90; MM04)

and weakest precondition calculation (Bac03), lurk in quiet corners of academe. The most

promising compromise may be the B-Method (Sch01), where specifications may generate

results through terminating animation, and implementations may be realised through the

production of more and more concrete refinement machines based on increasingly restricted

B subsets.

However, in orthogonal research, the mathematical reasoning community has long used

techniques based on automatic theorem proving coupled with planning to prove and generate

programs satisfying Floyd-Hoare style pre- and post-conditions, and invariants. For example,

we have used tactics-based proof planning constrained by rippling (BDHI05) to derive

higher-order functions in Standard ML programs that lack them (CIMS05).

Inductive synthesis, rooted in Artificial Intelligence and Cognitive Science, differs radically

from deductive synthesis. Rather than using abstract logical pre- and post-conditions to

specify requirements, programs are induced from concrete instances of input/output values

or program traces. Thus, there is no formal idea of correctness: instead, the process seeks to

elaborate program structures that satisfy the specific training instances.

Perhaps the most widely known form of inductive synthesis is genetic programming

(Koz92), where an evolutionary algorithm is used to generate syntactically correct program

structures which are evaluated for fitness by execution against an input/output set. Initially,

untyped forms of LISP were popular: more recently there has been a trend towards typed

languages, for example Grant (2000), to try to constrain the potentially vast search space.

The approach to inductive synthesis presented in this challenging volume combines

universal planning, plan transformation and folding. To begin with, universal planning is

applied to a problem specification in the standard planning language Strips to produce sets

of optimal sequences of actions, characterised as function applications, to cover the entire

https://doi.org/10.1017/S0956796807006296 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006296


Book reviews 429

domain of input/output pairings. Plan transformation is next used to order the input states

and infer an underlying data type. Finally, the transformed plan is folded into a recursive

program using pattern matching.

Rather than a producing a concrete program in a specific language, synthesised programs

take the generic form of a recursive program scheme (RPS) over a term algebra. Many

RPS share common structure: this generic representation enables the use of analogical

problem solving to abstract further over recursion schemes, through tree transformation and

anti-unification. RPSs may, of course, be instantiated to produce executable programs. For

illustration, Schmid uses a pure functional subset of LISP, where recursion is primitive and

may not be mutual.

While the emphasis is squarely on “inductive synthesis” rather than “functional programs”,

the account would be strengthened by far more discussion of scalability from the familiar

simple linear recursive examples, and of how the techniques might be extended to languages

with richer types and more complex expression forms. Nonetheless, program synthesis is easy

to conceptualise yet fiendishly hard to realise: Schmid’s worthwhile book makes a valuable

contribution.

References

Backhouse, R. (2003) Program Construction: Calculating Implementations from Specifications.

Wiley.

Bundy, A., Basin, D, Hutter, D. and Ireland, A. (2005) Rippling: Meta-Level Guidance for

Tactical Reasoning. CUP.

Cook, A., Ireland, A., Michaelson, G. and Scaife, N. (2005) Discovering applications of

higher-order functions through proof planning. Formal Aspects of Computing, 17(1): 13–57.

Grant, M. S. (2000) An Investigation into the Suitability of Genetic Programming for Computing

Visibility Areas for Sensor Planning. PhD thesis, Heriot-Watt University.

Hayes, I. J. and Jones, C. B. (1989) Specifications are not (necessarily) executable. Softw. Eng.

J. 6: 320–338.

Koza, J. (1992) Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT.

McBride, C. and McKinna, J. (2004) The view from the left. J. Funct. Program. 14(1): 69–111.

Morgan, C. (1990) Programming from Specifications. Prentice-Hall.

Nordstrom, B., Petersson, K. and Smith, J. M. (1990) Programming in Martin-Lof ’s Type

Theory: An Introduction. Oxford.

Schneider, B. (2001) The B-Method. Palgrave.

Schmid, U. (2003) Inductive Synthesis of Functional Programs. Number 2654 in LNCS.

Springer.

Greg Michaelson

Heriot Watt University, UK

https://doi.org/10.1017/S0956796807006296 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006296



