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THE ASCENDING AND DESCENDING VARIETAL
CHAINS OF A VARIETY

B. JONSSON, G. McNULTY, AND R. QUACKENBUSH

1. Introduction. Let V be a variety (equational class) of algebras. For
n = 0, V, is the variety generated by the V-free algebra on # free generators
while V" is the variety of all algebras satisfying each identity of V which has
no more than # variables. (Equivalently, V" is the class of all algebras, 9, such
that every m-generated subalgebra of ¥ is in V.) Note that unless nullary
operation symbols are specified by the similarity type of V, Vy is the variety of
all one element algebras while 177 is the variety of all algebras. Clearly V, C
VMclV,C...cVC...CVC VtC PV Vs generated by U ="V,
and V = M ;=" V% The chain V, & V; C ... is called the ascending varietal
chain of V while V° 2D V1D V2 D ... is called the descending varietal chain of
V. These chains of varieties were first introduced in the study of varieties of
groups; see [5]. A natural question to ask is what patterns of proper inclusion
are possible in these chains. This problem was pointed out to us by G. Gratzer
and N. Gupta. After we proved Theorem 2, N. Gupta and F. Levin modified
our argument to show that for groups any pattern with finitely many proper
inclusions is possible for the descending varietal chain (with the necessary re-
striction, of course, that V0 = V! = 12 3 V3), For a discussion of the ascend-
ing and descending varietal chains of some particular varieties of groups see [2]
and [3] while for a discussion of the ascending varietal chain of a particular
variety of commutative Moufang loops see [1].

THEOREM 1. For any set S of non-negative integers there is a variety V with
Sfinitely many operations such that for everyn = 0 V,, = V,y1if and only if n € S.

THEOREM 2. For any set S of integers greater than 2 there is a variety V of semi-
groups such that:
(i) For anyn = 0 V" = V" if and only if n € S.
(ii) V is finitely based if and only if S is cofinite.
(iii) The equational theory of V is recursive if and only if S is recursive.

2. The ascending varietal chain of a variety. The similarity type used
to establish Theorem 1 is (0, 0, 2, 2, 3, 3, 2, 1) and the corresponding algebras
will be denoted A = {(4;a,b, A, V, F,G, H, f).
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For w=0let 4, =10, 1, ..., n 4+ 1} and define

:’)’[n = (Aﬂ,; 07 n + 17 /\Y V, F’n! Grn Hny fn>
as follows:

x Ay =min {x,y};x Vy = max {x, y}; f.(x) = 0;

I

_ fyifx#n+landz =y +1,
Fu(x,3,2) = {n + 1 otherwise;

_Jzifx#0andz =y + 1,
Gulx,y,3) = {0 otherwise;

_fn-}-lifx:Oandy:n—l—l,

H, (%, 5) = 10 otherwise.

Next we define the following polynomials:
Po(‘vo, 711) = F((L, Ve, ‘Ul); Qo(voy 211) = G(b, Vo, 211)§

Pii(o, ..o, 0y2) = F(Pr(v1, ..., Ypp2), o, 01);
Qry1(@oy -+« s Vep2) = G(Qx (o, -+« Vet1), Vi1, Vi) ;
Ri(vo, ..., 041) = HPr (@4, .« Ver1), Qr(@oy « « vy Vpr1)).
Claim 1. Rku"(xo, ceoy Xxp1) = 0 except when kb = n and x;, = 1 for 0 £ 1 £
E+ 1.

Proof. In A, let x < y mean that y = x + 1. An easy induction on k shows
that
xoifQC() <x1 < ... <xk+1,

u
Pom(xg, oo, X = .
e (o 1) {n + 1 otherwise.

Similarly,
Qku"(x()y e ey xk+l) = {

Consequently, the claim follows from the definition of H,.

Xp+1 if xo < x1 < ... < Xi+1,
0 otherwise.

Notice that the following equation (1;) holds in all %, for n = k, that it fails

in I, but that it holds in every proper subalgebra of 9;:
(lk) Rk(‘”u: ey vk+1) = a.

Let S be the set of integers mentioned in Theorem 1;let.o/ = {,[n — 1 ¢ S}
and let V' = HSP(&Z). For any class % let S,(/) be all algebras in S(¥)
generated by n or fewer elements. Since ' is a variety of lattices with certain
additional operations and hence congruence distributive, we have 17 =
PsHSPp(&/) (see [4]). Consequently,

S.(V') © PsHS,Pp(/) = PsHS,PpS, ().

Note that every subset of 4,, containing 0 and #» + 1 is a subuniverse of ¥,
so that no member of S,(%/) has more than # + 2 elements. Hence S,(</)
has only finitely many members. Thus S,(V’) C PsHS, (&) = V,’. There-
fore the identities which hold in V,’ are exactly the identities that hold in
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S.(). From this we infer that (1;) holds in V,’ if and only if A, ¢ S,(Z).
But %, ¢ S,(/) if and only if & > nor k — 1 € S. Thus every identity of the
form (1,) that holds in V,” will hold in V,," except that if n ¢ S then (1,4;)
holds in 1/ but not in V,;1. Consequently the identities (1) distinguish be-
tween 1,/ and V,.1' just in the case thatz ¢ S.

However, there may be other identities that distinguish between V,’ and
V,+1" even when n € S; thus we cannot claim that V’ is the variety called for
by Theorem 1. Let V"' be the variety of algebras of the same type as V' such
that for any A € V", (4;a, b, A, V) is a lattice with zero ¢ and unit b, and
such that (1;) holds in V" for every k = 1. Let V = V' Vv V. Since V has
distributive congruences, every subdirectly irreducible member of ¥ belongs to
either V' or V”andso V, = V,, V V.

Claim 2. V' = V.

Proof. Let § be the free algebra in 7’/ with free generators xy, x1, . . . and
let p = g be an identity not true in V’’; we need only show that p = ¢ is not
true in V. By assumption, p3(xo, ...) 5 ¢5(xy, ...). Since only finitely
many elements of § are used in building up $3(x, . ..) and ¢3(xo, . ..) from
Xo, . . . , we can choose # > 0 such that f"(a), f™(x¢), f"(x1), . . . are not used
in forming p3(xo, . ..) or ¢(xo, . ..) for any m = n — 1. Notice that f(a),
fra), ..., f(xo), ..., f(x1),...areall distinct. Since the defining identities of
V" contain no occurrence of f, V'’ has the following property: If A € V"’ and
[ is arbitrarily redefined on 4 to yield A’ then A" € V”'. Thus we redefine f in
T to get ¥ as follows: xo = f3'(f*1(a)), xy1 = f3 (f*(x,)) for 2 = 0 and
otherwise f3' = f3, Thus § € V”. But we now have x, = (f3)*+D () in
& and p3 (x0, . ..) # ¢ (%0, .. .). Hence

P @), ) #= (3@, - ).

Let §” be the constant subalgebra of §’. Since § € V", §’ € V. On the
other hand, 3" ((f3"")"(@),...) # ¢ ((f3")"(a),...) and so p = g does not
hold in V. Thus V¢’ = V" as claimed.

Claim 3. For everyn = 0, V,, = V41 if and only if n € S.

Proof. By Claim 2, V)" = V" andso V, = V) v V". If w ¢ S then (1,41)
holds in ¥,/ but not in V,,1’; since (1,41) holds in V"" we have that (1,+1) holds
in V, butnotin V,,1s0 V, ## V,.1. Conversely, if n € S then every member of
S.41() belongs to either S, (/) or V"; this is so because A, 11 ¢ &7 and every
proper subalgebra of every ¥, belongs to V”. Thus V,.,'" € V) vV V" so
Vegr = Vot V V'SV, V V" =TV,andso V1 = V,.

COROLLARY. If S is cofinite and 0 € S then there is a finitely based V satisfying
Vo, = Vi ifand only if n € Sforalln = 0.

Proof. Define V' as above and note that. is finite. Let 4 = S(&/) — 2.
It is easily seen that each 9, is simple; thus every subdirectly irreducible
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member of V' belongs to either .&7 or H(#). Consequently, for any # € w,
vV, # Vi ifand only if n ¢ Sor V,, NH(Z) # V,.i' N\ H(Z).

Let B be a direct product of all algebras in & and let € = B X B. The
diagonal subalgebra of € is isomorphic to 8 and so has all the members of %
as homomorphic images. Redefine f on € to get € by having f cyclically per-
mute the non-diagonal elements among themselves and map the diagonal
elements as in €. It is easily seen that €’ is generated by any non-diagonal
element (since for any b € 8, (b, b) = (0, b) V (b, 0)) and that B is still
isomorphic to the diagonal subalgebra of €’. Thus let ¥’/ be generated by ¢';
since ¢’ is l-generated, V" = V,”. Finally let V = V' Vv V”; as above,
V, = V,u1 if and only if n € S. Since V is generated by finitely many finite
algebras (i.e., & \U {€’}) and is congruence distibutive, it is finitely based
by a result of Kirby Baker.

Note that V'’ # V. This is because a 0-generated algebra has no proper
subalgebras. In an earlier version of this paper, Theorem 1 was proved using
countably many operations. In the case when S is cofinite this earlier construc-
tion could be trivially modified to yield the corollary without the restriction
on 0. Unfortunately the number of operations needed, although finite, depends
on the number of positive integers not in S.

Problem 1. What patterns of proper inclusion are possible in the ascending
chain of a variety of groupoids?

3. The descending varietal chain of a variety. If I' U {o = ¢} is a set
of identities then ¢ = ¢ is derivable from T' (in symbols, T' + ¢ = ¢), just in
case there is a finite sequence, 0, . . . , 8,, of terms such that ¢ is 6, ¢ is 6, and,
for every 7 < m, 0,1 can be obtained from 6; by replacing some occurrence of
one side of a substitution instance of an identity in T' by the other side. Such
a sequence of terms is called a derivation. [T'] denotes the set of all identities
derivable from T, i.e. the equational theory based on TI', while [T'], denotes the
set of all identities derivable from all substitution instances in at most #
variables of identities in T', for each natural number x. If W is the variety of all
algebras satisfying T' then [T'] is the set of identities holding in W and, for
each n, [T'], is the set of identities holding in ™.

Consider the following set, A, of groupoid identities:

(1) x(yz) = (xy)z

(2) x(xx) = y(2(22))

(3) x(xx) = x(y(xx))

(4) x(xx) = x(x(yx))

(5) x(xx) = x(x(xy))

(6) x(xx) = x(y(x(wx))).

Any model of A is a semigroup with zero in which the cube of every element
is zero. A term (word), ¢, will be called ¢rivial if some variable occurs at least
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three times in ¢; an identity, ¢ = ¥, is trivial if both ¢ and ¢ are trivial. Every
trivial identity is derivable from A.

Since the associative law is present in every equational theory mentioned in
this section, parentheses will usually be omitted.

For n > 2, let ¢, be the following » + 1 variable identity:

XoX1 oo e XpXp o« . X1X9 = Xy o o« X1X0X0X1 « o o Xppe

Claim 4. Let M be any set of natural numbers greater than 2, ¢ be any non-
trivial term of length k, and ¢ be any term. If A\U {e, : n € M} + ¢ = ¢ then:
(i) ¢ is non-trivial.
(ii) Each variable occurs exactly the same number of times in ¢ as in y.
Gii) {x(yz) = (ey)z} Ufe,:n € Mand 2n + 2 Sk} + ¢ = ¢

Proof. Let A be the set of natural numbers which are either 0 or never
divisible by a perfect cube. Define

_ jabifab € A4,
a®b-= {0 otherwise,

foreverya,b € A.Let A = (4, ®). Aisa model of A U {¢, : m € M}. In ¥,
every trivial term is interpreted by some function with range {0} while every
non-trivial term is interpreted as a function with an infinite range. Conse-
quently, ¥ must be non-trivial and (i) is established. By considering substitu-
tion instances of ¢ = ¢, (ii) follows from (i). Likewise, (iii) follows from (i)
and (ii) by the definition of derivation. Thus the proof is complete.

Claim 5. Let n > 2. Then e, is not derivable from A\J {¢ : k % nand k > 2}.

Proof. Since e, is non-trivial, it is only necessary to establish that ¢, is not
derivable from {x(yz) = (xy)z} U {e& : 2 < k < n}. The following statement
will be established by induction on derivations:

If {x(yz) = (xy)z} Uler:2 <k < n} xoX1...%%,...%% = ¢ then

@ = XoX4 - X4Xs, - - . X5,%0 Where (21, ..., 7,) is a permutation of
{1,...,n}.
By permuting the names of the variables x4, . . ., x, it is clear that we need
only consider derivations of length 2. But the only subterm of x¢ . . . %, . . . X
of the form 6¢...0:0;...60 for B < m is Xp_g ... %Xy ... %, and so ¢ is
X0+ v o Xpke1XpXn1 « + « Xp—ikXpek - + « Xp_1X,Xpn_x—1 - . . Xo for some k& < n. Thus x,

is both the leftmost and rightmost variable in ¢. This is clearly the case if the
derivation sequence is only one symbol long (since then ¢isx¢X1. .. %%, ... X1X0).
Suppose the statement is true for derivations of length m and that xgx; .

XXy . . . X1%0 = ¢ can be derived in m + 1 steps. Then there is a term ¢ (the
one occurring at step m) such that x, is both the leftmost and the rightmost
variable in ¢, the variables x,, x1, . . ., x, are exactly the variables appearing
in ¢ (by Claim 4) and each of these appears twice, ¢ is non-trivial, and there

https://doi.org/10.4153/CJM-1975-004-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-004-2

30 B. JONSSON, G. MCNULTY, AND R. QUACKENBUSH

is an identity ¢, 2 < k < #, so that ¢ is obtained from ¢ by replacing one side
of a substitution instance of ¢, by the other side. Suppose 0¢0; . . . 6:0; . . . 616,
is a subterm of Y. Then 6, . .. 6,0, . .. 6.0, is non-trivial. Hence, each 0, is
a variable and the whole string then is of length 2k. Since 2z > 2k, x, cannot

occur in 6c0; ... 00, ...6:0, and therefore x, is both the leftmost and the
rightmost variable in ¢ as it was in . The induction is complete and the claim
follows.

Let S be any set of natural numbers greater than two. Define 7" =
AUe,:n @S and n> 2}, For n> 2, let 7" = A\J {e,:m ¢S and
2 < m < n}.

Claim 6. For n > 2, [1™] = [T],

Proof. Clearly [1™"] C [1],. On the other hand, if m = = then any substitu-
tion instance of ¢, with no more than # variables must be trivial and therefore
derivable from A. Consequently, [T], € [1™], establishing Claim 6.

Claim 7. [T, = [T)e1 of and only if n € S

Proof. If n € S then [T"] = [7"*'] and, by Claim 6, 7], = [7],+1. lf n @ S
and n > 2, then ¢, € [1"1] = [T],41 bute, ¢ [1™] = [T], by Claim 5. There-
fore [T, # [T ]pr1- If n = 0, x(xx) = (xx)x is in [7], but not in [17],. Hence
[T # [T]h. If n =1, x(yx) = (xy)x is in [1]: but not in [7];. Hence [1]; #
[T]e. If m = 2, x(yz) = (xy)z is in [T]3 but not in [7T].. Hence [T]s # |1]s.

Clavm 8. [T is finitely based if and only if S is cofinite.

Proof. This is immediate from Claim 5.
Clatm 9. [T is recursive if and only if S is recursive.

Proof. Suppose [77] is recursive. By Claim 5, n € S if and only if ¢, ¢ [17].
So S is recursive.

Now suppose S is recursive. Then 7" is recursive and hence the set of finite
sequences of terms which are derivations from 7" is also recursive. Suppose ¢
and ¢ are both non-trivial and every variable occurs exactly the same number
of times in ¢ as in Y. Now there are only finitely many terms, 6, so that every
variable occurs exactly the same number of times in ¢ as in 8. Consequently,
there are only finitely many sequences of such terms which begin with ¢ and
end with ¢ and in which no term appears twice — in fact the number of such
sequence is computable from ¢. ¢ = ¢ € [T] if and only if one of these se-
quences is a derivation from 7". The only other identities in [7'] are the trivial
identities and all of them are in [77]. So [77] is recursive.

Now let V be the variety of algebras satisfying 7. 1 has all the properties
demanded by Theorem 2, as Claims 7, 8, and 9 assert.

Problem 2. What patterns of proper inclusion in descending chains are
possible without the restriction that V0 5% V! # V2 5 V3?
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Problem 3. What patterns of proper inclusion are possible in ascending
(descending) varietal chains of variety of groups? lattices? rings?

Problem 4. What patterns of proper inclusion along both ascending and
descending chains of a single variety are possible?

Problem 5. What patterns of proper inclusion are possible for descending
varietal chains of minimal (equationally complete) varieties?

Problem 6. For any fixed pattern of proper inclusions along the descending
(ascending or both simultaneously) chain how many varieties can realize it?

REFERENCES

1. T. Evans, Identities and relations in commutative Moufang loops (preprint).
2. N. Gupta and F. Levin, Generating groups of certain soluble varieties, J. Austral. Math. Soc.
(to appear).
N. Gupta, F. Levin, and A. Rhemtulla, Chains of varieties, Can. J. Math. 26 (1974), 190-206.
. B. Jénsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967),
110-121.
5. H. Neumann, Varieties of groups (Springer-Verlag, Berlin, 1967).

3.
4

Vanderbilt University,
Nashville, Tennessee,
Dartmouth College,
Hanover, New Hampshire;
Unaiversity of Manitoba,
Winnipeg, Manitoba

https://doi.org/10.4153/CJM-1975-004-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-004-2

