Small Zeros of Quadratic Forms Avoiding a Finite Number of Prescribed Hyperplanes

Rainer Dietmann

Abstract

We prove a new upper bound for the smallest zero \mathbf{x} of a quadratic form over a number field with the additional restriction that \mathbf{x} does not lie in a finite number of m prescribed hyperplanes. Our bound is polynomial in the height of the quadratic form, with an exponent depending only on the number of variables but not on m.

In 1955, Cassels [2] proved his famous result on small zeros of quadratic forms:
If $Q\left(X_{1}, \ldots, X_{s}\right)$ is an integral quadratic form having an integer zero $\mathbf{x} \neq 0$, then there is such a zero \mathbf{x} where $|\mathbf{x}|<_{s}|Q|^{(s-1) / 2}$.

Here $|\cdot|$ denotes the maximum norm for vectors, or the largest modulus of the coefficients of Q (the 'height'), respectively. Recently, Masser [6] obtained the following generalization about small zeros avoiding a prescribed hyperplane:

If there is an integer zero \mathbf{x} of Q with $x_{1} \neq 0$, then there is such a zero \mathbf{x} with $|\mathbf{x}| \lll s|Q|^{s / 2}$.

Both Masser's and Cassels' results are best possible, apart from the implied O constant. More recently, Fukshansky [4] obtained a further generalization by allowing for a finite number of linear conditions, and also by allowing for a general number field K. His result is that if L_{1}, \ldots, L_{m} are K-linear forms and there is a K-rational \mathbf{x} with $Q(\mathbf{x})=0$ and $L_{i}(\mathbf{x}) \neq 0(1 \leq i \leq m)$, then there is such an \mathbf{x} with

$$
\begin{aligned}
H(\mathbf{x}) \ll \min \{ & H(Q)^{\frac{s-1+2 m}{2}+(m-1)(s+1)}, \\
& H(Q)^{\frac{s}{2}+(m-1)(s+1)} \prod_{i=1}^{m} H\left(L_{i}\right)^{\frac{(2 m-1)(s-1)}{m}}, \\
& \left.H(Q)^{\frac{2 s+2 m-1}{4}+(m-1)(s+1)} \prod_{i=1}^{m} H\left(L_{i}\right)^{\frac{(2 m-1)(s-1)}{2 m}}\right\},
\end{aligned}
$$

where the implied O-constant can be explicitly given and depends only on s, m, and the number field K, and where H denotes the homogeneous global height (for the definition of H and the inhomogeneous height h see [4] or [7]). For $m=1$ and $L_{1}\left(X_{1}, \ldots, X_{s}\right)=X_{1}$, Fukshansky's bound reduces to Masser's apart from O constants, but for $m>1$ one might ask if stronger bounds are possible.

[^0]Theorem Let $Q\left(X_{1}, \ldots, X_{s}\right) \in K\left[X_{1}, \ldots, X_{s}\right]$ be a quadratic form, and let

$$
L_{i}\left(X_{1}, \ldots, X_{s}\right) \in K\left[X_{1}, \ldots, X_{s}\right](1 \leq i \leq m)
$$

be linear forms. Suppose that there is an $\mathbf{x} \in K^{s}$ with $Q(\mathbf{x})=0$ and $L_{i}(\mathbf{x}) \neq 0$ $(1 \leq i \leq m)$. Then there is such an \mathbf{x} with $H(\mathbf{x}) \ll H(Q)^{(s+1) / 2}$. The implied O constant depends only on s, m, and the number field K.

This improves Fukshansky's result for $m>1$. Moreover, one obtains a bound which depends on m only as far as the implied O-constant is concerned, and which could easily be calculated by some extra work.

To prove the theorem we distinguish three different cases.
Case I The quadratic form Q has rank at least three, and Q has a non-singular K-rational zero. Then by [4, Corollary 1.2] (see also its proof) there is such a nonsingular zero $\mathbf{x} \in K^{s}$ with $h(\mathbf{x}) \ll H(Q)^{(s-1) / 2}$. In particular, the linear form $\mathbf{y} \mapsto$ $Q(\mathbf{x}, \mathbf{y})$ is not identically zero (here we used the notation Q also for the bilinear form associated to Q). Now it is easily seen (compare [3, page 89]) that for any $\mathbf{y} \in \mathbb{Z}^{s}$ the vector $\mathbf{z}=Q(\mathbf{y}) \mathbf{x}-2 Q(\mathbf{x}, \mathbf{y}) \mathbf{y}$ is again a zero of Q. Fix i; then $L_{i}(\mathbf{z})$ cannot be zero, for all possible choices of \mathbf{y}. Indeed, if $L_{i}(\mathbf{x}) \neq 0$, then $L_{i}(\mathbf{z})$ cannot be zero for all \mathbf{y}, for otherwise we would have

$$
Q(\mathbf{y})=\frac{2 Q(\mathbf{x}, \mathbf{y}) L_{i}(\mathbf{y})}{L_{i}(\mathbf{x})}
$$

for all \mathbf{y}, thus the quadratic form $Q(\mathbf{y})$ could be written as a product of the two linear forms $\mathbf{y} \mapsto 2 Q(\mathbf{x}, \mathbf{y}) / L_{i}(\mathbf{x})$ and $L_{i}(\mathbf{y})$, contrary to our assumption that Q has rank at least three. On the other hand, if $L_{i}(\mathbf{x})=0$, then again $L_{i}(\mathbf{z})=-2 Q(\mathbf{x}, \mathbf{y}) L_{i}(\mathbf{y})$ cannot be zero for all \mathbf{y} because $\mathbf{y} \mapsto Q(\mathbf{x}, \mathbf{y})$ is not the zero linear form, and the same is clearly true for $L_{i}(\mathbf{y})$. So since the two linear forms are not identically zero, both of their nullspaces have co-dimension one in K^{s}, and hence we can always pick a point in K^{s} outside of their union. Consequently, $F(\mathbf{y}):=L_{1}(\mathbf{z}) \cdots L_{m}(\mathbf{z})$ is not the zero polynomial in \mathbf{y}. Thus by [4, Theorem 3.1] there is an $\mathbf{y} \in \mathbb{Z}^{s}$ with $F(\mathbf{y}) \neq 0$ and $|\mathbf{y}| \ll 1$. Hence \mathbf{z} is a zero of Q with $L_{i}(\mathbf{z}) \neq 0(1 \leq i \leq m)$, and using [4, Lemma 2.3] we conclude that $H(\mathbf{z}) \ll H(Q) h(\mathbf{x}) h(\mathbf{y})^{2} \ll H(Q)^{(s+1) / 2}$, which completes the proof in Case I.

Case II All K-rational zeros of Q are singular. Then the set of K-rational zeros of Q is a K-linear space V, because if $\mathbf{x}, \mathbf{y} \in K^{s}$ are singular zeros of Q, then $Q(\mathbf{x}, \mathbf{y})=0$, hence $Q(\mathbf{x}+\mathbf{y})=Q(\mathbf{x})+2 Q(\mathbf{x}, \mathbf{y})+Q(\mathbf{y})=0$, so $\mathbf{x}+\mathbf{y}$ is again a zero of Q. Let n be the dimension of V. Now by [7 , Corollary 2] there is a basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in K^{s}$ of V where

$$
\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right) \ll H(Q)^{(s-1) / 2}
$$

(Note that if Q is identically zero, then by [4, Theorem 3.1] there exists $\mathbf{x} \in K^{s}$ with $H(\mathbf{x}) \ll 1$ such that $\prod_{i=1}^{m} L_{i}(\mathbf{x}) \neq 0$ since the linear forms are not identically zero, and we are done. Hence we may assume that Q is not identically zero, so $L<M$
in the notation of [7] and [7, Corollary 2] is applicable.) By assumption, there is an $\mathbf{x} \in K^{s}$ with $L_{i}(\mathbf{x}) \neq 0(1 \leq i \leq m)$, so the polynomial

$$
F\left(\xi_{1}, \ldots, \xi_{n}\right)=\prod_{i=1}^{m} L_{i}\left(\xi_{1} \mathbf{x}_{1}+\ldots+\xi_{n} \mathbf{x}_{n}\right)
$$

is not the zero polynomial in ξ_{1}, \ldots, ξ_{n}. Again by [4, Theorem 3.1] we conclude that there are $\xi_{1}, \ldots, \xi_{n} \in \mathbb{Z}$ with $|\xi| \ll 1$ and $F\left(\xi_{1}, \ldots, \xi_{n}\right) \neq 0$. Consequently, $\mathbf{x}=\xi_{1} \mathbf{x}_{1}+\ldots+\xi_{n} \mathbf{x}_{n}$ is a K-rational zero of Q since $\mathbf{x} \in V$, and $L_{i}(\mathbf{x}) \neq 0(1 \leq i \leq m)$ since $F\left(\xi_{1}, \ldots, \xi_{n}\right) \neq 0$, and finally $H(\mathbf{x}) \leq h(\mathbf{x}) \ll h\left(\mathbf{x}_{1}\right) \cdots h\left(\mathbf{x}_{n}\right) \ll H(Q)^{(s-1) / 2}$. This proves the theorem in Case II. Note that we only introduced the inhomogeneous height h because the inequality $h(\mathbf{x}) \ll h\left(\mathbf{x}_{1}\right) \cdots h\left(\mathbf{x}_{n}\right)$ we were using would not be true if h were replaced by H.

Case III The quadratic form Q has rank at most two, and Q has a non-singular K rational zero. Then Q is of the form $Q\left(X_{1}, \ldots, X_{s}\right)=M_{1}\left(X_{1}, \ldots, X_{s}\right) M_{2}\left(X_{1}, \ldots, X_{s}\right)$ for two K-linear forms M_{1} and M_{2}, which are not identically zero because we assume that Q has a non-singular K-rational zero. So the set of K-rational zeros of Q is the union of V_{1} and V_{2} where $V_{i}=\left\{\mathbf{x} \in K^{s}: M_{i}(\mathbf{x})=0\right\}(1 \leq i \leq 2)$. By assumption, there is an $\mathbf{x} \in K^{s}$ with $Q(\mathbf{x})=0$, but $L_{i}(\mathbf{x}) \neq 0(1 \leq i \leq m)$. Without loss of generality we may assume that $\mathbf{x} \in V_{1}$. Now by [5, Chapter 3, Proposition 2.4] we have $H\left(M_{1}\right) H\left(M_{2}\right) \ll H\left(M_{1} M_{2}\right)$ where $M_{1} M_{2}=Q$. Hence $H\left(M_{1}\right) \ll H(Q)$. By Siegel's Lemma (see [1, Theorem 9]) there is a basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{s-1}$ for the K-linear space of K-rational zeros of the linear form M_{1} such that

$$
\prod_{i=1}^{s-1} h\left(\mathbf{x}_{i}\right) \ll H\left(M_{1}\right) \ll H(Q) .
$$

We can now continue analogously to Case II. This completes the proof of the theorem.

Acknowledgment The author wants to thank the referee for carefully reading the manuscript.

References

[1] E. Bombieri and J. Vaaler, On Siegel's lemma. Invent. Math. 73(1983), no. 1, 11-32.
[2] J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations. Proc. Cambridge Philos. Soc. 51(1955), 262-264.
[3] Rational quadratic forms. London Mathematical Society Monographs 13, Academic Press, London-New York, 1978.
[4] L. Fukshansky, Small zeros of quadratic forms with linear conditions. J. Number Theory 108(2004), no. 1, 29-43.
[5] S. Lang, Fundamentals of Diophantine geometry. Springer-Verlag, New York, 1983.
[6] D. W. Masser, How to solve a quadratic equation in rationals. Bull. London Math. Soc. 30(1998), no. 1, 24-28.
[7] J. D. Vaaler, Small zeros of quadratic forms over number fields. Trans. Amer. Math. Soc. 302(1987), no. 1, 281-296.

Institut für Algebra und Zahlentheorie, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
e-mail: dietmarr@mathematik.uni-stuttgart.de

[^0]: Received by the editors July 31, 2006; revised December 3, 2006.
 AMS subject classification: Primary: 11D09; secondary: 11E12, 11H46, 11H55.
 (C)Canadian Mathematical Society 2009.

