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Small Zeros of Quadratic Forms Avoiding a
Finite Number of Prescribed Hyperplanes

Rainer Dietmann

Abstract. We prove a new upper bound for the smallest zero x of a quadratic form over a number field

with the additional restriction that x does not lie in a finite number of m prescribed hyperplanes. Our

bound is polynomial in the height of the quadratic form, with an exponent depending only on the

number of variables but not on m.

In 1955, Cassels [2] proved his famous result on small zeros of quadratic forms:

If Q(X1, . . . , Xs) is an integral quadratic form having an integer zero x 6= 0, then

there is such a zero x where |x| ≪s |Q|(s−1)/2.

Here | · | denotes the maximum norm for vectors, or the largest modulus of the coef-
ficients of Q (the ‘height’), respectively. Recently, Masser [6] obtained the following

generalization about small zeros avoiding a prescribed hyperplane:

If there is an integer zero x of Q with x1 6= 0, then there is such a zero x with

|x| ≪s |Q|s/2.

Both Masser’s and Cassels’ results are best possible, apart from the implied O-
constant. More recently, Fukshansky [4] obtained a further generalization by allow-

ing for a finite number of linear conditions, and also by allowing for a general number

field K . His result is that if L1, . . . , Lm are K-linear forms and there is a K-rational x

with Q(x) = 0 and Li(x) 6= 0 (1 ≤ i ≤ m), then there is such an x with

H(x) ≪ min
{
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,

where the implied O-constant can be explicitly given and depends only on s, m,

and the number field K , and where H denotes the homogeneous global height (for

the definition of H and the inhomogeneous height h see [4] or [7]). For m = 1
and L1(X1, . . . , Xs) = X1, Fukshansky’s bound reduces to Masser’s apart from O-

constants, but for m > 1 one might ask if stronger bounds are possible.
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Theorem Let Q(X1, . . . , Xs) ∈ K[X1, . . . , Xs] be a quadratic form, and let

Li(X1, . . . , Xs) ∈ K[X1, . . . , Xs] (1 ≤ i ≤ m)

be linear forms. Suppose that there is an x ∈ K s with Q(x) = 0 and Li(x) 6= 0

(1 ≤ i ≤ m). Then there is such an x with H(x) ≪ H(Q)(s+1)/2. The implied O-

constant depends only on s, m, and the number field K.

This improves Fukshansky’s result for m > 1. Moreover, one obtains a bound
which depends on m only as far as the implied O-constant is concerned, and which

could easily be calculated by some extra work.

To prove the theorem we distinguish three different cases.

Case I The quadratic form Q has rank at least three, and Q has a non-singular

K-rational zero. Then by [4, Corollary 1.2] (see also its proof) there is such a non-

singular zero x ∈ K s with h(x) ≪ H(Q)(s−1)/2. In particular, the linear form y 7→
Q(x, y) is not identically zero (here we used the notation Q also for the bilinear form

associated to Q). Now it is easily seen (compare [3, page 89]) that for any y ∈ Z
s the

vector z = Q(y)x − 2Q(x, y)y is again a zero of Q. Fix i; then Li(z) cannot be zero,

for all possible choices of y. Indeed, if Li(x) 6= 0, then Li(z) cannot be zero for all y,

for otherwise we would have

Q(y) =

2Q(x, y)Li(y)

Li(x)

for all y, thus the quadratic form Q(y) could be written as a product of the two linear
forms y 7→ 2Q(x, y)/Li(x) and Li(y), contrary to our assumption that Q has rank

at least three. On the other hand, if Li(x) = 0, then again Li(z) = −2Q(x, y)Li(y)
cannot be zero for all y because y 7→ Q(x, y) is not the zero linear form, and the same

is clearly true for Li(y). So since the two linear forms are not identically zero, both of

their nullspaces have co-dimension one in K s, and hence we can always pick a point
in K s outside of their union. Consequently, F(y) := L1(z) · · ·Lm(z) is not the zero

polynomial in y. Thus by [4, Theorem 3.1] there is an y ∈ Z
s with F(y) 6= 0 and

|y| ≪ 1. Hence z is a zero of Q with Li(z) 6= 0 (1 ≤ i ≤ m), and using [4, Lemma
2.3] we conclude that H(z) ≪ H(Q)h(x)h(y)2 ≪ H(Q)(s+1)/2, which completes the

proof in Case I.

Case II All K-rational zeros of Q are singular. Then the set of K-rational zeros of Q

is a K-linear space V , because if x, y ∈ K s are singular zeros of Q, then Q(x, y) = 0,

hence Q(x + y) = Q(x) + 2Q(x, y) + Q(y) = 0, so x + y is again a zero of Q. Let n

be the dimension of V . Now by [7, Corollary 2] there is a basis x1, . . . , xn ∈ K s of V

where
n
∏

i=1

h(xi) ≪ H(Q)(s−1)/2.

(Note that if Q is identically zero, then by [4, Theorem 3.1] there exists x ∈ K s with

H(x) ≪ 1 such that
∏m

i=1 Li(x) 6= 0 since the linear forms are not identically zero,

and we are done. Hence we may assume that Q is not identically zero, so L < M

https://doi.org/10.4153/CMB-2009-007-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-007-7


Small Zeros of Quadratic Forms 65

in the notation of [7] and [7, Corollary 2] is applicable.) By assumption, there is an
x ∈ K s with Li(x) 6= 0 (1 ≤ i ≤ m), so the polynomial

F(ξ1, . . . , ξn) =

m
∏

i=1

Li(ξ1x1 + . . . + ξnxn)

is not the zero polynomial in ξ1, . . . , ξn. Again by [4, Theorem 3.1] we conclude

that there are ξ1, . . . , ξn ∈ Z with |ξ| ≪ 1 and F(ξ1, . . . , ξn) 6= 0. Consequently,

x = ξ1x1 +. . .+ξnxn is a K-rational zero of Q since x ∈ V , and Li(x) 6= 0 (1 ≤ i ≤ m)
since F(ξ1, . . . , ξn) 6= 0, and finally H(x) ≤ h(x) ≪ h(x1) · · · h(xn) ≪ H(Q)(s−1)/2.

This proves the theorem in Case II. Note that we only introduced the inhomogeneous
height h because the inequality h(x) ≪ h(x1) · · · h(xn) we were using would not be

true if h were replaced by H.

Case III The quadratic form Q has rank at most two, and Q has a non-singular K-
rational zero. Then Q is of the form Q(X1, . . . , Xs) = M1(X1, . . . , Xs)M2(X1, . . . , Xs)

for two K-linear forms M1 and M2, which are not identically zero because we assume

that Q has a non-singular K-rational zero. So the set of K-rational zeros of Q is the
union of V1 and V2 where Vi = {x ∈ K s : Mi(x) = 0} (1 ≤ i ≤ 2). By assumption,

there is an x ∈ K s with Q(x) = 0, but Li(x) 6= 0 (1 ≤ i ≤ m). Without loss
of generality we may assume that x ∈ V1. Now by [5, Chapter 3, Proposition 2.4]

we have H(M1)H(M2) ≪ H(M1M2) where M1M2 = Q. Hence H(M1) ≪ H(Q).

By Siegel’s Lemma (see [1, Theorem 9]) there is a basis x1, . . . , xs−1 for the K-linear
space of K-rational zeros of the linear form M1 such that

s−1
∏

i=1

h(xi) ≪ H(M1) ≪ H(Q).

We can now continue analogously to Case II. This completes the proof of the theo-

rem.
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