
TWO TERM CONDITIONS IN * EXACT COUPLES 

MICHEAL N. DYER 

1. Introduction. In achieving his celebrated results on the homology 
groups of fibre spaces, J. P. Serre used the exact couple of a fibring defined by 
J. Leray. One of his main tools was the so-called two-term condition on the E2 

term of this exact couple, which, if satisfied, yielded exact sequences, such as 
those of Gysin and Wang (see (5), Chapter IX). H. Fédérer, in (3), defined 
an exact couple (S(X, F, v) on the mapping space M{X, Y) = {f:X—> Y\X, Y 
are spaces a n d / is continuous} with the compact-open topology, where X is a 
locally finite CW complex and Y is arc-connected and ^-simple for all n. The 
purpose of this paper is to find a two-term condition for the exact couple of 
H. Fédérer and to see what results can be derived from this condition. 

In Chapter I we formulate a two-term condition for ir exact couples, of 
which Ê(X, F, v) is a special case. We also give a necessary condition that the 
differential operator 

dl: En>0 —* En-\,i 

in (S*(X, F, v) be zero for i > 2. 
In Chapter II we give necessary conditions on F (Gap Theorem I) and on 

X (Gap Theorem II) that a two-term condition hold on £(X, F, v). These 
theorems yield exact sequences involving TTi(M(X, F), v) and H^X, TJ(Y)). 

Using these theorems, we then compute some of the homotopy groups of 
M(X, F) where F = U, the infinite unitary group, or O, the infinite orthogonal 
group, and dim X < 4 or 5, respectively. 

CHAPTER I. PRELIMINARIES 

2. 7z Exact couples. Let E = {D, E, i,j, k] be an exact couple in the sense 
of Fédérer; i.e., D is a (not necessarily abelian) group, E is an abelian group, 
and i, j , and k are homomorphisms such that the following triangle is exact 
(see (3)): 

i 
D >D 
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Suppose that D and E are bigraded, i.e., 

D = X e DPttt, E = X) © £p,<7 (£t 5 € Z, the integers), 

and i, j , k are homomorphisms such that deg i = (0, —1), degj = ( — 1 , 1), 
and deg k = (0, 0). It can easily be shown that deg in = (0, —1), degj n = 
( - l , w ) , degfen = (0,0), and deg d» = ( - 1 , 0 , where dn = j n o kn, in the 
derived couple (Sw (see (5), Chapter VIII) . 

Definition 2.1. We call an exact couple Ë satisfying the above a 7r exac/ couple 
if and only if E satisfies: 

(1) A,,, = 0 if ^ <0,q < 0, 
(2) EptQ = 0 if g < 0, 
(3) there exists a positive integer & such that EPtQ = 0 for q > fe. 

Condition (3) ensures the finite convergence of the spectral sequence. 

PROPOSITION 2.2. Let &be a T exact couple. Then 
(4) Ep>q = Oforp < 0 , 
(5) for any p, and if q > k, then Dp>q ~ DPiJc via tfQ-k) ((q — fe)th iterate of i), 
(6) for n > max(g, k — q) we have 

-pn -pn+\ rpoo 
•*-"P>Q -^PiQ . . . JZ/Piq. 

Definition 2.3. Let DPtJc be denoted by irP( (£). We filter TTP{ S) as follows: 

^ ( S ) = TTp,-! D 7rP)0 Z) 7TPti Z) . . • D TTp.fc-1 Z) TTp.fc = 0, 

where 7 ,̂3 = ker {i(fc_ff): DPtJc-^ Dp,q} îor q < k and 7rPffc = 0. This is called 
the filtration of 7rp(6). See (6). 

The following proposition shows that TPtQ-i is an extension of irp>q by Ep°tQ. 
The proof is given in (3, p. 351). 

PROPOSITION 2.4. irp,q-x/TvPtq ~ E^,qfor q < k. 

3. The two-term condition. Let S be a ?r exact couple. 

Definition 3.1. We say that S satisfies the two-term condition {X, p; v}, 
where A, /x, and p are integers such that A </*,*>> 1, if and only if £" satisfies 
(a), (b), and (c) below. 

(a) For each integer m such that A < m < /x, E ^ = 0 unless g = am or 

(b) E^_i,? = 0 if q > bm + v(\ < w < JJL). 
(c) £^+i,ff = 0 if q < am - v(\ < w < /*). 

THEOREM 3.2. If S satisfies the two-term condition {A, /*; *>}, ^£?z the following 
sequence is exact: 

A",&M > *M W > -k j i , ^ > . . . > Em,bm 

H>m / p~\ y m 77" "m 77" $m— 1 
> 7Tm(,V2,j > i i m , a « > &m-l,bm-i > • • • 

> ^ X , a \ -
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The proof of Theorem 3.2 is similar to the proof in (5, p. 240). 

Note: I t is of interest for §§7 and 10 to see how the homomorphism 

is defined. Let rm_i = 6m_i — am for m > X. Then 

dr™-i if rm_i > */, 
0 if rm_i < p. 

COROLLARY 3.3. Let 0 < a < b < £, wAere £ w / t o number such that Ep>q = 0 
/or q > k. If EP

p,q = 0 unless q = a, b for some v > 1 awd a// ^ > 0, JAew /Âe 
following beginningless sequence is exact: 

• • • > -&p,b > ^pK^J > &p,a » -tLp-1,1) > • • • 

> Tri(fe) > £i, a > E0,& > 0. 

COROLLARY 3.4. Le£ {bi} (X < i < n) be a sequence of integers such that, for 
some v > 1, bt — v < bi+ifor X < i < p and bt < k for X < i < /*. If Ev

v,a = 0 
unless q = bvfor X < £ < pt awd i/" £\-i,ff = 0 if q ^> b\ -{- v, then 

Proof. Letting 

-1 if6P = 0 ( X < ^ < ^ 

we obtain a two-term condition {\, fj,; v} and .Ej.ap = 0 for X < p < ju. Theorem 
3.2 does the rest. 

COROLLARY 3.5. 7/ £jfff = 0 for 1 < X < p < /*, /Aew 7^(6) = 0 /or 
X < p < M. 

4. Extended two-term conditions. Let Ë b e a j exact couple. The next 
two theorems give conditions under which the exact sequence of Theorem 3.2 
may be extended one extra term. 

THEOREM 4.1 (Left Extended Two-Term Condition). Suppose £ satisfies 
the two-term condition {X, ju; v). In addition suppose that for p = X — 1 and 
q > CL\ + v, EV

V>Q = 0 unless q = q0 (ax + v < q0 < b\ + v) and for p = X — 2, 
Ep.q = 0, go + y < q < qo + r where r = q0 — ax (see Figure 4.1). Then the 
sequence 

is exac/. 

THEOREM 4.2 (Right Extended Two-Term Condition). L ^ Ê satisfy the 
two-term condition {X,/z;v}. 7» addition, let Ev

PtQ = 0 /or p = p-\- \ and 
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I 
' f (A-2,q0+r) | 

I I 
vS (A-2,q0+v) | 

4 (A-l,bA+v) 

-l>1o 

(A-l,a +v) 

\ 
fr,\) 

(X,aA) 

A-2 A-l 
FIGURE 4.1. £> 

g < 6/1 — ? ww/ess q = Qo (go > a^ — p) awd £^,ff = O/or /> = /* + 2, g0 — *>> 
q > qQ — r where r = b^ — g0. 17&£tt 

•E^-i.fl 
<T 

S 'M, 6, ^ . « X 

is exac£. 

5. Description of S(X, F, *;). Let X be a locally finite CW complex, Y be 
an arc-connected space, and z/bea map from X to F. In this section we give a 
description of the exact couple S(X, F, t/) (see (3)). 

Let Xn be the ^-dimensional skeleton of X. Consider M(Xn, Y) = {/: Xn -» 
F| / is a map}. Let Uj be the arc-component of M(Xj, F) containing Vj — v\Xj. 
Define the map 

r: Uj-* Uj-i 

byr(f) = f\ X^1 (f G M(Xj, F)) . Since X is locally finite, r is a fibring in the 
sense of Serre (see (5)); i.e., r satisfies the covering homotopy theorem for 
polyhedra. Let Fj = r ^ - i ) = {/ 6 [/,1/lX^1 = z;y_i}. F , is a fibre of r. 

The usual sequence 

(5.1) . . . -> ITiiF,, Vj) - 4 Ti(Uj, Vj) -A TTiiUj-l, Vj-i) 

—> TTi-iiF^Vj) ~ » . . . 

for the fibring r is exact. 
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Define 

where DP>q = ^(C/ç, vq) if £, g > 0 and Z>P)(Z = 0 otherwise, and 

E = X 0 £P,<7 

where Ep>q = TTP(FQ1 vq) if />, g > 0 and Ep,ff = 0 otherwise. Then (5.1) becomes 

(5.2) . . . -» E,, , ^> Z)M ^> £,, ,_! ^> £,_!,, - > . . . , 

where & = k*, i = r*, and j = d. This makes {D, E, i,j, k] an exact couple. 
We denote this exact couple by fë(X, F, v). 

We state the following theorem for future reference. The proof is given in 
(3). 

THEOREM 5.3. If X is a locally finite CW complex and if Y is arc-connected 
and simple (= n-simple for all n > 0), then 

(a) 7: Ep>q ~ Cq(X, irp+q(Y)), the group of q-dimensional cellular cochains 
on X with coefficients in irp+q(Y), for p > 1. If p = 0, then E0>q = subgroup of 
0(X, 7r,(F));see (3, p 345). 

(b) The following diagram is commutative for p > 1 and q > 0. 

77 d=j ok 

7 7 

C(X, W * 0 ) * - ^ C«+1(X, W 7 ) ) 

Thus if £ > 1, g > 0, then 

El,q=H\X,Tp+q(Y)). 

Also, Eo,<z ~ subgroup of Hq(X, irq(Y)) ; see (3, p. 351). 

PROPOSITION 5.4. If X is a locally finite CW complex of dimension k, Y arc-
connected and simple, and v 6 M(X, F), then E(X, F, v) is a w exact couple. 

Proof. Theorem 5.3 implies that TTI(FJ, VJ) = Eitj and To(Fjt vf) = E0ij are 
abelian, as required by §2. We must show that (1), (2), and (3) of Definition 
2.1 are true. DQ,Q = irQ(UQ, vq) = 0 since Uq is arc-connected and DPtQ = 0 by 
definition if p, q < 0. This proves (1). (2) is true because Ep>q = 0 for q < 0 
by definition. The dimension X = k implies that EPtq = 0 for q > k since 

EP,q = TP({fe M(X, Y)\f = v},v) = 0. 

This proves (3) and the proposition. 

We note that if dimension X = k, then TTTO(S) = DmiJc = irm(M(X, Y),v). 
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6. The differential operator d\ The main purpose of this section is to 
prove the following theorem. 

THEOREM 6.1. In Ë(X, Y,v), with X an arc-connected, locally finite CW 
complex, Y arc-connected and simple, and v Ç M(X, Y) the constant map, the 
differential operator 

d '• En,0 —> E^n-~l,i 

is zero for any n and i > 2. 

In order to simplify the rather long proof of this theorem, we first give 
several lemmas. These lemmas are easily proved using Theorem 5.3. 

LEMMA 6.2. For all i > 1, El
n,0 = Dl

ntQ and the homomorphism 

k : En>o —-> Dnto 

is the identity. 

LEMMA 6.3. E .̂o ~ the diagonal ofYixtx* (^n(Y))x under y for n > 1. 

We embed F into Ui via the map £*: Y —> Uidefined by Jrt(y) = cy
l\ X1 —> Y 

such that cy
i{x) = y for all x £ X\ Let v: X —> Y be the constant map such 

that v(X) = 3̂o- Then since Y is arc-connected, cy
i is homotopic to vt for all 

y 6 F. Thus cv* G £/*. 

Proof of 6.1. The differential operator di=jioki, by definition. By 
Lemma 6.2, 

En,o = Dn,o and kl: En,o —» Alo the identity. 

Thus J* is essentially j * . The homomorphism j 1 is defined as follows. If 

ye kerd^CElzli (2 < Z < *), 

then let rj(y) denote the homology class of y in En-iti. Let x £ -D .̂o. Then, by 
(5, p. 232), 

j ' (*) = vU'-'ii-Hx))} = ^{j^{i-\x))} = ... 

= Vii-1){Jti-i+1(x))}, 

where r\{l) is the /th iterate of the process of taking homology classes and 

i~~l(x) = {y G Dn,i\ i(l)(y) = x, where i{l) = i o i o . . . o i (/ times)}. 

First we give the proof for i = 2. At the end we indicate the easy extension 
to the cases i > 2. Since d2 is essentially j 2 , we must show that 

j '- Dn,o —» En-it2 
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is zero. This homomorphism is defined by the following diagram: 

wn(Y) - H\X, irn(Y)) 1 E2
n,o = ker{j : Tn(Uo, v0) -> ^ - 1 ( ^ 1 , v1)\ = D;, 

(onto) 
j 

Tn(Ui,yi) —> ker{d: T T ^ - I ^ , V2) - » 7rn^2(Fz, ^3)} 

r2* 

TTW(£/2, V2) - ^ îrn(E/2, ^2, ^2) 

In the diagram r2* is induced by the restriction r2: (U2j F2, v2) —» (Ui, Vi), 
U is induced by the inclusion t: (UuVt) C (Uu F^Vt), d is the boundary 
operator in the homotopy sequence of the pair (U2, F2), i = r\* is induced 
by the restriction r\: (Ui,Vi) —» (Uo,Vo), and rj is as above. By definition 
j = d o r2*_1, where r2* is an isomorphism by (5, p . 118). The homomorphism i 
is onto by exactness. Beginning with En>0 and following the diagram to El_1>2 

defines d2 = j 2 = rj o j o i~l. 
Now to show tha t j 2 = d2 = 0. Since X is arc-connected, Elt0 ~ Tn(Y). 

Consider a Ç irn(Y) such t h a t a ^ 0. Let z>: X —» F be the constant m a p into 
{3/0}. C h o o s e / 6 a such t h a t / : (5W, 1) —> ( F , y0) is a map . Since 

Elf0 = ker{7:Z)n ,o->£„-i, i} « diagonal of I I xexo (irn(Y))x 

by Lemma 6.3, then a corresponds isomorphically to ga\ X° —* wn(Y) such tha t 
ga(x) = a for each x £ X°. ga Ç Tn(Uo, Vo) is represented by the m a p 
/ ' : (Sn, 1) -> (i/o, vo) where [f (*)](*) = / ( s ) (s Ç ^ x G X°) . Note t ha t 
f = £0 o / , where £0: F C Uo is defined above. 

Define the map / " : (S*f 1) - » (I7i, »i) by / " = fc o / , fc: F C tfi. / " ( I ) = 
êiCyo) = Cyo1 = y i- We shall show tha t r ' i o / " = / ' . We claim tha t for any i 
(if r't: (Ui,Vi)—+ (Ut-i, vt-i) is the restriction) 

(*) f ' i O f ^ {*_!. 

T h u s r ' i o / " = r ' i o £1 0 / = £0 0 / = / ' . Therefore the homotopy class of / " , 
denoted [/"], is such t ha t r\*([f"]) = [/'] = a. T h u s ^ ( a ) contains [/"]. 

Since j(i~l(a)) = j([f"]) = d o TV -1 ([/"])> we must find a map representing 
T V - H O ^ 7rn(U2,F2,v2). Consider / ' " = £2 o / : ( S M ) - » (17* r 2 ) . This 
m a p is such t ha t if r2: (C/2, F2 , z>2) —> (Z7i, fli) and if/ '" is considered as a map 
from (In, In~\ Jn'1) -> (£/2, F2 , i;2) as follows: 

(/", In~\ Jn~l) -L> (Sn, 1) H> (U2, v2) J-+ (U2, Ft, v2), 

where p pinches the boundary 5W _ 1 of In to a point, then 

r2 o (£ o / " ' o p ) = r2 o (t o%2 of o p) 

= r'2 o £2 0 / o p (r'2 = r2 ot) 

= « i o / o p = / " o p ( b y ( * ) ) . 
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Thusr2*([t of" op]) = \f" op] = [/"J.Thus 

j ( [ / " ] ) = 3[/ o f ' o p ] = doU([f" op]) = 0 

since d o /* = 0 by the exactness of the homotopy sequence. Therefore 
f(a) = d2(a) = 0. 

The proof for i > 2 is now clear. Since 

En.o C £»,o fori > 2, 

any a Ç E .̂o can be represented by an element/7 as above. Then i~i+1(a) is 
represented by f{i) = £*_i o / : (5W, 1) —> (£/*_i, z>*-i). Therefore 

j(*-^(«)) = a o»-K[PD = a([* o/wu op]) 
= a o/.([f^« op]) = o. 

This proves Theorem 6.1. 

We next give a theorem that will be useful in §10 for showing that certain 
exact sequences split. 

Let us first define some maps. Let 

]: Y C M(X, F), k: YC M(X°, Y) 

be the constant injections of Y into the respective mapping spaces, where X° 
is the set of vertices of X. Pick any x0 in X°. Let 

ixo: M{X, Y) -> F, pXQ: M(X\ Y)-* Y 

be the projections; i.e., ixo(f) = /(#o) for a n y / in M(X, Y). 
Consider the following maps from fè(X, F, y): 

n ^ ~ 1 } n * n2 $*»* T W V ^ 
M»,* >M»,1 > -^IÎI.O > n m ( F , y0) 

where m > 0, fe is the dimension oî X,ï = i, and 

Pxd = Pxo*\Dm.O' 

Throughout the rest of this section we assume that v: X —» F is such that 
Î;(X) = yo for all x in X. We note that, by Lemmas 6.3 and 6.2, pXQ# is an 
isomorphism provided X is connected. 

THEOREM 6.4. Let X be a k-dimensional, connected, locally finite CW complex, 
Y be simple and connected, and v: X —» F be the constant map to yo. Then 

(pXQ§ o I o i{lc-l)) o j# = identity on IIm(F, yQ). 

Preliminary to the proof we give several lemmas. 

LEMMA 6.5. %r. 11,(7, 3>o) -» n , (M(X°, F), £(?<>)) £ riJ€Xo (11,(7, ?<>))* « 
^6 diagonal injection. 
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This follows because if a is a member of 11^(7, y0), then 

t(h(a)) = Uxexo (pxt(kt(a)))x = II^xo [(px o%)t(a)]x = Hxex° (a)x 

LEMMA 6.6. The following triangle commutes: 

Dm 

^xnf Dm,o 

k# 

Hm(Y,yoVk* 

Thus k o iXQ (XQ Ç X°) induces i{1c). 

Proof. It is clear that iXQ# = pxo# o i(jc). Thus the triangle looks like this: 

T)m,o ^fT)n 

PxA 

nm(Y,y0) 

Consider a Ç Dm,k. Then 

i{k\a) Ç Dm,o = diagonal of f l xex« (nw(F, y0))x 

by Lemmas 6.2 and 6.3. Thus 

&# oixot(a) = %# opXQ# oi{k)(a) = iW(a) 

because fe# o ^xo#|dia Ilx€xo (nm(F, yo))* = identity by Lemma 6.5. 

Proof of 6.4. Since ii]c) is induced by % o iJ0, and ixo oj = identity on F, 

(pxo# oï oi(fe_1)) oj# = (pxoi o (& oiXQ)#) oj# 

= identity on IIm(F, y0). 
This proves Theorem 6.4. 

CHAPTER II. TWO-TERM CONDITIONS IN E ( X , F , fl) 

7. Two theorems. In this section we show that if F is ^-connected and Xjoi 
dimension k, then M(X, Y) is n — k connected. Also, if 7r*(F) = 0 for n > no, 
then 7Ti(ikr(X, Y),v) = 0 for » > w0. 

THEOREM 7.1. Le£ X be a locally finite CW complex such that the dimension of 
X = k > 1. Le£ F Z?e n-connected such that n > &. 77^?z 
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(i) M(X, 7) is n — k connected, 
(ii) Tn_k+1(M(X, Y),v) ~ Hk(X,Tin+1(Y)), 

(iii) the sequence 

H(k - 2, n + 1) ^>H(k, n + 2) -£ Tn-k+2^H(k — lf » + 1) —> 0 

w éwad, wftere # ( i j ) = #*(X, 11,(7)) awd #m = IIw(ikf(X, Y),v). 

Proof. Since 7 is n-connected and dim X < n, it is easy to see that ikf(X, 7) 
is arc-connected. By Theorem 5.3, we have 

E2
PtQ(X, Y,v) « Hq(X, W F ) ) . 

Thus £p,c = 0 for g < & and p + q < w. This implies that E ^ = 0 for 
0 < p < n — k. Corollary 3.5 then gives (i). For (ii) and (iii), we let an-k+i = 
k — 1 and bn-]c+i = k for i = 1, 2. See Figure 7.1. This gives a two-term 

FIGURE 7.1. £2(X, F, v) 
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condition {n — k + 1, n — k + 2; 2}. T h u s Theorem 3.2 implies t ha t the 
sequence 

iJ(fe, n + 2) -> 7rn_A;+2 > iï(& — 1, » + 1) > #(&, w + 1) 

> TT^-^+I » # ( & — l , w ; 

is exact, where H(i,j) = H^X, TJ(Y)) and 7fz = iri(M(X, Y),v). Since 
& — fe + 1 = 1 < 2, the note following Theorem 3.2 implies that 0^+2 = 0. 
H(k — 1, w) = 0 because 7rn(F) = 0. Thus il(&, w + 1) ~ 7rn-A-+i. Let 
q0 = k — 2. Then 

E2-*+3.7 = 0 for q < k — 2 and E^k+Atq = 0 for g < k — 4. 

Thus the conditions of Theorem 4.2 hold and the following is exact. 

H(k-2,n+ 1) >iJ(^,^ + 2 ) ^ 4 fn_k+2I^±^H(k- 1,» + l)->0. 

This proves the theorem. 

THEOREM 7.2. L ^ F fre simple, arc-connected such that iCi(Y) = 0/or i > m 
and X be a locally finite CW complex of dimension k. Then 

(i) Ti(M(Xy F), v) = 0/(w ** > m. 
(ii) Tm(M(X, Y),v) ~H»(X,irn(Y)). 

(iii) The following sequence is exact: 

0 > H(l, m) ^-l *„_! - ^ # (0 , m - 1) - ^ J7(3, w). 

The proof of Theorem 7.2 is similar to that of 7.1. Part (i) was known to 
Thorn (see (8)). We note that if v: X —» F is constant, then d2 = 0 in (iii) by 
Theorem 6.1, provided X is connected. Then, Theorem 6.4 implies the following 
corollary. 

COROLLARY 7.3. In Theorem 7.2, if X is connected and v: X —» Y is a constant 
map, then (iii) reads as follows: 

T^l(M(X, Y),V)= H\X,TTm{Y)) 0 7rm_!(F). 

8. Gap Theorem I. In this section we obtain two-term conditions on 
Ç£(X, F, v) by placing restrictions on the homotopy groups of F. 

Let {ai} (1 < i < <*>) be a strictly increasing sequence of positive integers. 
Let {wai} (1 < i < oo ) be a sequence of groups such that irai is abelian for 
i > 1 and for i = 1 if a,\ > 1. If a1 = 1, then n is not necessarily abelian. 

Definition. An arc-connected space F is said to be of homotopy kind 
{iraif at} (1 < i < oo ) if and only if irai(Y) ~ irai (1 < i < » ) and 7ry(F) = 0 
if j g {a,} ( 1 < * < a,). 

Thus K(Tr,n) has homotopy kind (type) {71-, n}, K(jm,m) XK(Tnin) 
im < n) has homotopy kind {7rw, m; irn, n), and any arc-connected space X 
has homotopy kind {x^X), i} (1 < i < 00). 
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THEOREM 8.1. Let X be a locally finite CW complex of dimension k. Let Y be of 
homotopy kind \-Km,m', Tni n) where m < n, irm and irn are abelian, and if m = 1, 
7Ti acts simply on irn. Then 

(i) TCiiMÇX, Y),v) = Ofori> n, 
(ii) TiiMiX, F), v) « H^iX, irn) for m < i < n, and 

(iii) if iTi = -Ki(M(X, F), v) and Hl{X, ir3) = H(i,j), the following sequence 
is exact: 

>H(n — m + 1, n) • n TT f \ Cf>m - Xf/m TT/f\ \ 

0 > H(n — m, n) > irm > H (0, m) 
(8.2) >H(n — i,n) *7r* +H(m — t,m) >H(n — i + 1,») > 

0i » i i (^ — 1, w) > 7Ti > H(m — 1, m) > A0,n • 

wfeere E?,n C -ff(w, w) (see Figure 8.1). 

p+q=m p+q=n P 

FIGURE 8.1. £2(^, F, «0 

Proof. By Theorem 5.3, E*iff « # C ( X TTP+(Z(F)) for £ > 1 and 

Thus EPlff = 0 for p -{- q > n. Proposition 5.4 and Corollary 3.5 imply that 
TTi{M(X, Y),v) = 0 for i > n. Let bt = n — i for m < i K n. So bt — 2 = 
?z — i — 2 < ?z — i — 1 = bi+i. Thus the hypotheses of Corollary 3.4 are 
fulfilled for m + 1 < i < n and hence 

*t(M(X, F), i>) - #W-*(X, O form < * < n. 

For 0 < i < m + 1, let at = m — i,bt = n — i. This gives a two-term condition 
{0, m + 1; 2} on Ç£(X, F, t/). Theorem 3.2 thus implies that the above sequence 
(8.2) is exact. The zeros on each end result because D0>Jc = £m+i,_i = 0. Note 
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that if v: X —> F is constant and X connected, then dm = 0 by Theorem 6.1 
and Trm{M(X, F),i>) « Hn'm(X; wn(Y)) ® Tm(Y) by Theorem 6.4. 

The following corollary gives the effect of k = dim X on the exact sequence 
(8.2). 

COROLLARY 8.3. With the same hypothesis as Theorem 8.1, let us assume further 
that 

(i) k > n. Then (8.2) stands as it is. 
(ii) m <^ k < n. Then (8.2) £wds as follows: 

0 > i7(rc — m,n) TT/i \ Wit-Jo _ 

^n-7; 
i7 (m— n -\- k, m) > 0 

and iri{M{X1 F), v) = H^iX, irm) for I < i < n - k (see Figure 8.2). 
(iii) n — m *C k < m. Then (8.2) e?zds as iw (ii) above, Ti(M(X, Y),v) ~ 

H^'iX, Tm) for m - k < i < n - k and Tt(M(X, F), v) = 0 for 1 <i < 
m — k (see Figure 8.4). 

(iv) k < n — m. Then Tt(M(X, F), v) = 0 /or 1 < i < m — & arad 
m <i < n - k and Tt(M(X, F), u) « Ht-'ÇX, TJ) for j - k < i < j 
(J = w, w) (see Figure 8.3). 

Proof. We note that case (iii) is vacuous if n — m > m. The proof consists 
of taking the exact sequence (8.2) and using the relative position of k = dim X 
to determine zeros in it. 

COROLLARY 8.4. If X is a locally finite CW complex of dimension k and 
Y = K(TJ n), the Eilenberg-MacLane space, where T is abelian, then 

Tt(M(X, K(T, n)), v) « #*-*(*, T) 

forn — k ^ i ^ n and = 0 for i>nori<n — k. 

FIGURE 8.2. E2(X, Y, v) 
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m-k ±1X n-k 

FIGURE 8.3. E2(X, Y, v) 

* 1 i 

n 

m 

k 

m 

k 
\ j \ 

n-m 

1 ^ 

1 \ 
1 

i i i 
£ 

m n P 

FIGURE 8.4. E\X, 7, v) 

This result was known to Fédérer (3) and Thorn (8). 
Theorem 8.1 generalizes to the following theorem, utilizing regular gaps in 

the homotopy groups of Y. 

THEOREM 8.5 (Gap Theorem I) . Let m, n, k be positive integers such that 
m < n. Define the sequence {a^ (1 < i < <*) by at = m, + j + jkifi = 2j + I 
and at = n+j+jkifi = 2j + 2. Let {irai} (1 < i < °° ) be a sequence of 
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dbelian groups (if m = 1, we let -K\ act simply on irai for i > 1). Let Y be an arc-
connected space of homotopy kind 

{Taij ai; 7ra2, a2; 7Ta3, a3; . . .} = {Tmj m\ Tnj n; Tm+i+ÎCy m + 1 + k\ . . .} 

and let X be a locally finite CW complex of dimension k. Then the following 
sequences 2* are exact for 1 < i < » , where TI(M(X, Y),V) = fh 

Hj(X, Tp(Y)) = H(j,p), and a is any integer such that at-\ + 1 < a < at 

(see Figure 8.5). 

0 > H(ai+i — ait ai+1) —^> jtai —^ H(0, at) 

>H(ai+1 — (at — 1), ai+i) —-—> 

(2,*) . . . >H(ai+1 — a,ai+i) > ira >H(at — a, at) 

>li(ai+1 — {a — I), ai+i) > . . . 

. . . >H(k,ai+i) > 7ra;_1+i >H(at - (a,_i + 1), a-) —> 0. 

If i — 1, then the sequence 2i is given by (8.2) and depends on k as in Theorem 
8.3. 

n+k+2 

FIGURE 8.5. £2(X, F, v) 
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Proof. Si is the exact sequence (8.2). Let i > 1. We then have the situation 
pictured in Figure 8.6, where 

i - l 

a i - l 
+1 a .+l 

FIGURE 8.6. E\X, F, v) 

(i) E2
ai_UQ = 0 unless q = 0 or at — a*_i; 

(ii) El,Q = 0, if a*_i + 1 < p < a<, unless g = at — p or q = a i+1 — £; 
(iii) £«t-+ifff unless q = k or q = ai+1 — {at + 1). 

Let 

and 

\CLi - P 

[ai+i - {at + 1) 

if p = ai-i, 

if a*_i + 1 < £ < au 

ilp = a,i-\- 1 

dv — 1 #H-I 

a* — az-_i if £ = af_i, 
£ if af_i + 1 < p < ait 

k il p = at -{- 1. 

Thus for at-i < £ < at + 1, £ / < #V. This gives a two-term condition 
{a*_i, a t +• 1; 2} on Ê(X, F, y). Then Theorems 3.2 and 5.3 imply the exis
tence of Si and the note following 3.2 gives the zeros on each end, because 

and 
4 \ - i - Ca\-i+l = fai — di-l) — (flt — (a2_i + 1 ) ) = 1 

dai — Cai+i = (ai+1 — at) — (ai+1 — (at + 1)) = 1. 
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This proves Theorem 8.5. Again, if X is connected and v is constant, then 
Theorem 6.1 =» Qai = 0 and Theorem 6.4 => 7fai ~ H(ai+1 — au at+i) ® irai(Y). 

It is clear that, if dim X < &, then Theorem 8.5 still holds. However, there 
will be many zeros in each 2*. An analysis of this situation would be similar 
to Theorem 8.3. It is also clear that the gaps in the homotopy groups of Y are 
the minimum ones for the given triplet (m, n, k) where m < n, dim X = k. 
These gaps can be widened and 8.5 still holds. A statement of such a theorem 
would go as follows. 

THEOREM 8.6. Let X be a locally finite CW complex of dim k and {(mu nt)} 
(1 < i < oo ) be a sequence of pairs of integers such that 

(i) mi < nt < nii+i for alii, 
(ii) mi+i — mt > k + 1 for alii, 

(hi) rii+i — tit > k + 1 for all i. 
Let Y be an arc-connected simple space of homotopy kind 

Wmi* Wi; 7rni, n\\ 7rm2, m2; Tn2, n2\ Tmzi m%\. . .}. 

Then sequences 2%, 2"* similar to 2*0/ Theorem 8.5 are exact in each interval 
[mi + 1, tit] and [nt + 1, m i +i], respectively. 

9. Gap Theorem II. Let {a,} (0 < i < iV) (iV an integer or N = Ko) be 
a strictly ascending sequence of non-negative integers such that a0 = 0; i.e., 
a0 = 0 < &i < a2 < . . . < an < . . . . 

Definition. We call a CW complex X "a CW complex of cell type {a^ 
(0 < i < N)" if and only if 

(i) X has cells of dimension at for each i < N, 
(ii) X has no cells of dimension k for any k (? {#*}. 

Examples, (a) 5W is a CW complex of cell type {0, n\. 
(b) Aw, the unit ^-simplex, is a CW complex of cell type 

{ 0 , 1 , 2 , . . . , * } . 
(c) CPW, the ^-dimensional complex projective space, is a CW 

complex of cell type {0, 2, 4, . . . , 2n}. 
(d) If F /+ 1 = Sn U ew+1 where ew+1 is joined to 5W by the map 

h:Sn->Sn of degree p ^ 0, then F/+ 1 is a CW complex of cell type 
{0, n, n + 1}. 

THEOREM 9.1. (Gap Theorem II) . Let X be a CW complex of cell type 
{0, ai, . . . , an-i, an] and Y be m-connected (m > 1). Let Gi denote the sequence 

H(an, i + On) -> ft -JH(an-i, i + fln-i) 
and 2 (i, j) (i < j) denote the sequence 

H(an,j + an) —U jfj—J-^H(an_hj + an_i) —U H(anJ — 1 + an) 

> . . . > H [On, I + On) > Tt -> H(a»_i, 2 + ufo-l)-
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If i = j , let 2(i, i) = at. Then: 
(1) if an-2 < m < an_i, the following sequences are exact: 

(a) /f an_i — an_2 = 1 {thus m = an_i), /Aew 

<n -A Eo,a„ —• 0, where £o,an C iTfe» On). 

I/, m addition, an — aw_i — 1, then 

d2 

H(an-2, an-2 + 2) -> <rt —> 0. 

(b) I/an_i — an_2 > 1, 2a„_i < an + an_2, awd m — aw_i > 1, then 

2(1, w — an_2 - 1) -A£o,an—>0. 

(c) 1/ aw_i — aw_2 > 1, 2an_i > an + an-2, and m — a„_2 > 1, Jfo» 
(i) if an — an-i > 1, then 

jan—dn-l û 

H(on-i, m - an_2 + an_i) > 2(1, m - an_2 - 1) L—> Eo,an -> 0; 

(ii) if a» — a„_i = 1, then, for 1 < i < w — an_2 — 1, 0 —» at —> 0. 
(2) If m > On_i, we toe 

(*) *,(M(X, F), ») - fP»(*. 7Ti+an(F)) for 1 < i < m - an^ - 1 
(w — an_i > 1) 

(if m > an also, then %% = 0 /or 1 < i < m — an) and the following sequences 
are exact: 

(a) If an-i — an-2 = 1, then 

In addition, if an — aw_i = 1, we toe 

H(an-2, m + 1) -> o-m_an_2 -> 0 and iJ(aw, w + 1) « 7rm_an_2_i. 

(b) Jf aw_i — an-2 > 1 a^d 2an_i < an + aw_2, /ftew 

2(m - a„-i + 1, m - an_2 - 1) ^=^^H(an, m - a„_x + an) 

4>m-an-l - r\ 

(c) If GV-i — a„_2 > 1 and 2an-i > an + an-2, then 
(i) if On — an_i > 1, 2(b) fto/ds and extends to 

nO-n—an-l 

H(an-ly m — an_2 + an_i) —> 2(ra — an_i + 1, m — an_2 - 1) - > . . . ; 

(ii) if an — an_i = 1, we have 0 —» a- * —> 0 /or 

w — an_2 — 1 > i > m — an-! + 1 and ^ - a ^ : jffCa», m + 1) 

'Tm—an-i* 
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Proof. Under the conditions of 1(a), we have, by Theorem 5.3, E2
0tQ = 0 

unless q = an, E\tQ = 0 unless q = an-i, an, and E2,ff = 0 unless q = an_2, an_i, 
an (see Figure 9.1). Thus, if ct = a„_i and df = an for i = 0, 1, a two-term 
condition {0, 1; 2} is satisfied and Theorem 3.2 implies 1(a). The result for 
an — an-i = 1 is given by Theorem 7.1(iii). 

FIGURE 9.1. £2(X, F, v) 

Suppose an-i — an-2 > 1. Since EPtQ = 0 unless g = an, On-i (0 < p < 
m — aw_2) we clearly have the two-term condition {0, m — aw_2 — 1; 2} 
satisfied (see Figure 9.2). Then Theorem 3.2 and T0( Ê) = 0 give 1 (b). We note 
that the two-term condition {0, m — aw_2; 2} does not hold because 

an_i — an-2 > 2 => £w_an_2+i, an_2 is not necessarily zero, 

a n - 2 
p+q = in 

FIGURE 9.2. E2(X, Y, v) 
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which violates Definition 3.1(c). Since 2an-i - an < a„_2, then the hypotheses 
of Theorem 4.2 are not necessarily fulfilled and thus 1(b) can be extended no 
further. 

1(c) follows because if 2an_i - an > a„_2, then the conditions on Theorem 
4.2 (with q0 = 0»-i) are satisfied and if an — an-i = 1, then 6t = 0 in 1(b); 
by the note following Theorem 3.2. 

If m > OH-I, then E%ttt = 0 unless q = an for 1 < p < m — a„_i - 1 
( w __ 0WF_1 > l ) and Corollary 3.4 implies (*). 2(a) follows because the two-
term condition {m - an-!, m — an-2; 2} is satisfied with ct = aw_i, dt = an for 
m — an-\ < i < m — an-2 and because 

772 

m—an-i,an- .^Han'l{X, xw(F)) = 0. 

2(b) follows because the two-term condition {w — aw_i + 1, m — a„_2 — 1; 2} 
is satisfied with c* = aw_i, cẐ  = an in this range (see Figure 9.3). As above, 

p+a = m 

n - 1 ^ n - S 

FIGURE 9.3. E2(X, Y, v) 

Theorem 4.2 does not necessarily hold because 2an-i — an < an_2. 2(c) follows 
for the same reason that 1(c) does. This proves the theorem. 

Theorem 9.1 would perhaps be more applicable if, instead of having to 
know the cell structure of X, one only needed to know the homology groups of 
X. The next two corollaries give such extensions. Let the statement "X is of 
homology kind {0, ah a2y . . . , an_i, an}

,J mean Ht(X) = 0 if and only if 
i (Z {aj} (1 <j <n). 
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COROLLARY 9.2. Let X be a locally finite CW complex of dimension k and 
suppose X is of homology kind {0, ai, . . . , an_i, an) where Ht(X) is a free 
abelian group for i = an, an_i, aw_2. Then the conclusions of Theorem 9.1 hold 
without change for any m-connected Y. 

Proof. E2
p>q ~ H<(X, 7TP+Q(Y)) ~ Hom(Hq(X), TP+Q(Y)) © Ext(Hq^(X), 

vv+g(Y)). (See 2.) Thus, since Ext(A,B) = 0 if A is free (see (4)), E\q « 
Hom(Hq(X), 7Tp+fl(F)) for g > aw_2. Therefore E^, = 0 for q > aw_2 unless 
q = an-2, an-i, an. Thus Theorem 9.1 holds without change. This proves the 
corollary. 

COROLLARY 9.3. Suppose X is a locally finite, k-dimensional CW complex such 
that X is of homology kind {0, a\, . . . , an_i, an}. Then, if Y is m-connected, 

(i) if an-\ + 1 = an, the conclusions of Theorem 9.1 hold for the triplet 
{an + 1, an, an — 1} replacing the triplet {an\ an-\, an-2} in the statement of Theorem 
9.1; 

(ii) if an-i + 1 < an, the conclusions of Theorem 9.1 hold for the triplet 
{an + 1, an, an-i + 1} replacing the triplet {an, an_i, aw_2} in the statement of 
Theorem 9.1. 

Proof. E2
p,q « Horn ( # , ( * ) , ^ + , ( 7 ) ) 0 Ext(iJff_i(X), irp+q(Y)). Thus if 

aw_i + 1 = an, then Ep>q is possibly non-zero for g = aw — 1, aw, an + 1. There
fore Theorem 7.1 implies the result. If an — an-\ > 1, then the three largest 
values of q for which El,q 9e 0 are an + 1, an, and aw_i + 1 since 

Ext(Han(X), TP+an+1(Y)) 

and £*,an_1+i « Ext(i?a»-iPOt *>+«»-i+i( JO). 

Thus Theorem 9.1 holds for these values. 

10. Examples. In this section we apply the gap theorems to some special cases. 
As an example of Gap Theorem I, let us consider Y = U, the unitary group. 

Let Z = the integers. We recall that 7r*(U) = Z if i is odd and is zero otherwise. 

PROPOSITION 10.1. Let Y = U and v: X —» Y be constant. Then, if X is a 
connected locally finite CW complex of 

(i) dimension 1: ir^MiX, U), v) « W i ( Z ) ^ e v e ^ . 

(ii) dimension 2: 7r2i(ikf(X, U), ») « i ? 1 ^ ) (i = 1, 2, . . .) and 
7f2i-i « # 2 ( ^ 0 © ^ (i = 2, 3, . . .) and 0 -> # 2 p O -* tfi -> Z - • 0 w 

exacJ ; 
(iii) dimension 3: 7f2<-i ~ i?2(X) © Z (i = 2, 3, . . .) 

and the sequences 

0 >H\X)^U ^JHUH^X) >0,0 >H\X) >7fx >s >0 

are exact {i = 1, 2, . . . ) ; 
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(iv) dimension 4: the sequences 

are exact (see Figure 10.1). 

1 ,2 , . . . ) 

FIGURE 10.1. E2(X, U, v) 

Proof, (i) follows from Corollary 8.3(iv). (iii) follows from Theorem 8.5 
(Gap Theorem I) with m = 1 and n = k = 3. The sequences 2* for i > 2 are 
as follows: 

0 _*# 2
( x) -^ n ^ ^ ^H\X) d2 *->ff8(Z)-^=fn $2*-2 T^T ^ 2 Ï -2 

2 i -2 > 

^ ( X ) ->0. 

Since 621-1 is induced by dz
y Theorem 6.1 implies that 622-1 = 0 for i = 1, 2, 3, 

. . . H°(X) = Z gives the isomorphism, (ii) follows from (iii) because the 
dimension of X = 2 implies that H3(X) — 0. 

(iv) follows because, for each j = 2i, we have the two-term condition 
{2i, 2i\ 2} and extended two-term conditions on the right and left. This proves 
the proposition. 

Next let Y = O, the infinite orthogonal group. I t is well known that 

n«(0) « iWO) and n0(O) = z2, ni(0) « z2, n2(0) = n4(0) = n5(0) = 
n 6 ( 0 ) = 0, n 3 ( 0 ) « Z « n7(0) . If 0+ is a component of O, then we have the 
following proposition. 
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PROPOSITION 10.2. Let Y = 0+, v: X -> Y be constant, and M = M(X, 0+). 
In addition, let X be a connected, locally finite CW complex of 

(i) dimension 1: then, if Il^ikf, z;) w denoted by ÎÏ], 
Ili+si ~ Z2 , 

n2+8i - fl^x) - n6+8i, 
Il3+8i ~ Z, 

II4+8Ï = II5+8Ï — 0, 

n7+8i =- i ? x ( ^ ; ^2) e z , 
n8 + 8 i - ^ ( X ; z2) 0 z 2 (t = 0 , 1 , 2 , . . . ) . 

(ii) dimension 2: then, 

n1+8i - #2PO e z2 (i = i,2,...), o-+#2(x)-*n!-^z2-+o 

Il3+8i ~ Z, 

n 4 +8i = 0, 

n6+8i = HKX), 

0 -»iî2(Z; Z») -£ n6+84 -^H\X) -> 0 is «seod, 
ns+s^i î 1^;^) e z 2 (* = 0,1,2,...); 

(iii) dimension 3: tfeen 

n1+8J = H2(X) ez 2 (« = i,2,...), o^i?2QO^ni^z2-*o 
is exact, 

n2+8J » 23*(*), 
II34.8Ï ~ Z, 

n4+8i » H3PO. 

tfx(X) £fl*(X;Z,) -£n6 + 8 1^#2(X) -»0 (* = 0,1,...); 
(iv) dimension 4: tfeera 

n w = ffffl®2! (i = i,2,...), o-+iï2(*)-+ni-+22-»o 
is exact, 

n2+8i » fli(z), 
n3+8i - H«(X) e z, 

iï2(X) £fl*(X; Z,) ^ n 4 + 8 i ^ H 3 ( X ) -»0 (* = 0, 1, . . . ) ; 
(v) dimension 5: then 

n1+8j - HKX) ® z2 (* = i,2,...)f o^iï2(x)-*ïwz2-+o 
is exact, 

0 -*H 5 (X) - t fin-sf-^H1^) ->0 (i = 0 , 1 , . . . ) . 
The proof is similar to that of Proposition 10.1 except that any sequence 

involving H°(X; II <(()+)) splits by Theorem 6.4. See Figure 10.2. 
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It 5 
1 2 3 ) + 5 6 7 8 9 10 1 1 1 2 

FIGURE 10.2. E2(X, 0+ , v) 

As an example of Gap Theorem II, we prove 

PROPOSITION 10.3. Let X = CPW, the n-dimensional complex projective space 
(real dim = 2n) and Y = Sm such that m > 2nt then 

(i) rt(M (CPW, Sm), v) = Ofor l < i < m - l - 2 n 
(vacuous if m — 1 — 2n = 0) ; 

(ii) 7 T W _ 2 „ ( M ( C P ^ ) , Z , ) «H*»(CP»); 

(iii) S ^ C P » , 7rw + 2(^)) 4 TTW_2„+2(M(CPW , 5W), v) 

t Z^H2n{C?\ rm+1(S
m)) 4 Tm^n+1(M(CPn, Sm), v)-+0 

is exact (see Figure 10.3). 

J 

2n 

^ 

^A A A A A A 
?V T ? ? ? • 
l \ J_ J_ J 
1 l \ 1 1 1 
1 1 1A A A A 
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1 I l \ l 1 

r "T "r -r: n 
i i i i ^ m i i i i T \ 
i i i i i \ 
i i i i i \ 
i i i i i * w 

t t \ 
p+q - m 

p 

m-2n m-2n+2 

FIGURE 10.3. E2(CPn, Sm, v) 

https://doi.org/10.4153/CJM-1967-116-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-116-6


7T EXACT COUPLES 1287 

Proof. The proposition follows directly from Corollary 9.2, since 2T*(CPn) ~ Z 
for i = 0, 2, 4, . . . , 2n and is zero otherwise. 

As another example, we consider M(C, F), where C is a closed surface. If 
C is orientable of genus p (p = 0, 1, 2, . . .), written 0 ,̂, then 

ff'(o„) -
2j> 

1=1 

0 

a = o, 2), 

( j = 1 ^ = 0 ^ ^ ( 0 0 ) = 0 ) , 

(i > 2). 

If C is non-orientable, then C is either P2 , the two-dimensional projective 
space, with p handles, written Pv

2, or K, the Klein bottle, with p handles, 
written Kv (see (7)). In this case 

ffW) = 

and 

#' ( * , ) = 

z (*' = o), 

®(Z) 
1 

(* = 1). 

z2 (* = 2), 

0 (*' > 2), 

z (* = 0), 
22>+l 

e(£) 
l 

(*" = 1), 

z2 (* = 2), 

0 (* > 2). 

PROPOSITION 10.4. Let C be a closed surface. Then C is a complex of cell type 
{0,1,2}. 

(i) If Y is simply connected, then 

H°(C, TT2(F)) ^H\C, TT3(F)) ^ 7n(ilf(C, Y),v) ^H\C, n(Y))->0. 

(ii) If Y is n-connected for n > 2, /&£?£ 

d: 
<̂ W _ ^W -rjl. 

H\C, xn+1(F)) ^ # Z ( C , xre+2(F)) ^ fn^H\C, ^+1(7)) ->0 , 

ir,(Jlf (C, F), ») = 0 / w 1 < i < « - 2(» > 2) a«d 

fl»(C, xre+1(F)) » T ^ I ( M ( C , F), »). 
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The proof of this is immediate from Gap Theorem II. As an example, let 
(i) Y = S2. Then TT2(52) = Z = TT3(52). Let v: C - > 5 2 be constant. Then 

0 -> Z -> 7n(M(0„ 52), ») -» 0 (Z) - • 0, 
1 

2p 

0 -> Z2 -» TI(M(PP\ 52), ») -> 0 (Z) -> 0, 
1 

2 p + l 

0 -* Z2 -> 7n(ikf (i£„ S2), ») -> 0 (Z) - • 0. 
1 

These groups are usually non-abelian. However, if p = 0, we see that 

TnCikf^2, S2), w) - Z, ^i(ikf(P2, 52), ») - Z2. 

(ii) F = 5 n forrc > 2. Then TTW(5W) « Z, T T ^ + I ^ ) « Z2, and i> the constant 
map implies that 

^ i ( J l f (0 P f S"),iO - 0 (Z) 0 Z2, 
i 

T^iMiP/, ST), v) = e CZ) 0 Z,, 
1 

•KU^{M{PV\ Sn),v) ~Zt, 

irn^{M(Kv, 5 " ) , P ) = 0 (Z) © Z2, 
1 

^ ( M ^ S * ) , » ) - Z2, 

and M(C, Sn) is n — 3 connected. If p = 0, then 

awCMXS2, 5*), v) - Z2 - T T ^ X ^ C P 2 , Sn), v). 

For similar computations, see (1). 
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