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SUMMARY
This paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link
manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations.
It has been shown that the ADRC technique has a very good disturbance rejection capability. Both
the internal dynamics and the external disturbances can be estimated and compensated in real time.
The proposed robust ADRC control law is developed to solve the problems existing in the original
version of the ADRC related to the disturbance estimation errors and the variation of the parameters.
Indeed, these parameters cannot be included in the existing disturbances and then be estimated by
the extended state observer. The proposed control law is based on the sliding mode technique, which
considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is
used to prove the closed-loop stability of the system. The proposed control strategy is simulated and
tested experimentally on one FLM. The effect of the observer bandwidth on the system performance
is simulated and studied to select the best values of the bandwidth frequency. The simulation and
experimental results show that the proposed robust ADRC has better performance than the traditional
ADRC.

KEYWORDS: Flexible link manipulator; Extended state observer (ESO); Sliding mode; Active
disturbance rejection control (ADRC); Stability.

1. Introduction
Modeling and control of flexible link manipulators (FLMs) have attracted much attention due to the
potential advantages of the flexibility in the arms. The structural flexibility has many advantages over
heavy and rigid structure such as lower energy consumption, small actuators to move the link and
higher payload to robot weight ratio. The control of the FLMs has many challenges because of the
link’s flexibility, such as non-minimal phase nature and under-actuation. The non-minimum phase
nature occurs due to the non-collocation of actuators and sensors while the under-actuation occurs
because of finite number of actuators and infinite degrees of freedom to be controlled. Many clas-
sical theories are considered to control a FLM such as optimal control,1 robust control,2 feedback
linearization,3 inverse dynamics4 and singular perturbation theory,5, 6 distributed and hierarchical
control.7, 8 Most of the previous and existing control strategies are based on a mathematical descrip-
tion of the robot. However, many real systems are highly uncertain and the accurate mathematical
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model is usually not available. This creates a dilemma for control design about the possibility
to handle these disturbances. Most of the existing methods proposed the disturbance attenuation
techniques to solve this problem. Less-known solutions are proposed to estimate and cancel the
disturbance directly. Many disturbance estimators have been presented in the literature such as dis-
turbance observer,9 unknown input observer,10 perturbation observer11 and extended state observer
(ESO).12, 13 Based on the ESO, a new algorithm called “Active Disturbance Rejection Control”
(ADRC) has been developed.12 The main idea of this control strategy is to actively estimate and
compensate the unknown dynamics and the disturbances. In addition, it requires very little informa-
tion about the plant. Then the controller uses the information needed from the ESO to control the
system instead of being dependent on the mathematical model. For FLM, the strategy consists in
developing a chain of two integrators supported by a new control variable and a total disturbance
from the conventional model of the manipulator. The total disturbance contains the coupling terms,
depending on the flexible and rigid parts of the FLM. Then the proposed control law compensates
the existing disturbance to perfectly track the desired trajectories. Consequently, the control input
can be considered as a combination of a nonlinear function of the additional state and the auxiliary
input. If the uncertainties are negligible, this nonlinear function, which describes the disturbance,
can be easily compensated. However, for the FLM, the state-feedback technique suffers from the
uncertainties on both the motion equations and their parameters. In order to overcome this prob-
lem, the ADRC can be used to actively estimate this disturbance via ESO and compensate for it
later by a feedback controller. In fact, the model of the manipulator has led to an augmented model.
The last equation of this augmented model consists of the dynamics of the total disturbance, while
the remaining equations represent a chain of integrators. Usually, in the classic feedback linearization
technique, the function describing the disturbance is assumed to be known. For this reason, the ADRC
technique is viewed as a “robust version” of the feedback linearization approach against unmod-
eled dynamics and parameter uncertainties. The ADRC technique has been successfully applied for
different systems such as magnetic bearing systems,14 flywheel energy storage systems15 and con-
trol of DC motor.16 In the context of the industry applications, a case study was presented in ref.
[17] to show the advantage of ADRC over the industry standard solutions based on Proportional
Intergral Derivative (PID) controller. ADRC algorithm was used by Parker Hannifin Extrusion Plant
in North America in the U.S., bringing about 57% of energy saving per line across 10 production
lines.18 Texas Instrument, an industry giant, has authorized the ADRC technology in anticipa-
tion of a massive rollout of another age of control chips within which the ADRC algorithms are
embedded.

Few applications of the ADRC to robotics have been reported in the literature. The ADRC was
developed in ref. [19] for a flexible joint manipulator in order to limit the effects on the system
caused by the nonlinear behavior. In ref. [20], the authors applied the ADRC technique to track the
human gait trajectory for a lower limb rehabilitation exoskeleton. It was also applied to an selec-
tively compliant assembly robot arm (SCARA) robot manipulator to track the desired trajectory in
the joint space.21 Compared to the feedback linearization control technique, ARDC provides smaller
tracking error. In ref. [22], the ADRC was proposed for a mobile robot to track a predefined ref-
erence. Nevertheless, the ADRC strategy is not reported to be applied in the development of the
FLM controllers. As mentioned, the control of FLM is challenging, due to distributed link flexibility,
which makes the system non-minimum phase, under-actuated, infinite dimensional and with complex
dynamics.

In this paper, an advanced version of the ADRC technique called robust ADRC is applied to FLM
in order to track the desired trajectories in the joint space and to minimize the vibration of the links.
The disturbances existing in the dynamics are estimated online through an ESO. Then the ADRC
control law is derived using the estimated disturbance. The original version of the ARDC suffers
from two major problems related to the disturbance estimation errors and parameter variations which
cannot be included in the disturbances and then estimated by the extended observer. Usually, the
estimation errors of the total disturbance are neglected and parameter variations of the control input
are not considered. To solve such critical aspects, an advanced robust ADRC is proposed using slid-
ing mode technique. The proposed control strategy consists of three main steps. First, an extended
model is constructed from the original dynamic model of the FLM. An additional state variable that
represents the total disturbances is added to the extended model. Second, the total disturbances are

https://doi.org/10.1017/S026357471900050X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471900050X


120 Robust active disturbance rejection control for FLM

Fig. 1. Single flexible link manipulator.

estimated online through the ESO. Finally, the control law is designed to cancel the total distur-
bance in order to track the joint space desired trajectories and minimize link’s vibration. A rigorous
Lyapunov-based analysis is presented to analyze the stability of the closed loop system. The pro-
posed ADRC control strategy is then tested on one FLM by means of numerical simulations and
experiments. It has shown that the proposed ADRC has a better performance than the classic ADRC
in terms of the trajectory tracking error.

The rest of the paper is organized as follows: The modeling and the description of the FLM are
given in Section 2. The robust ADRC strategy is given in Section 3, which includes the ESO and
control law. Section 4 presents the simulation results and discussion. The experimental results are
given in Section 5. Finally, the conclusion is given in Section 6.

2. Dynamic Model of FLM
The knowledge of the dynamic model of an FLM, shown in Fig. 1, is needed for the design of
the controller. A recursive Lagrangian assumed modes method has been developed by Book23–25 to
develop the mathematical model of the FLM. This method is applicable to revolute-joint robots and
gives the following dynamic equations:

M(q)q̈ + C(q, q̇)+ Kq = Bτ (1)

where M and K are the positive definite inertia and stiffness matrices, respectively, C(q, q̇) is the
vector of Coriolis and centrifugal terms, q is the vector of generalized coordinates (joint positions
and deflection coordinates), B is a constant matrix which depends on the shape functions used, and
τ is the vector of input torques.

The deflection y(x, t) of each point on link can be described as follows:25

y(x, t)=
∑m

j=1
ϕj(x)qf j(t) (2)

where ϕj is the jth shape function. Throughout this paper, the angle of the motor θ(t) is denoted as
qr(t), the rigid part, while the flexible part is denoted as qf . Then, the total generalized coordinate is

q = [
qr qf

]T
. One FLM and only the first two modes ϕ1 and ϕ2 are considered in this paper. Thus,

M and K ∈R3×3, q and C ∈R3×1, τ ∈R and B = [
1 0 0

]T
.

The model dynamics (1) has the following properties:

1. The matrix M is symmetric and positive definite.
2. The matrix Ṁ − 2C is a skew-symmetric matrix[

It Mr f
T

Mr f Mf f

]
︸ ︷︷ ︸

M(q)

[
q̈r

q̈f

]
︸ ︷︷ ︸

q̈

+
[

0 0
0 Kf f

]
︸ ︷︷ ︸

K

[
qr

qf

]
︸ ︷︷ ︸

q

+
[

2q̇rqT
f Crrq̇f

−q̇2
r Crrqf

]
︸ ︷︷ ︸

C(q,q̇)q̇

=
[

1
0

]
τ (3)
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where

It = IM + 1

3
ρL3 + Ic + Mc(L + rc)

2 : the total inertia.

Mr f =
∫ L

0
ρxϕdx + Mc (L + rc) ϕL + (

Ic + Mcrc (L + rc)
)
ϕ′

L : coupling term in M

Mf f = ρ

∫ L

0
ϕTϕdx + McϕLϕ

T
L + (

Ic + Mcr2
c

)
ϕ′

Lϕ
′T
L + Mcrc

(
ϕ′

Lϕ
T
L + ϕLϕ

′T
L

) : flexible part in M.

Crr = ρ

∫ L

0
ϕTϕdx + McϕL∅T

L + Mcrc

(
ϕ′

Lϕ
T
L + ϕLϕ

′T
L

)
−

∫ L

0
x
∫ x

0
ϕ′ϕTds dx :

−Mc (L + rc)

∫ L

0
ϕ′ϕ′Tdx − McrcLϕ′

Lϕ
′T
L

Kf f = EIz
∫ L

0 ϕ
′′Tϕ′′dx is the flexible part of K and ϕ = [

ϕ1 ϕ2
]T

, the shape function, solution of
the following equation:25

ϕi(x)= ai

[
λ3

i

(
cos

(
λix

L

)
− cosh

(
λix

L

))
+ ci

(
sin

(
λix

L

)
− sinh

(
λix

L

))]
(4)

where ai are constants and λi are the solutions of the following characteristic equation:

det(A)= A11A22 − A21A12 (5)

where

A11 =μ2λ
4(−C + Ch)+μ4λ

5(−S + Sh)+ λ3(−S + Sh)

A12 = (C + Ch)+μ2λ(−S + Sh)+μ2λ
2(−C + Ch)

A21 = − (μ1 +μ5) λ
6(S + Sh)+ λ3(C + Ch)+μ4λ

5(C − Ch)

A22 = (S + Sh)+ (μ1 +μ5) λ
3(C − Ch)+μ4λ

2(S − Sh)

and μ1 = Ic

ρL3
, μ2 = Mc

ρL
, μ4 = Mcrc

ρL2
, μ5 = Mcr2

c

ρL3
et λ= βL

C = cos λ, S = sin λ, Ch = cosh λ et Sh = sinh λ
L is the length of the flexible link.
ϕL is the shape function defined at the extremity of the link, ρ is the mass density, L is the link

length, Mc is the tip mass and rc is the payload center of mass.

3. Robust ADRC for FLM
The FLM is an under-actuated, non-minimum phase and highly nonlinear system which makes its
control a challenging task. The model-based approach is dependent on the accuracy of the mathe-
matical model, while the standard PID or any model-free approach has limitations in dealing with
problems with disturbances. Our goal is to develop a robust controller based on the ADRC technique
that is capable to estimate unknown knowledge of the manipulator and eliminate its effect in the
control law in order to achieve a good tracking of the desired trajectory and to minimize the link’s
vibration.

The dynamical equations of the robot can be viewed as two interconnected subsystems, rigid and
flexible part, as follows:[

Mr Mr f

Mfr Mf

] [
q̈r

q̈f

]
+

[
Cr(q, q̇)

Cf (q, q̇)

]
+

[
0 0
0 Kf

] [
qr

qf

]
=

[
1
0

]
τ (6)
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122 Robust active disturbance rejection control for FLM

The dynamic model (6) can be written in terms of two equations:

Mrq̈r + Mr f q̈f + Cr = τ (7)

Mfrq̈r + Mf q̈f + Cf + Kf f qf = 0 (8)

From Eq. (8), q̈f can be expressed as follows:

q̈f = −M−1
f

[
Mfrq̈r + Cf + Kf qf

]
(9)

Inserting Eq. (9) in Eq. (7), the dynamic model can be written as

M∗
r q̈r + C∗

r + K∗
f qf = τ (10)

where M∗
r = Mr − Mr f M

−1
f Mfr; C∗

r = Cr − Mr f M
−1
f Cf ; K∗

f = −Mr f M
−1
f Kf .

The ADRC approach unfolds into three main steps: (1) construction of an extended model from
the original dynamic model. The extended model includes an additional state variable representing
the external disturbances and nonlinearities. (2) Estimation of the states using ESO. (3) The design
of the control law that tracks the desired trajectories and to minimize the link’s vibration.

3.1. Extended model for FLM
The extended model is obtained from the final equation of motion (10), where the input is the torque
τ and the output is the generalized coordinate q. Equation (10) can be expressed as

q̈r = −M∗−1
r

(
C∗

r + K∗
f qf

)+ M∗−1
r τ (11)

By defining the state variables x1 = qr and x2 = q̇r, the state space model can be written as follows:{
ẋ1 = x2

ẋ2 = f + bu
(12)

where f = −M∗−1
r

(
C∗

r + K∗
f qf

)
; b = M∗−1

r and u = τ . Let us define an extra state, representing the

total disturbance x3 = f , the augmented state space is given as follows:⎧⎨
⎩

ẋ1 = x2

ẋ2 = x3 + bu

ẋ3 = h
(13)

where h = ḟ .
Note that the objective of the ADRC technique is to obtain proper estimation, to minimize the total

disturbance and to obtain a good trajectory tracking. The traditional ADRC control law is given by12

u = 1

b̂
(−x̂3 + u0) (14)

where u0 is the auxiliary control variables given from a feedback controller. x̂3 is the estimate of x3.
The type of controller in ADRC should ensure the closed loop stability of the system.

The estimation of the total disturbance f (namely x̂3) is obtained via the ESO technique.
Note that the model (13) is an extended dynamic model. This extended model is used to

estimate the total disturbance f . Model (12) represents a different way to describe the model (11)
as well as the original models (6) and (1). This transformation to the extended model is required
to linearize the model of the FLMs using a state feedback approach. The theory of the feed-
back linearization for nonlinear system transforms the nonlinear behavior to chain of integrators.
Unfortunately, this technique is sensitive to the parameter variations. In order to overcome this limi-
tation, the authors propose a robust controller to deal with the parameter uncertainties and the torque
disturbances by using sliding mode technique in the control law.
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3.2. ESO for FLM
The ESO of extended model is used to estimate the total disturbance f . With u and x1 as inputs, the
ESO is given as follows: ⎧⎪⎨

⎪⎩
˙̂x1 = x̂2 − g1 (e1)

˙̂x2 = x̂3 − g2 (e1)+ bu
˙̂x3 = −g3 (e1)

(15)

where e1 = x̂1 − x1 is the estimation errors; gi (.) i = 1, 2, 3, is chosen to be linear or nonlinear
function. The error dynamics can be described as follows:⎧⎪⎨

⎪⎩
ė1 = ˙̂x1 − ẋ1 = x̂2 − g1 (e1)− x2 = e2 − g1 (e1)

ė2 = ˙̂x2 − ẋ2 = x̂3 − g2 (e1)+ bu − x3 − bu = e3 − g2 (e1)

ė3 = ˙̂x3 − ẋ3 = −g3 (e1)− ḟ

(16)

In this paper, we focus on linear ESO, that is, gi (e1)= αie1, where i = 1, 2, 3. αi is a positive
constant. The error dynamics (16) can be expressed in the following state space:⎧⎨

⎩
ė1 = e2 − α1e1

ė2 = e3 − α2e1

ė3 = −ḟ − α3e1

(17)

In a compact form, Eq. (17) can be given as follows:

ė = Ae + Bḟ (18)

where A =
⎡
⎣−α1 1 0

−α2 0 1
−α3 0 0

⎤
⎦ and B =

⎡
⎣ 0

0
−1

⎤
⎦.

Assuming that ḟ is bounded
∣∣ ḟ
∣∣≤ Mf and A is a Hurwitz matrix, the error dynamics is exponentially

stable.26

For the purpose of tuning simplification, all the observer poles are placed at −ω0. The parameter αi

is computed such that the matrix A is Hurwitz, that is, the real part of the eigenvalues of A is negative.
The observer gains can be determined according to the characteristic polynomial.12

s3 + α1s2 + α2s + α3 = (s +ω0)
3 (19)

where ω0 is the observer bandwidth and α = [
3ω0 3ω2

0 ω
3
0

]T
.

The observer bandwidth should properly be selected in a trade-off between the tracking perfor-
mance and the noise tolerance, because a larger observer bandwidth increases the accuracy of the
estimation and at the same time will increase noise sensitivity. The simulation results are given in
Section 4 for different values of ω0 in order to select the best value to be used for the ADRC.

3.3. Design of the control law
One ideal candidate in the control theory is the ADRC, which has a very good disturbance rejection
capability. Both the internal dynamics and the external disturbances can be estimated and compen-
sated in real time. Unfortunately, two major limits have to be addressed in order to improve the
robustness of the ADRC technique. First, the occurrence of estimated error of the total disturbance
f , which can harm the performance of the ADRC. The second limit is related to the uncertainty of
the systems parameters in the control gains b = M∗−1

r . To the best of the authors’ knowledge, these
issues have not been addressed previously for robotics systems.

For the first problem, the estimation error can occur because the estimate of the disturbances
x̂3 is based on the rigid and flexible generalized coordinate q, which is affected by uncertainties.
This uncertainty is due to the fact that the estimation of the disturbances depends on the position
of the velocity of the rigid and flexible parts and both of these signals are affected by uncertainties.
Indeed, the velocity measurement q̇ is corrupted by noise and the position q, which is estimated by
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124 Robust active disturbance rejection control for FLM

an observer depending on the correctness of the adopted rigid and flexible generalized coordinate. As
a conclusion, the estimate of the ESOs will be affected by errors, because these signals are affected
by errors. As shown in (18), the convergence of the ESO is not related to the model parameter, which
confirms the robustness of the ESO. However, the rigid coordinate x1, represents the measured signal
and if it is affected by errors, for sure x̂1 will not converge to the true value. Since x2 and x3 are
derived from x1 and x̂1, they will also be affected by error. In addition, the parameter b appears in
the control gain (12), which depends on the inertia that can vary when the load is either mounted
or disconnected. Thus, the parameter b is affected by uncertainties that cannot be included in the
disturbance and consequently cannot by estimated by ESO.

It is possible to estimate the disturbance f , namely x3, using the extended model (13). Let us
consider the parameter b affected by uncertainties and it varies between a minimum value bm and a
maximum value bM , that is, b ∈ [bm, bM] and the rated (nominal) value is b̂ = √

bmbM.
27 Using the

extended model (13) and the control input (14), the controlled model becomes{
ẋ1 = x2

ẋ2 = f − b
b̂
x̂3 + b

b̂
u0

(20)

Equation (20) is equivalent to {
ẋ1 = x2

ẋ2 = η+ b
b̂
u0

(21)

where η= f − b
b̂
x̂3 is the new disturbance.

The knowledge of b
b̂

is required in order to estimate η via ESO technique. Since b
b̂

is unknown, the
disturbance η cannot be compensated. In order to overcome the two aforementioned issues, consider
the following assumption that is useful for the development of the new control law based on sliding
mode control.

A1. The estimation error of the total disturbance x̂3 = f̂ is bounded:∣∣∣ f̃
∣∣∣≤ εf̂ (22)

where f̃ = f − f̂
A2. The parameter b is uncertain and varies between its minimum and maximum values bm and

bM , such that

1

β
≤ b

b̂
≤ β (23)

where b̂ = √
bmbM and β = √

bM/bm.
The proposed control law is given as follows:

τ = u = 1

b̂

[
−β−1 (ε+ 1) f̂ + u0 + λ ˙̃qr − Ks sign(s)

]
(24)

where u0 = β−1
(

q̈rd − λ ˙̃qr + (β − 1)Ks sign(s)
)

; s = ˙̃qr + λq̃r; q̃r = qr − qrd and Ks is positive

parameter gain.

Remark 1. Note that, in the traditional ADRC, the estimation errors and the uncertainties in the
control gain b are not considered ( f = f̂ and b = b̂). In the proposal robust control strategy, we can
easily switch to the traditional ADRC by using f − f̂ = 0, β = 1 (bm = bM, i.e., b = b̂) and Ks = 0.

For the stability analysis, let us propose the following Lyapunov function:

V(t)=1

2
s2 (25)
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Take the time derivative of V to get

V̇(t)= sṡ

= s
( ¨̃qr + λ ˙̃qr

)
= s

(
q̈r − q̈rd + λ ˙̃qr

)
= s

(
−q̈rd + f + bu + λ ˙̃qr

)
= s

(
−q̈rd + λ ˙̃qr + f + b

b̂

[
− (
β−1 + εβ−1

)
f̂ + u0 − Ks sign(s)

])

= s

(
−q̈rd + λ ˙̃qr + f̃ + f̂ + b

b̂

[
− (
β−1 + εβ−1

)
f̂ + u0 − Ks sign(s)

])

= s

(
−q̈rd + λ ˙̃qr + f̃ + f̂ − b

b̂

(
β−1 + εβ−1

)
f̂ + b

b̂

[
u0 − Ks sign(s)

])

= s

(
−q̈rd + λ ˙̃qr + f̃ + f̂ − b

b̂

(
β−1 + εβ−1

)
f̂ + b

b̂
β−1q̈rd − b

b̂
β−1λ ˙̃qr

+b

b̂
β−1 (β − 1)Ks sign (s)− b

b̂

[
Ks sign(s)

])

= s

(
−q̈rd + λ ˙̃qr + f̃ + f̂ − b

b̂

(
β−1 + εβ−1

)
f̂ + b

b̂
β−1q̈rd − b

b̂
β−1λ ˙̃qr − b

b̂
β−1Ks sign (s)

)

= b

b̂
β−1s

([
−q̈rd + λ ˙̃qr + (1+ε) f̂

] (b

b̂
β−1

)−1

− (1+ε) f̂ + q̈rd − λ ˙̃qr − Kssign (s)

)

= b

b̂
β−1s

([
−q̈rd + λ ˙̃qr + (1+ε) f̂

] (
β

(
b

b̂

)−1

− 1

)
− Ks sign (s)

)

For a system to be stable, the outputs should be bounded; that is, |q̈rd|<Qd,

∣∣∣ ˙̃qr

∣∣∣<ψr,

|s| ≤ S and
∣∣∣ f̂
∣∣∣<F, where Qd, ψr and F are some positive values. Defining Ks to be Ks = b

b̂
β−1,

V̇(t) becomes,

V̇(t)≤
∣∣∣∣1−b

b̂
β−1

∣∣∣∣ |s| (|q̈rd| + λ

∣∣∣ ˙̃qr

∣∣∣+ (1+ε)
∣∣∣ f̂

∣∣∣)− Ks

If Ks is chosen to be large enough such as∣∣∣∣1−b

b̂
β−1

∣∣∣∣ S (Qd + λψr + (1+ε) F)≤ Ks (26)

Then, V̇ becomes

V̇(t)≤ 0 (27)

Using Eq. (26), we can conclude that the time derivative of V(t) is negative. By Eq. (27), V is
monotonously decreasing. Therefore, s ∈ L∞. According to the definition of the sliding surface s
after Eq. (24), we know that q̃r and ˙̃qr are bounded and uniformly continuous. Then using Barbalat
lemma,27 we can conclude that the closed loop system is asymptotically stable.

4. Simulation Results
The proposed ADRC for FLM is shown in Fig. 2. The ESO is used to estimate existing disturbances
for the joint and the flexible link, where qd is the desired trajectory of the rigid and flexible link. The
outputs of the ESO are q̂ and ˙̂q, while τ0 is the output of the ADRC. Two simulations are carried out
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Table I. Nominal parameters.

Parameters Nominal value

Motor inertia (Im) 0.02 kg m2

Beam length (L) 1 m
Beam linear density (ρ) 0.62 kg/m
Beam rigidity (EIz) 12.85 N m2

Payload mass (Mc) 0.3 kg
Payload inertia (Ic) 0 kg m2

Payload center of mass (rc) 0 m

Table II. Root mean square error between desired and measured states for different ω0 values when f = f̂

and b = b̂.√
∑(

qidesired
− qimeasured

)2

n × 103 in rad for ω0=

qi 0–20 150 160 170 180 190 200 210 220 230 240 250 260

qr No Tracking 183.2 183.2 183.1 183.1 183.1 183.0 183.0 183.0 182.9 182.9 182.8 1267.7
qf1 8.7 8.7 8.7 8.6 8.6 8.5 8.5 8.5 8.5 8.5 8.4 64.5
qf2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.4

Table III. Root mean square error between estimated and measured states for different ω0 values when f = f̂
and b = b̂.√

∑(
qiestimated

− qimeasured

)2

n in rad for ω0 =
qi 0 150 160 170 180 190 200 210 220 230 240 250 260

qr No 31 24 19 15 12 5.3 12 7 5.1 3.5 1.1 0.28
Tracking ×10−6 ×10−6 ×10−6 ×10−6 ×10−6 ×10−6 ×10−6 ×10−6 ×10−6 ×10−6 ×10−6

0

−

2

3

Desired 
trajectories

Feedback
controller

1 Flexible link
manipulator

ESO

Fig. 2. Block diagram of the ADRC technique.

in MATLAB/Simulink, one without estimation errors and uncertainties in the control gain b ( f = f̂
and b = b̂) and the other when f 
= f̂ and b 
= b̂. The external disturbance is generated randomly
by using the function “randn” in MATLAB. The ESO can estimate the system state and the “total
disturbance” in real time based on the ADRC. The choice of the bandwidth ω0 has a significant effect
on the tracking performance. This effect can be observed on the convergence rate between the real
states and the estimated states, and the overall performance can be observed as the system states
converge to the desired states. The nominal values of one FLM are given in Table I and Figure 3,

Tables II and III describe the system performance when f = f̂ and b = b̂.
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Fig. 3. The effect of ω0 on the performance of the controller when f = f̂ and b = b̂.

Tables II, III and Fig. 3 show that for very small value of ω0, ω0 < 100, the estimated states con-
verged slowly toward the measured states, and the overall performance was smooth but with high
error values. When the value of ω0 increased, the estimated states started to converge faster toward
the measured states, and the overall performance became better as the error became smaller. After
increasing the values of ω0 above certain limit ω0 > 260, the convergence rate between the esti-
mated states and the measured states became faster and faster. However, the error started to increase
and chattering was observed. The reason of this is that the system becomes more sensitive to the
noise and uncertainties. Therefore, the value of ω0 should be chosen carefully; large value results
in fast convergence with chattering and more sensitivity to uncertainties, and low value results in
smooth performance with slow convergence and more error. According to the results, the best value
of ω0 = 250.

Now after fixing the value of ω0 = 250, let check the performance of the controller. Two cases
are studied here. First, without estimation errors in f or uncertainties in the control gain b, that is,
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Table IV. Root mean square error between desired and measured states for different Ks values, when f = f̂
and b = b̂.√

∑(
qidesired

−qimeasured

)2

n in µrad for Ks =
qi 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026 0.194 0.196 0.198

qr 35.48 35.53 35.49 35.49 35.25 35.39 35.56 35.35 35.60 51.78 50.02 49.91
qf1 77.74 77.74 77.75 77.78 77.88 77.80 77.81 77.80 77.89 84.15 84.45 85.07
qf2 1.640 1.650 1.650 1.660 1.660 1.660 1.680 1.670 1.680 3.410 3.180 3.330

Fig. 4. The effect of Ks on the performance of the controller when f = f̂ and b = b̂.

the values of f̂ and b̂ are equal to their actual values f and b, respectively. Second, when we have
estimation errors in f and uncertainties in the control gain b ( f 
= f̂ and b 
= b̂).

The simulation results for the first case when f = f̂ and b = b̂ are given in Table IV and Figs. 4–7.
Table IV shows the root mean square error (RMSE) between desired and measured states for different
Ks values to select the best value. Figure 4 presents the tracking error for rigid and flexible coordinate
for three different values of Ks (0.002, 0.018 and 0.198) to show the performance of the controller.

Figure 4 and Table IV show the effect of the discontinuous gain on the system when estima-
tion errors or uncertainties are negligible. It is obvious that when increasing the gain, the system
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Table V. The comparison between the proposed robust ADRC and the traditional ADRC, when f = f̂
and b = b̂.

Robust ADRC Traditional ADRC

MAE RMSE OS (%) ST (s) |SSE| MAE RMSE OS (%) ST (s) |SSE|
(rad) (rad) (rad) (rad) (rad) (rad)

qr 9 × 10−3 4 × 10−5 0.0 6.02 2 × 10−4 0.9 5 × 10−1 0.1 6.4 3 × 10−5

qf1 1.7 × 10−2 7 × 10−5 – – 1 × 10−4 6 × 10−2 1 × 10−2 – – 2 × 10−5

qf2 4 × 10−4 1.7 × 10−6 – – 3 × 10−5 1 × 10−3 2 × 10−4 – – 1 × 10−7

Fig. 5. The performance of the proposed robust controller when f = f̂ and b = b̂: (a) is the state qr desired versus
measured, (b) the error in qr, (c) is the state qf 1 desired versus measured, (d) the error in qf 1, (e) is the state qf 2
desired versus measured and (f) the error in qf 2.

becomes more stable and the errors are reduced (up to Ks = 0.018). However, chattering presents
where the response oscillates several times and the system vibrates. Keep increasing the gain, the
system performance become worse and its stability is affected.

The proposed robust control strategy is compared with the traditional ADRC. The simulation
results with the traditional ADRC are given in Fig. 6.

Table V shows the comparison between the proposed robust ADRC and the traditional ADRC in
terms of maximum absolute error (MAE) obtained, the RMSE, the overshoot (OS), the settling time
(ST) and the steady state error (SSE).

Figures 5 and 6 and Table V show a comparison between the proposed robust ADRC, with Ks

value = 0.018, and the traditional ADRC. Now, let us move to the case when the estimation error
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Table VI. The parameters of the proposed robust ADRC, when f 
= f̂ and b 
= b̂.

Robust ADRC

MAE (rad) RMSE (rad) OS (%) ST (s) |SSE| (rad)

qr 7 × 10−3 4 × 10−5 0.0 6.02 2 × 10−5

qf1 1.6 × 10−2 7 × 10−5 – – 8 × 10−4

qf2 3 × 10−4 1.7 × 10−6 – – 4 × 10−5

Fig. 6. The performance of the ADRC when f = f̂ and b = b̂: (a) is the state qr desired versus measured, (b) the
error in qr, (c) is the state qf 1 desired versus measured, (d) the error in qf 1, (e) is the state qf 2 desired versus
measured and (f) the error in qf 2.

of f and the uncertainties in b are considered as f 
= f̂ and b 
= b̂, respectively. The simulations are
done with ε= 1; bM = 10; bm = 5 × 10−3; λ= 0.1 and Ks = 0.018. Figure 7 shows the tracking
trajectories as well as their tracking errors. Table VI shows the MAE, RMSE, OS, ST, and SSE for
the proposed controller when f 
= f̂ and b 
= b̂.
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Fig. 7. The performance of the proposed robust controller when f 
= f̂ and b 
= b̂.

Figures 5 and 6 and Table V show a comparison between the proposed controller and the tra-
ditional ARDC. It has been found that the robust ADRC has a superior performance compared to
traditional ADRC in terms of MAE, RMSE, OS, and ST. On the other hand, traditional ADRC has a
lower SSE compared to the proposed robust ADRC, and that occurs because the robust ADRC has
the discontinuous gain, which causes a chattering around the final value.

After injecting uncertainties in the system; that is, f 
= f̂ and b 
= b̂, the performance was monitored
by Fig. 7 and Table VI. They show that the performance will not be affected that much. However,
chattering is reduced and therefore the errors become smaller.

The proposed ADRC is compared with a well-known computed torque approach28 using the
following control law:

τ = M∗
r u + C∗

r + K∗
f qf (28)

where u = q̈r + Kdc
˙̃qr + Kpcq̃r. q̃r = qr − qrd; Kdc and Kpc are positive parameters gains.

The simulation results using the computed torque approach are given in Fig. 8. The parameters
used for the computed torque approach are Kpc = 80 and Kdc = 20. The simulation results using
computed torque technique show a good tracking but with tracking errors higher than the proposed
ADRC technique, which prove the effectiveness of the ADRC approach.
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Fig. 8. The computed torque approach.

Fig. 9. Single FLM (Quanser FLEXGAGE).

5. Experimental Results
The proposed robust ADRC scheme has been tested experimentally on a single FLM. A photograph
of the flexible robot manipulator is shown in Fig. 9. The flexible link robot is a Quanser FLEXGAGE,
consisting of the SRV02 Rotary servo base unit and thin stainless-steel beam with strain gauge. The
base of the flexible link is mounted on the load gear of the SRV02 system. The servo angle, θ ,
increases positively when it rotates counter-clockwise (CCW). The servo (and thus the link) turns
in the CCW direction when the control voltage is positive, that is, Vm > 0. For the flexible link, the
gauge is calibrated to output 1 V per inch of tip deflection.

The experimental setup of the flexible-link robot manipulator is shown in Fig. 10. The typical con-
nections used to connect Matlab/Simulink with the flexible link plant to a data-acquisition board and
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Fig. 10. Experimental setup.

MATLAB/Simulink
Desired trajectories

Q8 Acquisition card 

VoltPAQ -X4 Amplifier

Encoder

Motor angle

Strain gauge

Link deflection

Fig. 11. Flowchart of real time setup.

a power amplifier are given in Fig. 11. It consists of a Q8 terminal board, a DAQ system, sensors such
as strain gauges and encoder. The proposed controller is tested in real time using Workshop (RTW)
of Mathworks. The experimental results are obtained with ε= 0.8; bM = 10; bm = 5 × 10−3; λ= 0.2
and Ks = 0.04.

The experimental results using the proposed robust ADRC technique are given in Fig. 12.
The experimental results using the robust ADRC technique, shown in Fig. 12, show a good track-

ing of the desired trajectories. For the rigid part, Fig. 12(a) shows a good tracking in the joint space
and this is confirmed by the tracking error given in Fig. 12(d). For the first and the second mode of
the flexible part, Fig. 12(b) and (c) show the tracking trajectories while Fig. 12(e) and (f) show the
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Fig. 12. Experimental results using robust ADRC technique. (a) Tracking trajectory of the rigid part qr,
(b) tracking trajectory of first flexible mode qf 1, (c) tracking trajectory of second flexible mode qf 2, (d) tracking
error of qr, (e) tracking error of qf 1 and (f) tracking error of qf 2.

associated tracking error. The results show that the tracking errors obtained with the proposed robust
ADRC technique are less than 1 deg for the rigid part and close to zero for the flexible part, which
is widely tolerable in a lot of practical applications of this kind of systems. Finally, according to
these experimental results, we can conclude the effectiveness and good performance of the proposed
control strategy.

6. Conclusion
This paper proposed an advanced version of the traditional ADRC strategy applied to FLM. First,
the model dynamics of the FLM has been rewritten to take the general form of the traditional ADRC.
Then, a robust control technique is designed to overcome two serious limits of the traditional ADRC
such as the uncertainty in the knowledge of the control gains; and the presence of the estimation
error of the total disturbance which can deteriorate performance of the ADRC. The proposed robust
ADRC control law is based on sliding mode technique to solve the problem of the uncertainties
and the estimation error. Lyapunov theory has been used to prove the stability of the error dynam-
ics. The proposed robust ADRC was tested experimentally and via numerical simulation on a single
FLM. The simulation and experimental results show the effectiveness of the robust ADRC, especially
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when the system parameters variation and estimation error exist. The effect of the observer band-
width on the system perform has been simulated and studied to select the best values. A comparison
with the tradition ADRC shows the effectiveness of the good performance of the proposed robust
ADRC.
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