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THE TENSOR PRODUCT FORMULA 
FOR REFLEXIVE SUBSPACE LATTICES 

K. J. HARRISON 

ABSTRACT. We give a characterisation of L\ ® LQ_ where L\ and Li are subspace 
lattices with L\ commutative and either completely distributive or complemented. We 
use it to show that Lat(-#j ® J%2) = L a t ^ ® Lat -#2 if ft\ is a CSL algebra with a 
completely distributive or complemented lattice and ty is any operator algebra. 

1. Introduction. The algebra tensor product formula (ATPF): 

(ATPF) Alg(A ® LÏ) = AlgX!® Alg A . 

for reflexive operator algebra has been studied in a series of papers [3], [5], [6], [7], [8], 
and [9]. Although not universally valid [10], the ATPF has been shown to hold in various 
circumstances. If L\ and Li are both orthocomplemented then Alg L\ and Alg Li are 
von Neumann algebras, and in these circumstances the ATPF is a formulation of Tomita's 
commutation theorem. The formula also holds if one of the subspace lattices L\ or Li is 
commutative and completely distributive [9]. 

The dual equation is the lattice tensor product formula for reflexive subspace lattices 
(LTPF): 

(LTPF) Lat(.#i <g>^) = Lat A x <g> Lat A2. 

The validity of the LTPF has been established only in special cases. It holds, for example, 
if J?i and -#2 are both CSL algebras and Lat-^i is completely distributive [9], or if A\ 
and J?2 are both approximately finite-dimensional von Neumann algebras [4], or if JA\ 
is a CSL algebra and Lat Ji\ is a nest or is totally atomic and &2 consists of just scalar 
multiples of the identity [4], The main obstacle preventing more general results is the 
difficulty in determining L\® £4, except in a few special cases. In this paper we obtain 
a tractable description of L\ ® £% when L\ is completely distributive and commutative, 
and use it to extend the known validity of the LTPF. 

We consider only separable Hilbert spaces, bounded linear operators and orthogonal 
projections. For any set J? of operators on a Hilbert space 9i, Lat Si denotes the set of all 
projections left invariant by each,4 G SA. Each Lat .# is a subspace lattice, i.e. a strongly 
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closed, complete sublattice of Proj^TT), the lattice of all projections on 9{. For any set 
L of projections on !H9 Alg L denotes the set of all operators which leave invariant each 
PEL. Each Alg L is an operator algebra, i.e. a weakly closed subalgebra of #(.?/). We 
say that A is reflexive if SI = Alg Lat JÏ, and that L is reflexive if L = Lat Alg L. 

Suppose that Jfy is an operator algebra and Li is a subspace lattice on a Hilbert space 
^£, for / = 1 and 2. The tensor product J%\ ® J%2 is the operator algebra on 9{\ ® H2 
generated by all elementary tensors A\ <g) Â2, where At G Jfy. Similarly, L\ ® Li is 
the smallest subspace lattice on !H\ ® ̂  which contains all elementary tensors Pi 0^2 , 
where P,- G £*. The lattice L\®Li is, in general, difficult to determine. However a useful 
description can be given if one of the factors is completely distributive and commuta
tive. This description is based upon Arveson's representation of commutative subspace 
lattices [1], which we now briefly outline. A more complete account also appears in [2] 
(Chapter 22). 

Let \i be a regular measure on a compact metric space X, and let < be a standard pre-
order onX, i.e. for all x, y G X, x < y if and only iffn(x) <fn(y) for all n, where/i , ^ , . . . 
is a countable family of continuous real-valued functions onX If E is a Borel subset of 
X, PE will denote the corresponding projection on L2(X, /z); i.e. PE is multiplication by 
XE, the characteristic function of E. A subset E of X is increasing if x G X and x < y 
implies y EE. Let L(X, \i, <) = {PE : E is an increasing Borel set}. Then L(X, /x, <) is 
a commutative subspace lattice (CSL), and every CSL is unitarily equivalent to one of 
the form X(X,/i,<). 

Arveson established the reflexivity of L = L(X, /i, <) by introducing J3min, the min
imal algebra corresponding to (X, /i, <), and showing that L — Lat -#min. Of all ultra-
weakly closed algebra of operators ÏA. on L2(X, /i) for which Lat JÏ = L and Ji D fl* = 
L', Ĵ min is the smallest. The largest of such algebras is Alg L, and L is said to be synthetic 
ifJZmin = AlgL. 

2. The lattice L(X, /i, <, fP). We shall study lattice tensor products L\ (g) £2, act
ing on spaces H\ 0 ^2 , in which the first factor, L\, is a CSL. We shall assume that 
.T/i = L2(X, fi) and ^ = ^ and that ^ ® ^ is identified, via a unitary equivalence, 
with Z2(X, //, # ) , the Hilbert space of weakly-measurable, square-integrable, ^/-valued 
functions o n l . Under this identification, L°°(X,^) <g> S ( # ) = Z,°°(X,//,#(#)), the 
space of measurable, essentially bounded (B(i^)-valued functions defined onX In par
ticular, if XE is the characteristic function of a Borel subset E ofX, and if P is a projection 
on #", then XE®P = XEP-

For any subset !A of *B(9{), let Z,00^, //, JÎ) denote the space of essentially bounded, 
J?-valued functions on X. Let *B(9{)+ denote the positive cone of *B(jH). We say that 
(j) G L°°(X,/i, #(#")+) is increasing if 0(JC) < <j){y) whenever x < y. Let L°°(X9 //, <) 
denote the space of essentially bounded, positive, increasing functions on X, and for each 
A Q # ( # V let 

i°°(jr, M, <, %) = £°°(x, /i, #) n z°°(x, /i, <). 
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For each <j> G Z°°(X,/x, (B{9{)\ the multiplication operator M^ is defined on 
L2(X, ft, <H) by Mtfipc) = (f>(xY(x) for each/ G L2(X, /x, # ) . For any subspace lattice !P 
on H, let 

£(Jf, /x, 2>) = {M^ : </> G I°°(Jr, /x, fP)}. 

Each xVfy G £(X, /x, fP) is a projection, and £(X, /x, fP) is, in fact, a subspace lattice. The 
lattice operations in L(X, /x, fP) are performed pointwise, and M^ —•* M^ strongly if 
and only if <j)^a\x) —> xjj(x) strongly a.e. 

We also define 

LÇX, /x, <9 2>) = {M^ : </> G L°°(X, /x, <,P)}. 

Since the partial order < is preserved under arbitrary joins and intersections, 
£(X, /x, <, (P) is a strongly closed sublattice of L(x, /x, fP). 

The tensor product L(X, /x, <) ® fP is generated by projections of the form P# 0 
g, where P# is multiplication by the characteristic function \E of an increasing subset 
E of X, and Q £ (P. But PE ® Q = M^ where </> is the increasing function x^ô- So 
£(X, / i , < ) ® f Ç A ^ 9 M, <, 20- We shall show that X(X, /x, <) ® !P = /<*, /x, <, 30 for 
certain types of CSLs £(^ , /x, <). But first we establish some properties of £(Jf, /X, <, fP). 

Arveson introduced the lattice £(X, /x, <, Proj (,?/)) in [1], and established its reflex-
ivity by showing that 

(1) L(X, /x, <, Proj(^)) = L a t ^ i n ® 1). 

The next theorem is a simple generalisation. 

THEOREM 1. L(X, /x, <, Lat $) = L a t ^ i n (8) *B)for any operator algebra (B Ç 

PROOF. Clearly £(Jf, /x, <, Lat S) C Z,(x, JX, <, Proj(i^)), and Lat(.flUi ® «) Ç 
L a t e e n ® 1) = X(X,/x,<,Proj(^/")) by (1). So suppose that P = M^ G JC(X,/X,<, 

Proj(^)). It is enough to show that P G Lat( 1 ® #) if and only if </>(JC) G Lat S a.e. 
Now \®B = MB for each 5 G S , where M^(x) = Bf(x\ for a l l / G L2(X, /x, # ) • So 

7^(1 0B)P = M^MBM^ = M^H = 0 if and only if </>(x) G Lat£ a.e. It follows that if 
<j)(x) G Lat <B a.e. then P ^ l ® £)P = 0, and hence P G Lat(l ® $ ) since 5 is arbitrary in 
« . On the other hand, if P G Lat(l ® #), then for each 5 G % <j)L(x)B(j>(x) = 0 a.e. Since 
the unit ball of (B is weakly separable, there is a null set xV, such that (j)1-(x)B(f)(x) — 0 for 
all* GZ\xVandforal l£ G S. So </>(*) G Lat S for all x G . r \ xV. 

COROLLARY 2. 7f fP w reflexive then L(x, /x, <, fP) is reflexive. 

PROOF. If fP is reflexive, then fP = Lat Alg fP, and so by Theorem 1 

L(X, /x, <, fP) = X(X, /x, <, Lat Alg V) = Lat(.flU ® Alg 2>). 

Hence Z^Y, M> <> ^0 is reflexive. 
The following lemma will be used to establish the lattice tensor product formula for 

certain types of operator algebras. 
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LEMMA 3. If L(X, p, <) <g> fP = L(X, p, <, IP) /or arbitrary subspace lattices <£, 
and ifL(X, p, <) is synthetic, then the LTPF holds if A = Alg L(X, p, <) a«rf # is any 
operator algebra. 

PROOF. The hypotheses and Theorem 1 imply that 

Lat(J2 <g> «) = La teen ® ®) = £(X, /i, <, Lat «) = £(*, M, <) 0 Lat $ . 

The reflexivity of L(x, p, <) completes the proof. 

3. Boolean algebras. If £(X,/i, <) is complemented, we may assume that < is 
trivial, i.e. x < y if and only if x = y. Hence L(X, p, <) = L(X, p) = {PE : E is a Borel 
set}, and L(X, p, <, fP) = L(X, /x, fP). 

THEOREM 4. X(X, /z) (8) fP = JC(X, /i, fP)/or a«y subspace lattice <£. 

PROOF. We must show that £(X,/x,fP) C X(X,/x) ® fP. So suppose that A^ G 
£(X, /i, fP). Since the weak and strong closures of any set of projections contain the 
same projections, and since L(X, /x) (g> fP is strongly closed, it is enough to show that 
every weak neighbourhood of M^ contains a projection M$ G L(X, p) <g) fP. 

Suppose that/i,gi,^,g2, • • • Jn.gn are vectors in 9{, and e > 0. Let Q>\X —» Cw be 
defined by 

o(x) = (^(xy1,g1),(0(xy2,g2),...,(0(x/w,gn)). 
Since O is bounded, its range can be covered by open subsets U\,U29...,Ur of Cw, 

each of diameter less than e. Define disjoint subsets X\,X2, ...,Xr inductively by X\ = 
Q-l(Ui)uadXj = ^~\Ul)\{Xx U I 2 U - UJÇ-0 for y = 2,3, . . . , r . Let V = 
£/=i <t>{xj)Xj> where for each/, xy is the characteristic function ofXj, and xy € Xj. (If 
A/ is empty, set </>(*y)Xy = 0.) ThenM^ G £ ( ^ AO ® ^- Furthermore, if F, = XY®fi, and 
G,r = xr 0 gi, where Y is a Borel subset of X, then for each /, 

MM* - M$FU G,)\ = \fr{{<K*) ~ #c))rf,g,)fi<fe|, 

< £ LJ( (^W - <Kxj))fi,gi)\ndx, 

7=1 

Suppose that Fi, G\,F2, G2,. . . , F„, G„ are step functions in L2(X, /x, # ) . Then there 
exist disjoint, measurable sets 7i, Y2,•• •, Ym, and vectors fij andg,y in 9i, such that 

m m 
Fi = E X/ ®/y, and G, = £ xy ® £(/, 

7=1 7=1 

for each z, where xy is t n e characteristic function of I}. For each j choose a step 
function ipj such that M^. G LÀX^[i) (g) !P, and such that for each 1 and for each/, 
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|((M^ - M^.)(XJ ®fy),(Xj ® gy)\ < £ • KYj)- Now let ^ = Xi^i + Xi^2 + • • • + Xm^m-
Then Af̂  G X(X, fi) ® 2>, and for each /, 

|((A/^ -M^)F,-,G,)| = £ |<(Jlf, - Jl^Xx/ ®^),(Xy ® g//)>|, 
7=1 

m 

Since step functions are norm-dense in L2(X9 /z, 9(), it follows that M^ is in the weak 
closure of L(X, /i) <g) fP, as required. 

COROLLARY 5. If 21 is a von Neumann algebra with an abelian commutant, and if 
*B is any operator algebra, then Lat(JÏ (g) *B) = Lat JÏ ® Lat S. 

PROOF. The conditions on A ensure that .# — Alg L(X, \i) for some complemented 
CSL L{X, /i). Such subspace lattices are synthetic [2] (Corollary 22.20), and so the result 
follows from Lemma 3 and Theorem 4. 

4. Complete distributivity. Complete distributivity is an infinite version of ordi
nary distributivity for lattices. A complete lattice L is completely distributive if the iden
tity: 

(2) A(V*<^) = V(/\xaMa)\ 

and its lattice dual 

(3) V ( A O = A (V*«,««))• 

hold, where / and J are arbitrary indexing sets, J1 is the set of functions from / into J, 
and where xa^ G L for each a £ I and each (3 eJ. 

Other characterizations of complete distributivity have been obtained [11], [12] and 
[13]. In particular Raney has shown that (2) and (3) are equivalent [14]. We shall use the 
following splitting property which was shown by Raney [14] to be equivalent to complete 
distributivity. 

THEOREM 6 [ 14]. A complete lattice L is completely distributive if and only if, when
ever v, w G L,v ^w, there exist a,b G L, such that a <£w and v % b, and either a <c 
or c < bfor each c G L. 

Any lattice of commuting projections is distributive. However it may not be com
pletely distributive. The following measure-theoretic characterisation of complete dis
tributivity for the commutative subspace lattice L(X, /i, <) is due to Hopenwasser, Laurie 
and Moore [6]: 
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THEOREM 7. The lattice L(X, <, //) is completely distributive if and only if for every 
BorelsetA with {i(A) >0 , ( / iX /z)(,4 x A n G(<)) > 0, wAere G(<) = {(x,y) : JC < y} 
is the graph of <. 

We shall give a variation of Theorem 7 based upon interval subsets ofX For x,y G X, 
define [JC, oo] = {z G Jf : x < z}9 [—oo,y] = {z G X : z < x}, and [x,y] = {z £ X : 
x < z < y}. Let Px = P[x,oo] and Qy = i^-oo^]- The intervals [JC,OO], [—oo,y] and 
[x,y] are closed, [JC,OO] is increasing and [—00,7] is decreasing. So Px and Qy are in 
£(X,<,/i),andP,QF = P M . 

If < is trivial and if/i has no atoms, then for each jc,/i[x, 00] = p[—00, JC] = /i{jc} = 0, 
and so P* = g* = 0. In this case L(X, <, p) is a non-atomic Boolean algebra and is not 
completely distributive. We show that the projections Px and Qx are more substantial if 
L(X, <, p) is completely distributive. 

LEMMA 8. The lattice L(X, <, p) w completely distributive if and only if for each 
BorelsetA with p(A) > 0, 3x,y G A such thatp([x,y] HA) > 0. 

PROOF. First suppose that L(X, <, p) is completely distributive, and that p(A) > 0. 
Then by Theorem 7 and Fubini's theorem, 

(p x p)(A xAH G(<)) = J //([JC, 00] HA)pdx>0. 

So /i([jc, 00]) n^4) > 0 for some JC G ^4. 
Let B = [JC, 00] HA. Then by Theorem 7 and Fubini's theorem again, 

(p x /i)(fi x 5 n G(<)) = jB M([-OO,JO n fi)/i dy > 0, 

and so //([—00, >>] Hi?) > 0 for some j> G 5. But [—00, j>] Hi? = [x,j>]rL4, and so JC,J> G A 
a.ndfi([x,y]nA)>0. 

For the converse, assume that 11(A) > 0 for some Borel set A, and let B = {x G A : 
//([JC, 00] fb4) = 0}. Now ̂  is a Borel set, and if 11(B) > 0 it follows from the hypothesis 
that /x([w,v] D5) > 0 for some u,v G B. Now [«,v] Ç [w,oo] and B Ç A, and so 
/x([w, 00] f~L4) > 0. But this is impossible since u G B, and so we conclude that fi(B) = 0. 
Therefore //([JC, 00) D^) > 0 for almost all x eA, and so (// x /J,)(A XA(1 G(<)) > 0, 
by Fubini's theorem. So L(X, <, ji) is completely distributive by Theorem 7. 

COROLLARY 9. 77ze /atf/ce -££¥, <, p) w completely distributive if and only if 
for each Borel set A and each e > 0, 3x/,yz G A, i = 1,2,...,«, swcA tfzatf 
/i(,4\U7=1[*/0'/])<e. 

PROOF. First suppose that L = £(X> <, /i) is completely distributive, and that A is 
a Borel subset of X. Let <r = sup^GQ p(\J[Xy]£?[x>y] ^ ) > where Q consists of all finite 
sets of intervals [x,y], where x,y G A. Then there exists countably many intervals [jt|,j>,-]: 
i = 1,2,3,... , with xuyx G A for each i, such that /x(U£i [*/,>>/] H 4) = a. Let^(oo> = 
U£i fo^i-l H^, and let 5 = ^ \ ^(oo). Assume that /i(i?) > 0. Then //([JC7,/] HB)>0 
for some jc',y G 5, by Lemma 8. 
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Choose n such that /i(^(w)) > o - 8/2, where A^ = U?=i[*/,J'i] H A, and 6 = 
/i([jc',/] (IB). Let A' = A^ u flx',/] H^). Then 

H(A') = ti(A' HA{oo)) + n(A' HB)> /i(^(w)) + /i([x',/] H £) > <r + 5/2. 

But this is a contradiction, since {[x',y], [x\ ,y\],..., [xn,yn]} G ̂ . So we conclude that 
/i(#) = 0, and hence ŷ (̂ 4 \ U/Lifc'^]) < £ f° r sufficiently large n. 

The converse is an easy application of Lemma 8. 
Corollary 9 can be expressed in terms of projections. 

COROLLARY 10. The lattice L(X, <, \i) is completely distributive if and only if PA < 
VxyeA PxQyfor each Borel set A. 

PROOF. The measure condition in Lemma 9 is equivalent to the statement that 
\J[xy\tj PxQyPJî ~~^ 0 strongly as f increases along the net Q. But ^^xy^jPxQy —> 
\]Xy(zAPxQy So the condition in Lemma 9 is equivalent to Vj^e^xoy^ i — 0> ze-
PA<\Jx^APxQy 

COROLLARY 11. IfL(X, <, /z) is completely distributive, then PA = \JX^A Pxfor each 
increasing set A. 

PROOF. Suppose that PA G L{X, <, /i), with n(A) > 0. Now PA < ( V * ^ pxQy) 
by Corollary 10. But PxQy < Px < PA for eachx,j> G A, since 4̂ is increasing. So 
PA — vx,yeAPxQy = VXZAPX-

Corollary 11 will be used to show that L(X9 /i, < *P) is a tensor product if L(X, /i, <) 
is completely distributive. 

THEOREM 12. IfL(X, fi, <) is completely distributive, and if!P is any subspace lat
tice, then L(X, /z, <) <g> 2> = L(X, \i, <, &). 

PROOF. It is enough to show that L(X, /i, <, fP) Ç £(X, /i, <) 0 fP. Suppose that 
M^ G L(X, n, <, fP), and letM^ = \JxeXPx®(j)(x). Foreachx G X,Px®(f)(x) G L(X, \i, < 
) <g> 2>, and since £(X, //, <) ® fP is complete, it follows that M^ G £(X, //, <) ® T. 
Furthermore, Px ® </>(x) < M^ since </> is increasing, and so M^ < M^. We show that 
Mjj, = Afy. 

Choose/ G #" and t > 0, and let C = {x G X : {<t>{xY,f) > t}. Since </> is increasing, 
C, is an increasing subset of X. By Corollary 11, Pc = VxecPx, and since the unit ball 
of #(Z,2(X,/x)) is strongly metrizable, Pc = V2i PXt for some countable set of points 
Xi G C Now for each i, PXi ® </>(x;) < Afy, and so 

t < (<Kxï)f,f) < {W)fJ) a.e. on [x„ oo]. 

It follows that (V>(xy,/) > * a.e. on C, and since t > 0 is arbitrary, {^(x)f,f) > ((j>(x)f,f) 
a.e. Therefore, since Of is separable, there is a null set JV such that for a l l / G #" and 
all x G AT\ N, (ip(xV,f) > ((/>(x/,/). Therefore ^(x) > </>(x) a.e. and so M^ > M+. 
Therefore M^ = M ,̂, as required. 
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COROLLARY 13. IfL(X, /x, <) is completely distributive and (P is any subspace lat
tice, then every projection in L(X, /i, <, (P) is the join of elementary projections. 

PROOF. The proof of Theorem 12 shows that A/̂  = VxexPx <8> <t>(x) for eachM^ G 

Corollary 13 is not true for arbitrary CSLs. If, for example, L(X, //, <) is a Boolean 
algebra without atoms, then Px (g) </>(x) = 0 for each x eX. 

COROLLARY 14. If SI = Alg(X(X, /i, <)), where L(X, /i, <) is completely distribu
tive and ifB is any operator algebra, then Lat(JÎ ® 15) = Lat Ji ® Lat (B. 

PROOF. This follows from Lemma 3, Theorem 12 and the fact that completely dis
tributive commutative subspace lattices are synthetic [6] (Corollary 9). 

As a second application of Theorem 12, we show that the tensor product of two com
pletely distributive subspace lattices is also completely distributive if one of the factors 
is also commutative. This generalises a result in [6], where it is shown that the tensor 
product of two completely distributive subspace lattices is also completely distributive 
if both factors are commutative. 

THEOREM 15. If L\ and La are completely distributive subspace lattices and if L\ 
is commutative, then L\® Li is completely distributive. 

PROOF. We may suppose that L\ = L(X, /x, <) and that Li — <P. Then Ly®Li = 
L(X, n, <, &) by Theorem 12. We shall use Theorem 6 to show that L(X, /x, <, fP) is 
completely distributive. 

Suppose that M^ andM^ are projections in L{X, /i, <, ^P), and M^ ^ M^. Since Afy = 
VxeXPx®<i>(x) by Corollary 13,PM<g><t>(u) ^ M^ for some u G X. Let Z = {x G X : u < x 
and 0(w) ^ iftix)}. Then fi(Z) > 0, and so by Lemma 8, /x([v, w] D Z) > 0 for some 
v, w in Z. Since Z Ç [u, oo], we have u < v < w and </>(w) ^ ifciw). Furthermore, 
/x([v, w]) > /i([v, w]H Z) > 0, and since <j> and V> are increasing, </>(v) ^ \j){x) and 
</>(JC) ^ tylyv) for all x G [v, w]. 

Now Pv and Q^ G £(X, //, <), and since /xflv, w]) > 0, Pv ^ g^. Since X(X, /i, <) 
is completely distributive, there are increasing subsets A and B in L(X, /i, <) such that 
Pv ^ P# and PA ^ Qw^ and such that either P^ < Pc or P c < PB for each increasing 
subset C of X. Furthermore, <P is completely distributive, and hence contains projections 
a and (3 such that a ^ ^(w) and </>(v) ̂  /3, and either a < 7 or 7 < /? for each 7 G IP. 
Now define 

_ , . ( a for* G ^4, , lT// x 

*W=(o ftrxfU, a n d *«='. 

We show that M 0 and My split £ ( ^ M> <> ^) -
If M<D < M0, then a < ij)(x) a.e. on A. On the other hand, a ^ V7^)» and since ip is 

increasing, a ^ i}){x) for all x < w. So /i([—oo, w] H^) = 0. But this is a contradiction 
since PA ^ Q„- So we conclude that M® ^ Afy. Similarly, if M^ < My, then <f>{x) < /3 

1 forxGtf, 
8 forxtfB. 
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a.e. on£c = X\B. But </>(v) % (3 and so </>(*) ̂  /3 for allx > v. Therefore /i([v, ooJfW) = 
0, and since this contradicts Pv % PB, we have M^ ^ My. 

Suppose that Me e L(X, /i, <, 2>), let C = {JC : a < 9(x)} and let D = {x : 0(x) < /3}. 
Then C U D = I Furthermore, Pc G £(JC/i, <), and so either PA < Pc or Pc < PB. If 
PA < Pc then a < 6(x) a.e. on A, and hence Mo < Me. On the other hand, if Pc < ^5 
then Pg- <P^ < PD. Now Pj = PBc, and so 6(x) < (3 a.e. on W. Hence M0 < Mvp. 

So X(X, //, <, fP) splits, and so by Theorem 6, it is completely distributive. 

COROLLARY 16. The tensor product of a finite number of completely distributive, 
commutative subspace lattices is completely distributive. 

PROOF. The tensor product of commutative subspace lattices is commutative, since 
it is generated by commuting projections. So Theorem 15 can be used inductively to 
establish the result. 
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