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AVI.1 Introduction

This annex provides background information on indices used within 
Chapter 11, Chapter 12 and the Atlas, including technical details of 
calculation and related references.

In the climate science literature, a  number of indices are used to 
characterize and quantify one or several aspects of climate phenomena 
occurring due to natural variability or due to long-term changes in 
the system. There is an extremely large number of examples. One can 
cite mean global climate indices, such as global mean sea level rise 
or global surface temperature, which characterize the state of the 
climate system and act as a shifting baseline for regional changes. 
One can also examine mean regional trends, for example in mean 
spring precipitation, which reflect large-scale patterns and alter the 
background conditions within which episodic hazards may occur. 
One can also calculate indices of extremes characterizing episodic 
events within the tail of the distributions of specific variables within 
their variability range, for instance the annual maximal temperature 
at a given location or the 100-year return value of river discharge 
characterizing extreme floods. Such extreme indices have been the 
subject of a number of studies and have been used to characterize 
how climate change modifies extreme values of climate variables 
and subsequent impacts in the IPCC Special Report on ‘Managing 
the risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation’ (IPCC, 2012), as well other recent IPCC reports.

Indices can also characterize aspects of climatic impact-drivers 
(CIDs; see Chapter 1 for the definition) that are key to impacts and 
risks to society and ecosystems. Chapter 12 proposes a definition of 
‘climatic impact-driver indices’ as ‘numerically computable indices 
using one or a combination of climate variables designed to measure 
the intensity of the climatic impact-driver, or the probability of 
exceedance of a  threshold. For instance, an index of heat inducing 
human health stress is the Heat Index (HI) that combines temperature 
and relative humidity (e.g., Burkart et al., 2011; Lin et al., 2012; Kent 
et al., 2014) and is used by the US National Oceanic and Atmospheric 
Administration (NOAA) for issuing heat warnings’.

Climatic impact-drivers may not be related only to extremes, and 
therefore require a much broader set of indices. For instance, the rate 
of coastline recession, due to sea level rise, assessed in Chapter 12, is 
involved in the risk of damage and losses in coastal settlements and 
infrastructures. Mean trends and changes themselves are considered 
throughout the report as CIDs. For instance, beyond the warming 
trend that has a  large number of consequences, changes in other 
indices such as ‘snow season length’ are often used to study economic 
impacts on winter tourism (Damm et al., 2017). Furthermore, Mora 
et al. (2018) used a set of 11 very different key CID indices, among 
which about half are related to extremes to characterize broader 
threats to society. Section  12.3 in Chapter  12 reviews the CIDs 
described in the literature which drive impacts and risks, and reveal 
the wide variety of indices used to characterize them.

Indices are, in principle, computable from observations, reanalyses 
or model simulations, although it is important to consider scale in 
comparing across datasets. For example, an extreme precipitation 
event has a lower magnitude across a large grid cell than it would at 
a single station within that grid cell. In many cases, CIDs are simply 
characterized by the exceedance of a  threshold for an Essential 
Climate Variable (ECV). For instance, the probability of crop failure 
dramatically increases as temperature rises above certain thresholds, 
which may differ from one species to another (Hatfield and Prueger, 
2015; Grotjahn, 2021). To assess the effect of climate change on 
threshold-based indices (e.g., the change in the number of days with 
maximum temperature above 35°C), a  bias adjustment of model 
outputs should be considered where sensible as model simulations 
can have biases compared to observations and reanalyses 
(Section 10.3.1.3 and Cross-Chapter Boxes 10.2).

Indices are used in many chapters of this Report: in Chapter 4 for 
assessing changes in the global climate, in Chapter 8 for water cycle 
changes assessment, in Chapter  9 for oceans and the cryosphere, 
in Chapter 11 for assessing changes in extreme conditions, and in 
Chapter 12 for assessing CIDs and their changing characteristics due 
to climate change. The Atlas assesses changes in mean variables/
indices (temperature, precipitation and snow). The Interactive Atlas 
includes indices of mean changes (for temperatures, precipitation, 
snowfall and wind) and a  number of extreme indices and CIDs, 
allowing for flexible spatial and temporal analysis of the results. 

AVI.2 Extreme Indices Selection

In Chapter  11, extreme weather and climate events (collectively 
referred to as extremes) are assessed and the main focus is on extreme 
events over land. Since the analysis of extremes often involves the 
examination of the tails of the statistical distributions, a parametric 
or non-parametric approach can be used to define extremes. The 
non-parametric approach is largely adopted in most of the literature 
to characterize moderate temperature and precipitation extremes 
with shorter return periods. The Expert Team on Climate Change 
Detection and Indices (ETCCDI; https://www.wcrp-climate.org/etccdi) 
defined 27 indices to characterize different aspects of moderate 
temperature and precipitation extremes, which are described by Frich 
et al. (2002), Alexander et al. (2006), Zhang et al. (2011), Donat et al. 
(2013), and Sillmann et al. (2013), and were also extensively used 
in previous IPCC reports. In Chapter 11, a subset of these indices is 
assessed in detail (Sections 11.3 and 11.4). For events with longer 
return periods (e.g., events that occur once in 20 years or even more 
rarely), the parametric approach based on Extreme Value Theory (EVT; 
Coles, 2001) is used and adopted in the literature (e.g., Kharin and 
Zwiers, 2000; Brown et al., 2008; Kharin et al., 2013). These events are 
also assessed throughout the chapter. Aside from temperature and 
precipitation, the chapter also assesses indices used to characterize 
droughts. Table AVI.1 lists the indices used.
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Table AVI.1 | Table listing extreme indices used in Chapter 11.

Extreme Label Index Name Units Variable

Temperature

TXx Monthly maximum value of daily maximum temperature °C Maximum temperature

TXn Monthly minimum value of daily maximum temperature °C Maximum temperature

TNn Monthly minimum value of daily minimum temperature °C Minimum temperature

TNx Monthly maximum value of daily minimum temperature °C Minimum temperature

TX90p Percentage of days when daily maximum temperature is greater than the 90th percentile % Maximum temperature

TX10p Percentage of days when daily maximum temperature is less than the 10th percentile % Maximum temperature

TN90p Percentage of days when daily minimum temperature is greater than the 90th percentile % Minimum temperature

TN10p Percentage of days when daily minimum temperature is less than the 10th percentile % Minimum temperature

ID Number of icing days: annual count of days when TX (daily maximum temperature) <0°C Days Maximum temperature

FD Number of frost days: annual count of days when TN (daily minimum temperature) <0°C Days Minimum temperature

WSDI
Warm spell duration index: annual count of days with at least six consecutive days when 
TX >90th percentile 

Days Maximum temperature

CSDI
Cold spell duration index: annual count of days with at least six consecutive days when 
TN <10th percentile

Days Minimum temperature

SU Number of summer days: annual count of days when TX (daily maximum temperature) >25°C Days Maximum temperature

TR Number of tropical nights: annual count of days when TN (daily minimum temperature) >20°C Days Minimum temperature

DTR Daily temperature range: monthly mean difference between TX and TN °C Maximum and minimum temperature

GSL
Growing season length: annual (1 Jan to 31 Dec in Northern Hemisphere (NH), 1 July to 30 June 
in Southern Hemisphere (SH)) count between first span of at least six days with daily mean 
temperature TG >5°C and first span after July 1 (Jan 1 in SH) of six days with TG <5°C

Days Mean temperature

20TXx One-in-20 year return value of monthly maximum value of daily maximum temperature °C Maximum temperature

20TXn One-in-20 year return value of monthly minimum value of daily maximum temperature °C Maximum temperature

20TNn One-in-20 year return value of monthly minimum value of daily minimum temperature °C Minimum temperature

20TNx One-in-20 year return value of monthly maximum value of daily minimum temperature °C Minimum temperature

Precipitation

Rx1day Maximum one-day precipitation mm Precipitation 

Rx5day Maximum five-day precipitation mm Precipitation 

R5mm Annual count of days when precipitation is greater than or equal to 5 mm Days Precipitation 

R10mm Annual count of days when precipitation is greater than or equal to 10 mm Days Precipitation 

R20mm Annual count of days when precipitation is greater than or equal to 20 mm Days Precipitation 

R50mm Annual count of days when precipitation is greater than or equal to 50 mm Days Precipitation 

CDD Maximum number of consecutive days with less than 1 mm of precipitation per day Days Precipitation 

CWD Maximum number of consecutive days with more than or equal to 1 mm of precipitation per day Days Precipitation 

R95p
Annual total precipitation when the daily precipitation exceeds the 95th percentile 
of the wet-day (>1 mm) precipitation

mm Precipitation 

R99p
Annual precipitation amount when the daily precipitation exceeds the 99th percentile 
of the wet-day precipitation

mm Precipitation 

SDII Simple precipitation intensity index mm day–1 Precipitation 

20Rx1day One-in-20 year return value of maximum one-day precipitation mm day–1 Precipitation

20Rx5day One-in-20 year return value of maximum five-day precipitation mm day–1 Precipitation

Drought

SPI Standardized precipitation index Months Precipitation 

EDDI Potential evaporation, evaporative demand drought index Months Evaporation 

SMA Soil moisture anomalies Months Soil moisture

SSMI Standardized soil moisture index Months Soil moisture

SRI Standardized runoff index Months Streamflow

SSI Standardized streamflow index Months Streamflow

PDSI Palmer drought severity index Months Precipitation, evaporation

SPEI Standardized precipitation evapotranspiration index Months
Precipitation, evaporation, 
temperature
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Some of these indices are included in the Interactive Atlas allowing 
further analysis (seasons, regions, baselines and future periods  – 
using both time slices/scenarios and global warming levels): TXx, 
TNn, Rx1day, Rx5day, FD, CDD and SPI.

AVI.3 Selection of Climatic 
Impact-drivers Indices

In Chapter  12, 33 CID categories are identifi ed on the basis of 
relevance for risks and impacts and available literature. They are 
classifi ed into seven types: heat and cold, wet and dry, wind, snow 
and ice, coastal, open ocean, and other (see Tables 12.1 and 12.2). It 
would be impossible to cover all indices that have been developed in 
the literature. However, in order to illustrate how indices can provide 
information about future regional climate, Chapter 12 and the Atlas 
use a limited number of indices to illustrate the main CIDs and their 
evolution with climate change.

The selection of indices, as displayed in Chapter 12 and the Atlas, is 
based on expert judgement using the following guiding principles. 
The set of indices should:

i) describe the evolution of a manageable and illustrative number 
of indices;

ii) cover these categories, while giving more weight to those with 
a higher number of potential impacts as described in the literature; 

iii) be used broadly in the literature;
iv) allow easy computation from publicly available model outputs and 

observations, or be accessible from published material through 
contact with the authors;

v) be well evaluated in model simulations, or based on ECVs that 
are well evaluated in model simulations; and

vi) represent CIDs of interest to regional impacts and risk assessments.

The selection results in 13 regional indices that are reported in 
Table AVI.2. The description of the formulae used for processing is 
described below.

AVI.3.1 Regional CID Indices Used 
in Chapter 12 and the Atlas

Climatic Impact-drivers Indices

Cooling degree days (CD): Energy consumption in hot environments 
typically depends on the excess of temperature above a  given 
threshold, where cooling is required. In Chapter 12 and the Atlas we 
used the formulation of Spinoni et al. (2015), which uses the mean 
(TM), max (TX) and min daily (TN) temperature with the formula taken 
from this reference:

With Tb = 22°C, then

The difference between Chapter  12, the Atlas and the previous 
reference is that in this Report the sum is cumulated over the entire 
year instead of six months, so it applies to all hemispheres. This index 
is included in the Interactive Atlas.

Number of days with maximum daily temperature above 
threshold (TXnn): The number of days with maximum temperature 
above a threshold can be critical for human health, infrastructure, 
ecosystems and agriculture. Different thresholds are used for 
different crops, generally varying between 30°C and 40°C (Hatfi eld 
and Prueger, 2015; Grotjahn, 2021). Chapter  12 uses the 35°C 
threshold globally (Figure 12.4), which was identifi ed as a critical 
temperature for maize pollination and production (Wolfe et  al., 
2008; Schlenker and Roberts, 2009; Hatfi eld et  al., 2011, 2014; 
Lobell and Gourdji, 2012; Gourdji et al., 2013; Lobell et al., 2013; 
Deryng et al., 2014; Hatfi eld and Prueger, 2015; Tripathi et al., 2016; 
Schauberger et al., 2017; Tesfaye et al., 2017), as well as a notable 
threshold for human health hazards (Kingsley et al., 2016; Petitti 
et  al., 2016). The Interactive Atlas includes both TX35 and TX40 
(both raw and bias adjusted; see Atlas 1.4.5). 

NOAA heat index (HI): HI is used by the US National Oceanic 
and Atmospheric Administration (NOAA) for issuing heat warnings 
and was applied in several studies that investigated adverse health 
impacts due to heat stress (e.g., Burkart et al., 2011; Lin et al., 2012; 
Kent et al., 2014). HI is calculated as multiple linear regression with 
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temperature (TF in °F) and relative humidity (RH) as input variables 
(Steadman, 1979; Rothfusz, 1990):

HI = $
HI! + HI"!, if	RH < 13	%			and			80	∘F < 5$ < 112	∘F
HI! + HI"%, if	RH > 85	%			and			80	∘F < 5$ < 87	∘F
HI!, 					otherwise

 

with:

HI!" = (13 − RH)/4 ⋅ -(17 − |0# − 95	∘F|)/17	

HI!" = (RH − 85)/10 ⋅ (87	∘F − 1$)/5 

c0 = –42.379 °F, c1 = 2.04901523, c2 = 10.14333127 °F, 
c3 = –0.22475541, c4 = –0.00683783 °F–1, c5 = –0.05481717 °F,
c6 = 0.00122874 °F–1, c7 = 0.00085282, c8 = –0.00000199 °F–1

If HI < 80 °F, the following equation is used:

HI = 0.5 ⋅ ()! + 61	∘F + 1.2 ⋅ ()! − 68	∘F) + 0.094	∘F ⋅ RH) 

The calculated HI is converted into °C.

HI is calculated for CMIP5, CMIP6 and CORDEX using daily mean 
near-surface specific humidity, daily mean surface pressure, and 
daily maximum near-surface air temperature. For CMIP5 and CMIP6, 
daily mean surface pressure is calculated from daily mean sea level 
pressure by applying a height adjustment (see Schwingshackl et al. 
(2021) for details). Additionally, HI is calculated for WFDE5, which is 
a bias-adjusted version of the ERA5 reanalysis (Cucchi et al., 2020). 
Daily maximum temperature is calculated as the maximum of the 
hourly WFDE5 near-surface temperature values. Relative humidity 
is calculated using daily means of the hourly WFDE5 variables for 
near-surface air temperature, near-surface specific humidity, and 
surface air pressure.

To quantify heat stress, yearly numbers of daily HI-threshold 
exceedances are calculated using a  threshold of 41°C, which 
corresponds to conditions that the US National Weather Service 
classifies into the category of ‘Danger’ (Blazejczyk et  al., 2012). 
Bias-adjusted model simulations are used for calculating threshold 
exceedances of HI, employing the quantile delta mapping (QDM) 
approach as described by Cannon et al. (2015). The QDM approach 
adjusts the model data in the application period to fit the reference 
data in the reference period (using quantile mapping). Subsequently, 
the climate change signal is added for each quantile by considering 
the change between the model’s reference and application periods. 
QDM is directly applied to the HI data using WFDE5 as the reference 
dataset and 1981–2010 as the reference period. WFDE5 HI data are 
conservatively remapped to each model’s grid before bias adjustment 
is performed. QDM is applied on each grid point individually and for 

each month separately. The application periods are the IPCC periods 
1995–2014, 2041–2060 and 2081–2100, and 20-year periods for 
specific warming levels (1.5°C, 2°C, 3°C and 4°C). 

Heating degree days (HDD): symmetrical to the cooling degree 
days index, the HDD index is used for illustrating energy demand for 
heating. It has been used in several studies of the impacts of climate 
change on the energy sector. The Atlas follows the formulation 
proposed by Spinoni et al. (2015). The calculation follows:

!""! =

⎩
⎪
⎨
⎪
⎧(" − (#(" − ($

2 − (% − ("4
(" − ($

4
0

./ 0
(% ≤ ("
(# ≤ (" < (%
($ ≤ (" < (#
($ ≥ ("

 

With Tb = 15.5°C, then

!"" = $!""!
"#$

!%&
 

Where TM, TX and TN correspond to daily mean, maximum and 
minimum temperature, respectively.

To account for various geographic zones, however, the HDD index 
is cumulated over the entire year, instead of six months, as in the 
previous reference. This index is included in the Interactive Atlas.

Number of frost days (FD): Frost affects crops (Barlow et al., 2015; 
Crimp et al., 2016; Cradock-Henry, 2017; Mäkinen et al., 2018), and 
there has been a  number of studies investigating changes in the 
number of frost days, with various thresholds, mostly between –10°C 
and +2°C. In Chapter 12 and the Atlas, we use the simple threshold 
of 0°C for the daily minimum temperature to define frost days as in 
Table AVI.1. This index is included in the Interactive Atlas.

River flood index using runoff (FI): As a  flood indicator, the 
100-year return value of discharge value (Q100) has been used. 
The computation of the index follows Alfieri et al. (2015):

1. Annual maximum river discharges are selected and an Extreme 
Value Type I (Gumbel) distribution is fitted on time slices of 
30 years and an analytical function is obtained.

2. The analytical function is used to estimate extreme discharge peaks 
with chosen return period Q(RP), by inverting the formulation of 
the Gumbel distribution:

!(#$) = 	ξ − α ln (− ln (1 − 1
RP))	

where α and ξ are the scale and location parameters of the 
analytical Gumbel distribution.

3. The peak discharge corresponding to the 100-year return period, 
Q100=Q(RP=100), is then calculated.

HI! = $" + $! ⋅ '# + $$ ⋅ RH + $% ⋅ '# ⋅ RH + $& ⋅ '#$ + $' ⋅ RH$ + $( ⋅ '#$ ⋅ RH + $) ⋅ '# ⋅ RH$	+"! ⋅ $"# ⋅ RH# 
HI! = $" + $! ⋅ '# + $$ ⋅ RH + $% ⋅ '# ⋅ RH + $& ⋅ '#$ + $' ⋅ RH$ + $( ⋅ '#$ ⋅ RH + $) ⋅ '# ⋅ RH$	
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For CORDEX regional models the total runoff of each of the models 
has been used as an input of the hydrological model CHyM (Coppola 
et  al., 2007, 2018) to produce the river discharge. The Q(RP=100) 
value has been computed for each of the river segments and each 
of the 29 CHyM simulations. The results are shown in the regional 
figures in Section 12.4.

Standardized precipitation index (SPI): The SPI is a  statistical 
index that compares cumulated precipitation for n months (n = 6) 
with the long-term precipitation distribution for the same location 
and cumulation period. The SPI months have been selected so that 
SPI represents the medium-term cumulated value and can be used to 
measure the medium-term impact on river flow and reservoir storage 
(Mckee et al., 1993).

The index is computed in this way:

1. A monthly precipitation time series is selected (at least 30 years).
2. The running average for the n-months window is computed. 
3. The Gamma distribution is used to fit the data. The fitting can 

be achieved through the maximum likelihood estimation of the 
Gamma distribution parameters. 

4. The values from this probability distribution are then transformed 
into a normal distribution, so that the mean SPI for the location 
and desired period is zero and the standard deviation is 1 
(Edwards and McKee, 1997).

Once SPI has been computed, the calculation of the drought frequency 
(DF) follows the method in Spinoni et  al. (2014): a  drought event 
starts in the month when SPI falls below −1 and it ends when SPI 
returns to positive values, for at least two consecutive months.

It has to be noted that the SPI index has been recognized to be 
difficult to interpret in high latitudes and arid areas due to statistical 
issues linked to inaccuracies in the estimation of the Gamma function 
(Spinoni et  al., 2014). The duration of six months is considered in 
Figure 12.4. This index is included in the Interactive Atlas.

Soil moisture (SM): The soil moisture index is used in Chapter 12 
figures. It is using the total soil moisture content integrated over the 
soil depth, normalized by the recent past climatological values at 
each grid point.

Snow season length (SWE100): Several studies use the snow 
water equivalent (SWE) variable (variable snw in model outputs) in 
order to define a ‘snow season length’ as the number of days with 
enough snow on the ground. This index is particularly important for 
the winter tourism sector (Damm et  al., 2017; Jacob et  al., 2018). 
Several thresholds are used to define a day with ‘enough snow on 
the ground’, with Wobus et  al. (2017) marking 100  mm as a  key 
threshold for skiing. However, this index is important not only for 
winter tourism but also in other sectors such as water management. 
In several figures of Chapter 12, the snow season length is calculated 
then as the number of days with SWE > 100  mm, following the 
definition of Damm et al. (2017) and Wobus et al. (2017). Seasonal 
limits are given (November through March) for studies in the Northern 
Hemisphere, and the index for the Southern Hemisphere is taken over 

the opposite season (May through September). SWE was assessed in 
several studies and its simulation depends on the representation of 
surface processes dealing with snow. Despite limitations, SWE was 
found to be useful in giving insight into the sign of changes (McCrary 
et al., 2017). When interpreting the figures shown in Chapter 12, one 
should also keep in mind that ‘altitudes’ are model altitudes and may 
not correspond to real ones due to the coarse resolution, and the 
changes can be quite sensitive to such effects.

Extreme Total Water Level (ETWL): Factors contributing 
to extreme sea levels (ETWL) are sea level rise, storm surge 
(e.g.,  associated with tropical cyclones and extratropical 
cyclones), tide, and extreme waves (resulting in high-wave setup 
at the shoreline). The ETWL used here is the summation of the 
aforementioned factors (Vitousek et al., 2017; Vousdoukas et al., 
2018) and the commonly used 1-in-100-year ETWL (the  100-
year ETWL return value) is adopted here as the index relevant to 
episodic coastal flooding. Here, the median ETWL, together with 
the associated 5–95% confidence interval, resulting from a  fully 
probabilistic model that incorporates storm surge and waves 
derived from models forced by an ensemble of six GCMs, is used as 
the index relevant for long-term coastal erosion.

Coastal erosion (CE): Coastal erosion is generally accompanied by 
shoreline retreat, which can occur as a gradual process (e.g., due to sea 
level rise) or as an episodic event due to storm surge and/or extreme 
waves, especially when combined with high tide (Ranasinghe, 2016). 
The most commonly used shoreline retreat index is the magnitude of 
shoreline retreat by a predetermined planning horizon such as 50 or 
100 years into the future. Here, the median shoreline retreat, together 
with the associated 5–95% confidence interval, resulting from a fully 
probabilistic model that incorporates storm surge and waves derived 
from models forced by an ensemble of six GCMs, is used as the index 
relevant for long-term coastal erosion.

Some of these indices are included in the Interactive Atlas allowing 
flexible analysis (seasons, regions, baselines and future periods  – 
using both time slices/scenarios and global warming levels): TX35 
and TX40 (both raw and bias adjusted; see Atlas 1.4.5), FD, CDD, 
HDD, SPI-6 (CDD and HDD are labelled as CD and HD, respectively, in 
the Interactive Atlas).
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Table AVI.2 | Regional CID indices table and relevant references.

CID Category

Climatic Impact-driver 
(from Table 12.1) 

and Potential 
Affected Sectors 

Index
Required 

ECVs
Way to 

Calculate
Bias 

Adjustment
References

Heat

Change in cooling demand 
for energy demand and 
building consumption

Cooling degree days 
above 22°C

Tas, tasmin, 
tasmax

From projections Yes Spinoni et al. (2015, 2018)

Heat, with thresholds 
important for agriculture

Number of days with 
Tmax >35°C or 40°C 
(TX35, TX40)

Tasmax From projections Yes
Hatfield and Prueger (2015); 
Hatfield et al., (2015); Grotjahn (2021)

Heat stress index 
combining humidity 
used in occupational 
and industrial health 

NOAA heat index (HI): 
number of days above 
41°C threshold

Tasmax, 
huss, ps

From projections Yes
Burkart et al. (2011); Lin et al. (2012); 
Kent et al. (2014)

Cold

Heating degree day for 
energy consumption

Heating degree days 
below 15.5°C

Tas, tasmin, 
tasmax

From projections Yes Spinoni et al. (2015, 2018)

Frost
Number of frost days 
below 0°C (FD)

Tasmin From projections Yes Barlow et al. (2015); Rawlins et al. (2016)

Wet River flooding Flood index (FI) srroff/mrro
From projections 
and simplified 
routing model

No Forzieri et al. (2016); Alfieri et al. (2017)

Drought

Aridity Soil moisture (SM) mrso From projections No Cook et al. (2020)

Droughts
Standardized Precipitation 
Index accumulated over 6 
months (SPI-6)

Pr From projections No Naumann et al. (2018)

Wind & storm Mean wind speed Annual mean wind speed sfcWind From projections No Karnauskas et al. (2018); Li et al. (2018)

Snow/ice Snow season length

Number of days with 
snow water equivalent 
>100 mm (SWE100) 
over the snow season 
(Nov–Mar for NH)

Snw From projections No Damm et al. (2017); Wobus et al. (2017)

Coastal

Extreme sea level (ETWL) 
inducing storm surges

1-in-100-year return 
period level (ETWL)

Data from authors No Vousdoukas et al. (2018)

Coastal erosion
Shoreline retreat by mid- 
and end of century

Data from authors No Vousdoukas et al. (2020)
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