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THE ORDER OF INSEPARABILITY OF FIELDS 

JAMES K. DEVENEY AND JOHN N. MORDESON 

1. Introduction. Let L be a finitely generated field extension of a field K 
of characteristic p T± 0. By Zorn's Lemma there exist maximal separable 
extensions of K in L and L is finite dimensional purely inseparable over any 
such field. If ps is the smallest of the dimensions of L over such maximal 
separable extensions of K in L, then 5 is Wiel's order of inseparability of L/K 
[11]. Dieudonné [2] also investigated maximal separable extensions D of K in L 
and established that there must be at least one D such that L C Kp~œ(D) (such 
fields are termed distinguished). Kraft [5] showed that the distinguished 
maximal separable subfields are precisely those over which L is of minimal 
degree. This concept of distinguished subfield has been the basis of a number of 
results on the structure of inseparable field extensions, for example see [1], [3], 
[5], and [6]. 

Let F be an intermediate field of L/K. In Section 2 it is shown that the 
order of inseparability of L/K (inor(L/K)) is greater than or equal to 
inor(F/K). The case of equality is of particular interest, and if inor(F/K) = 
inor (L/K) F is called a form of L/K. Forms are characterized by a number of 
linear disjointness conditions and these characterizations are used to establish 
the existence of a unique minimal form for L/K (such a minimal form is called 
irreducible since it has no proper forms). The remainder of Section 2 develops 
properties of irreducible forms. For example, Kraft [5] established that any 
relative ^>-basis for L/K contains a separating transcendence basis for a 
distinguished subfield and here it is shown that if L/K is irreducible then any 
relative £>-basis with one element omitted still contains a separating transcen
dence basis for a distinguished subfield. 

Let F/K be a form of L/K. In Section 3 relationships between the struc
ture and invariants of L/K and those of F/K are examined. For example, F/K 
and L/K have the same distinguished closures [9] and the modularity of L/K 
[1] is always greater than or equal to the modularity of F/K. 

2. Existence and properties. As noted, throughout we assume L is a 
finitely generated field extension of a field K of characteristic p ^ 0. We use the 
notation of Kraft [5] where: the inseparability exponent of L/K, inex(L/K), is 
m'm{r\K(Lpr) is separable over K] ; the order of inseparability of L/K, 
inor (L/K), is logp(min{[L : D]\ D is separable over K and L is purely in
separable over D}) ; the inseparability of L/K, insep(L/K), is\ogp([L : K(LP)]) 
— transcendence degree of L/K. 
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In [5], Kraft established t ha t if F is an intermediate field of L/K, then 
insep(L/K) ^ insep (F/K). We first establish the corresponding result for 
inor (L/K). 

LEMMA 1.1. inor (K (Lp) / K) = inor(L/K) - insep(L/K). 

Proof. Let 5 be the transcendence degree of L/K and let D be a distinguished 
subfield, i.e. D / i £ is separable and \ogv([L :£>]) = inor (L/K). Let w be 
inex(L/ i£ ) . Then i^(Lp n) = i ^ ( ^ n ) [3, Proposition 1, p . 288], and hence 
\ogp([L:K(Lpn)]) = ns + inor(L/K). Sinoe\ogv([L\K(Lp)}) = 5 + insep (L/K), 
\ogp([K(Lp) : K(Lpn)}) = (n - l) s + inor(L/K) - insep(L/K). T h u s 
inor(K(Lp)/K) = inor(L/K) - insep(L/ i£ ) . 

T H E O R E M 1.2. Let F be an intermediate field of L/K. Then inor (L/K) ^ 
inor(F/K). 

Proof. We use induction on inex (L/K). If inex(L/ i£ ) = 1, then inor (L/K) = 

insep (L/K) and the result is t ha t of Kraft [5, L e m m a 1, p . 111]. Assume the 
result for inex (L/K) = n - 1. By Lemma 1, inor (L / i£ ) = inor(K(Lp)/K) 

+ insep (L/K). Bu t by Kraft , insep (L/K) ^ insep (F/K) and by induction 
inor(K(Lp)/K) ^ inor (K(FP)/K). T h u s 

inor(L/K) = inor (K (Lp) / K) + insep (L/K) ^ inor (K (Fp) / K) 
+ insep (F/K) = inor (F/K). 

We note t ha t if L is separable over F, then we have equali ty in Theorem 1.2. 
For if D is a distinguished subfield of F/K, then L = F(£) DS where 5 is 
separable over D [6, Theorem 4, p. 1178] and hence inor (L/K) ^ inor (F/K). 
However, even if L/F is not separable, we may still have equali ty. Let P be a 
perfect field of characterist ic p 9^ 0 and let {x, y, z) be algebraically inde
pendent over P. Let L = P(x, up, uxp + v), F = P(xv, up, uxv + v) and 
K = P(up,vp). Then inor (L/ i£ ) = inor(F/K) = 1 and ye t L/F is purely 
inseparable. 

Definition. An intermediate field F of L / X is a form of L/X" if and only if 
inor (L/ i£ ) = inor (F/K). F is an irreducible form if and only if F if a form and 
there are no proper subfields of F/K which are forms of L/K. 

Clearly L is a form of L/K and as noted above any intermediate field F over 
which L is separable is a form of L/K. We shall establish the existence of a 
unique irreducible form for any finitely generated extension. 

T H E O R E M 1.3. Let F be an intermediate field of L/K and let n = inex(L/K). 
Then the following conditions are equivalent. 

(1) F/K is a form of L/K. 
(2) Lpn and K(Fpn) are linearly disjoint over Fpn. 
(3) insep(K(Fp i)/K) = insep(K(Lpi), 0 ^ i ^ n - 1. 
(4) K(Fpi) is a form of K(Lpi), 0 ^ i ^ n - 1. 
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Proof. (1) if and 6nly if (2). We use induction on inex (L/K). The case 
inex(L/K) = 1 is [5, Lemma 1, p. 111]. Let inex(L/K) = n. From Lemma 1.1 
inor (L/K) = inor(K(Lp)/K) + insep(L/i£). From [5, Lemma 1, p. I l l ] , 
insep(L/i£) = insep (F/K) if and only if LP and K(FP) are linearly disjoint 
over Fp i.e. if and only if LPn and Kpn~l (Fpn) are linearly disjoint over FpTi, and 
by induction inor(K(LP)/K) = inor (K (Fp) / K) if and only if Kpn~l(Lpn) and 
K(Fpn) are linearly disjoint over Kpn~l (Fpn). But using the standard lemma on 
linear disjointness [4, Lemma, p. 162] on the diagram 

Lpn K(Fpn) 

\ / 
\ Kpn~\Fpn) 

V 
fpn 

Lpn and K(Fpn) are linearly disjoint over Fpn if and only if Lpn and Kpn~l (Fpn) 
are linearly disjoint over Fpn and Kpn~l (Lpn) and K(Fpn) are linearly disjoint 
o v e r ^ n _ 1 ( ^ n ) . 

(2) implies (3). If Lpn and K(Fpn) are linearly disjoint over Fpn, then since 
K(Fpn) 3 K^-'iF*") 3 Fpn, 0 ^ i ^ n - 1, Kpn-<'(Lpn) and K(Fpn) are 
linearly disjoint over Kpn~{(Fpn) and taking ^ " ^ t h roots, we have Kp(Lpi+l) 
and Kp~n+i+l(Fpi+1) (all we need is K(Fpi+1)) are linearly disjoint over 
^ ( ^ + 1 ) . Thus by [5, Lemma 1, p. I l l ] , i n s e p ( ^ ( ^ ' ) / ^ ) = insep(K(Lpi)/K). 

(3) implies (4). The proof follows by descending induction on i and the fact 
that inor(K(Lpi)) = insep(K(Lpi)) + mor(K(Lpi+1)) as in Lemma 1.1. 

(4) implies (1) is immediate. 
THEOREM 1.4. Any finitely generated extension L/K has a unique irreducible 

form. 
Proof. Let {La}a£A be the set of all forms of L/K and let n = inex (L/K). It 

suffices to show Pi« La is a form of L/K. By Theorem 1.3, Lpn and each K(La
pn) 

are linearly disjoint and hence Lpn and Da K(La
pn) are linearly disjoint over 

their intersection [10, Theorem 1.1, p. 39]. Since 
(HaK(La

pn))nLpn = n*((K(La
pn) r\ Lpn) = C\aLa

p\ 

we have that Lpn and f~)a K(La
pn) are linearly disjoint over C]a La

pn. But 

n*K(La
pn) -D K(HaLa

pn) = K((n*La)
pn) 3 f l ^ / , 

and hence Lpn and K((C\aLa)
pn) are linearly disjoint over (C^aLa)

pn. By 
Theorem 1.3, f\a La is a form of L/K. 

Before studying properties of irreducible extensions we review the following: 
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L is reliable over K if and only if L = K(B) for every relative />-basis B of L 
over K. L is modular over K if and only if Lpl and i£ are linearly disjoint over 
their intersection for all i. The modularity of L/K, mod (L/K), is the 
max{r\L/K(Lpr) is modular} if it exists and is oo otherwise. There exist unique 
minimal intermediate fields C* and Q* of L/K such that L/C* is separable and 
L/Q* is modular. C*/K is reliable and C*/Q* is purely inseparable modular 
[1, Theorems 1.1 and 1.4]. 

THEOREM 1.5. Assume L/K is irreducible with n = mex(L/K) and let Q* be 
the unique minimal intermediate field over which L is modular. Then 

(1) L is reliable over K. 
(2) Let B be any relative p-basis of L/K and let \B\ = t. Then any subset of B 

with t — 1 elements contains a separating transcendence basis for a distinguished 
sub field. 

(3) Q* 2 K(Lpn) and hence mod(L/K) ^ n unless L/K is algebraic and 
modular of exponent n over its maximal separable intermediate field. 

Proof. (1). If S is an intermediate field of L/K and L is separable over S, then 
as noted earlier S is a form of L/K and hence S = L. Thus L/K is reliable 
[7, Theorem 1, p. 523]. 

(2). Let {bi, . . . , bt] be a relative £>-basis for L/K. Consider L] = 
K(Lp)(b1, . . . ,bu . . . ,bt). Since L/K is irreducible, inor (L^K) < inor (L/K). 
{bi, . . . , bip, . . . , b t] certainly contains a relative ^>-basis for Li/K and hence 
a separating transcendence basis for a distinguished subfield D\ of Lx/K 
[5, Lemma 2, p. 113]. Since L/K is irreducible, a degree argument shows D\ is a 
distinguished subfield of L/K. Thus if we show bt

p cannot be part of a sepa
rating transcendence basis for D\/K, one must be composed by the elements of 
{bi, . . . , bi, . . . , bt\. If bt

p d D\ it is not part of a separating transcendence 
basis, hence assume b? G D\. Then L = Di(bt) ®DlLi. If bt

p were ^-inde
pendent in Di/K, Di(bi) would be separable over K and hence inor(L/i£) = 
inor(Li/i£), a contradiction. 

(3). Since L/K is reliable, L/Q* has bounded exponent [1, Theorem 1.4] 
and hence has a subbasis {bly • • • , bs}. If each bfn is in <2*, theni£(Lpn) C (?* as 
desired. If one is not, say bipn, then the exponent of L over L\ = Q*(bipn + 1, 
b2, . . . , bs) is n + 1 and L = Li(bi). Then [L : Li(&i^)] = p and as in part 
(2) Li(6ip) contains a distinguished subfield A for L/X. Thus K(Lpn) = 
K(Dipn) L3, Proposition 1, p. 288] Q KiL^W*1)) Q Lr. This contradicts the 
fact that the exponent of L over Lx is n + 1. Thus mod(L/i£) S n unless 
K(Lpn) = K(Lpn+1) in which case K(Lpn) is separable algebraic over K. 

COROLLARY 1.6. L/K is irreducible if and only if L/K is reliable and every 
subfield Li where [L : L{\ = p contains a distinguished subfield of L/K. 

Proof. Assume L/K is irreducible and [L : L{\ = p. Since L/K is reliable, 
L/Li is reliable and hence purely inseparable. Thus inor(Li/i£) = inor(L/i£) 
— 1 and any distinguished subfield for Li/K will be one for L/K. Conversely 
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let Li be any proper intermediate field. Since L/L\ is reliable, there exists 
L2 3 L\ such that L/L2 is purely inseparable of degree p. Thus L2 contains a 
distinguished subfield for L/K and inor (L/K) = inor (L2/K) + 1. By Lemma 
1.1, inor (L2/K) è inor (L^K). 

3. Relationships. We now investigate the relationship between L/K and 
forms for L/K. The distinguished closure of L/K is the unique minimal purely 
inseparable extension J* of K such that L(J*)/J* is separable [9, Theorem 3, 
p. 608]. 

LEMMA 2.1. Suppose Lx/K is a form of L/K. If M/K is a finite degree purely 
inseparable field extension, then L\(M) is a form of L(M)/K. 

Proof. Let Di and D be distinguished intermediate fields of Li/K and L/K 
respectively. Then D\ and D are distinguished for L\(M)/K and L(M)/K 
respectively. Since L1 C L, [L(M) : L] g [L^M) : LJ . Thus LL W : i ] 
X[L: D] S [Li(Af) : Li][Li : £>i], i.e. [L(M) : D] S [L^M) : A ] , But by 
Lemma 1.1, [L(M) : D] ^ [Li(M) : £>i]. 

THEOREM 2.2. Z,^ Z,i fre a form of L/K. Then 
(1) Li/K and L/K have the same distinguished closures. 
(2) If D is any distinguished subfield for L/K, then L = D(Li). 

Proof. (1) Let Ji* and J* be the distinguished closures, and let Dx and D be 
distinguished subfields of Li/K and L/K respectively. By Lemma 2.1, 
[L(/!*) : Z>] = [Za(JV) : A ] . Also [ Z W ) : D] = [A* : K] = [D^Jf) : Z>J. 
Since ZMJV) = ^ i W ) , U W ) : D] = [DJf : £>] so L(JX*) = D(JX*). 
Hence L C ZKJV) and 7* C Jx* by [9, Theorem 3, p. 608]. Since L(J*) is 
separable over J*, L\(J*) is separable over /*, and hence Ji* Ç J*. 

(2) L*n-D Lr (Dvn) ^ Lr. Since Li is a form of L/K, L?n and 
K(Livn) are linearly disjoint over Lipn by Theorem 1.2. By the lemma on linear 
disjointness [4, Lemma, p. 162], Lvn and K(LipnDpn) are linearly disjoint 
over Lr(Dpn). But since D is distinguished, Un C K(L?nD*") and hence 
I T = Lr(Dpn), i.e. L = Li(£>). 

Let / denote the maximal purely inseparable extension of K in L. Then L/K 
is said to split when L = J ®KD where D is separable over K. 

COROLLARY 2.3. The following conditions are equivalent, 
(1) L/K splits. 
(2) J/K is a form of L/K. 
(3) Li/K splits for all forms Lx of L/K. 
(4) Li/K splits for some form of L/K. 

Proof. If L/K splits, inor(L/K) = logp[J : K]. Hence / is a form of L/K. 
If J is a form of L/K, then since / is finite dimensional purely inseparable over 
K, J is the unique minimal form of L/K, and hence any form L\ must contain 
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/ . Since / is also a form of L\/K, L\ = D\J = D\ ®KJ where D\ is a dis
tinguished subfield of Lx/K (Theorem 2.2 (2)). Thus L\/K splits. Assume 
U/K splits for some form. Then Ll = {KP~m C\ U) ®KDX. Thus Kp~œ C\ Lx 

is the distinguished closure of L\, whence of L by Theorem 2.2 (1), and hence 
L/K splits. 

For the case where L/K is algebraic, the forms can easily be determined by 
degree arguments. L\/K is a form if and only if L/Li is separable and hence 
L/K is irreducible if and only if L/K is reliable. Recall that the modularity of 
L/K, m (L/K), is max{r| L is modular over K(Lpr)} if it exists and is co 
otherwise. 

THEOREM 2.4. Let Lx/K be a form of L/K. Thenm(L/K) è m(Lx/K). 

Proof. Let n = inex(L/K). Assume L1/K(Lipl) is modular. Consider the 
following diagrams where j ^ i, 

A: 

K(Lpj) 

K(L,pi) 

B: Lpi' 

Lx
pl 

,K(Lpi) C\ Lp 

,K(L!pi) r\Lxv
j-

,K(Lpi) 

,K(Lr) 

C: K(Lpi)' 

• K(Lpj) 

LPJ 

K(Lpi) H Lpi-

Lpl 

D : K(Lx
pi) ' 

K(Lr) C\ Lx
pj 

Lx
pi 

-K(L,pi) 

Mv 

In diagram A, LP1 and K(L^3) are linearly disjoint over LipJ by Theorem 1.3 
if j ^ n and by separability if j > n. Similarly for B. Since we are assuming Lx 

is modular over K(Lipl) we have the linear disjointness of D and we need to 
establish the linear disjointness of C. Let X be a linear basis of K(L\px) over 
K(Lx

pi) H Lx
pj. Then X is a basis of K(Lx

pj) over Lx
pi by P . Hence by 

A, X is a basis of i£(Lp;) over Lpy. By B, we see that X spans X(Lp i) over 
i£(Lpl) H Lpi. Hence for C, a spanning set for X(Lp i) over K(Lpi) C\ Lpj is 
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independent over Lp\ and hence must actually be a basis for K(LP%) over 
K(Lpi) H Lpi. Thus K(Lpi) and Lpj are linearly disjoint and L is modular 
over K(Lpi) and hence m (L/K) ^ m(Lx/K). 

We note that there can be strict inequality. Let K = P(up,vp), Li = 
K(xp, uxv + v) and L = 2C(x, wxp + p) where P is a perfect field and 
{u, x, v) is algebraically independent over P. Then it is straightforward that 
m{L/K) = 2 and m(Li/K) = 1. However, in one case we do have equality. 

THEOREM 2.5. Suppose L1 is a form of L/K. Then m (L/K) = oo if and only if 
m(Li/K) = oo. 

Proof. From the previous result, if m(L\/K) = GO certainly m (L/K) = oo . 
Suppose m (L/K) = oo, and let C* be the unique minimal intermediate field 
such that L/C* is separable, and C*/K is reliable [1, Theorem 1.2]. Let Q* be 
the unique minimal intermediate field such that L/Q* is modular and let L* be 
the irreducible from of L/K. By [1, Theorem 2.4] Q*/K is separable algebraic 
and C*/Q* is purely inseparable modular [1, Theorem 1.4]. Since L/C* is 
separable, C* is a form of L/K and hence C* 3 £*. But using Theorem 1.3 we 
see that L*/K is also a form of C*/K, and since C*/K is reliable algebraic it is 
irreducible and hence C* = L*. Since C*/Q* is purely inseparable modular and 
<2*/i£ is separable algebraic, K(C*pi) = Q*(C*pi) and hence C*/K(C*pi) is 
modular for alH, i.e. m (C*/K) = m(L*/K) = co.Butnow.Li 3 L* and hence 
mÇLx/K) è m(L*/K). 

COROLLARY 2.6. Suppose m (L/K) = GO . 77zew //ze unique irreducible form of 
L/K is the unique minimal intermediate field over which L is separable. 

Recall that if C* is the unique minimal intermediate field of L/K over which 
L is separable then C*/K is a form of L/K. Thus the unique minimal form 
L*/K of L/K must be contained in C* and hence be a form of C*/K. We now 
present an example to show even if L/K is reliable, L/L* may be transcen
dental. Le tK = P(x,y), Lx = K(wl)wlx

p'1 +3 / p - 1 ) andL = L1(w2t w2x
p~l + 

Wip~lyp~1) where P is a perfect field and {x, y, W\, w2} is algebraically inde
pendent over P. Then L/K is reliable [6, Lemma, p. 43], D\ = K(w\) and 
D = K(w2x

p~1 + Wip~1yp~1
i w2) are distinguished subfields of Lx/K and L/K 

respectively. Since [L : D] = [L : Di] = p, Li/K is a form of L/K and yet 
L/Li is of transcendence degree one. 
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