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Basic issues in nonequilibrium
statistical mechanics

Perhaps due to its technical complexity, oftentimes one sees in research papers
on nonequilibrium quantum field theory (NEqQFT) more emphasis placed on
the field-theoretical formalisms than the ideas these sophisticated techniques
attempt to capture, or the issues such problems embody. All the more so, we need
some basic understanding of the important issues and concepts in nonequilibrium
statistical mechanics (NEqSM), and how they are manifested in the context of
quantum field theory. Many important advances in this field came from asking
such questions and finding out how to answer them in the language of quantum
field theory. Because of this somewhat skewed existing emphasis in NEqQFT,
and since we do not assume the reader to have had a formal course on NEqSM
before, we shall give a brief summary of the basic concepts of NEqSM relevant to
the field-theoretical processes discussed in this book. Many fine monographs and
reviews written on this subject take a more formal mathematical approach. Since
our purpose here is to familiarize readers with these issues and their subtleties,
rather than training them to work in the rich field of NEqSM (which includes
in addition to the traditional subject matter such as the projection operator
formalism and open system concepts, also current topics at their foundation, such
as dynamical systems and quantum chaos), we choose to approach these topics in
a more intuitive and physical way, sacrificing by necessity rigor and completeness.

We first examine some commonly encountered physical processes and try to
bring out in each a different key concept in NEqSM. To have a concrete bearing
and a common ground, let us focus on just one such issue which is of paramount
importance and poses a constant challenge to theoretical physicists: How does
apparent irreversibility in the macroscopic world arise from the time-reversal
invariant laws of microphysics [Leb93, HaPeZu94, Mac92, Sch97]?

We begin with an analysis of the nature and origin of irreversibility in well-
known physical processes such as dispersion (referring in the specific context here
to the divergence of neighboring trajectories in configuration or phase space
due to dynamical instability), diffusion, dissipation and mixing. We will seek
the microdynamical basis of these processes and clarify the distinction between
processes whose irreversibility arises from the stipulation of special initial con-
ditions, and those arising from the system’s interaction with a coarse-grained
environment. It is beneficial to keep in mind these processes and the issues
they embody when we begin our study of quantum field processes so that they
will not be marred by the technical complexity of quantum field theory. We
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4 Basic issues in nonequilibrium statistical mechanics

can ask questions such as (1) “What is the entropy generation from particle
creation in an external field or a dynamical spacetime, as in cosmology?”; (2)
“How could an interacting field thermalize?”; (3) “Is there irreversibility asso-
ciated with quantum fluctuations in field theoretical processes like particle cre-
ation?” Or, more boldly, “Can the ‘birth of the Universe’ be viewed as a large
fluctuation?” “Might it not happen at all – a ‘still’ birth – due to the power-
ful dissipative effects of particle creation which suppresses the tunneling rate?”
(4) “Can one use thermodynamic relations to characterize certain quantum field
processes?”

These questions reveal how deeply one can probe into the NEqSM features of
quantum field theory and how quantum field processes can lend themselves to
statistical mechanical and thermodynamic depiction or characterization. Asking
question (1) reveals the differences resulting from many levels of coarse graining
between a quantum field understanding of particle creation processes (no
entropy production because the vacuum is a pure state) and a thermodynamic
description (yes, entropy is proportional to the number of particles produced).
Asking question (2) forces us to reckon with the intricate NEqSM features of an
interacting quantum field such as how a correlation entropy can be defined from
the Schwinger–Dyson hierarchy. These aspects are not usually discussed in quan-
tum field theory textbooks. The first part of question (3) brings out the often
used yet poorly understood aspects of noise – beginning with quantum noise
associated with vacuum fluctuations, properties of multiplicative colored noise,
and nonlocal dissipation and their effects on the dynamical processes. The second
part of question (3) is the so-called “back-reaction” effect of quantum fields on
a background field or background spacetime. Question (4) asks if this effect can
have a thermodynamic interpretation. To the degree that thermodynamics is the
long-wavelength, heavily coarse-grained limit of microphysics and quantum field
theory is a theory of microphysics, we certainly expect such relations to exist and
their discovery will reveal the relation between micro–macro and quantum-to-
classical transitions. A well-known relation is the black hole thermodynamics of
Bekenstein [Bek73] and the quantum Hawking radiation [Haw75]. Sciama [Sci79]
suggested that this can be understood from the viewpoint of quantum dissipative
systems. This view also applies to dissipation of anisotropy in the early universe
due to particle creation from the vacuum. We will find out later that both for
the black hole and the early universe these processes can indeed be understood
as manifestations of a fluctuation–dissipation relation, relating fluctuations
of quantum fields to dissipation in the dynamics of the background field or
spacetime.

1.1 Macroscopic description of physical processes

Let us begin by examining a few examples of irreversible processes to illustrate
their different natures and origins. Consider the following processes:
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1.1 Macroscopic description of physical processes 5

Dispersion
Diffusion
Dissipation
Relaxation
Mixing
Recurrence
Decoherence
Recoherence

They contain different aspects of irreversibility. The usage of these terms
appearing in general-purpose books could be rather loose or even confusing. For
example, diffusion, relaxation and dissipation are often seen used interchange-
ably. Even the same word could mean different things in different contexts. For
example, classical diffusion is often viewed as a form of dissipation, while quan-
tum diffusion refers to phase dispersion, usually occurs at a much faster time-
scale and is more closely related to decoherence than dissipation. We will discuss
quantum phenomena in Chapter 3. Here we will focus on the first six such pro-
cesses listed above and aim at providing some microdynamics basis to these
processes in order to give them a more precise meaning. In so doing we hope to
elucidate some basic notions and issues of NEqSM through examples.

We first highlight the distinction between dissipative processes (which are
always irreversible) and irreversible or “apparently” irreversible processes (which
are not necessarily dissipative). For example, in elastic scattering, neighboring
trajectories diverge exponentially fast. This is characteristic of mixing systems,
which are reversible. Relaxation and diffusion referring to dissipative systems
are irreversible. They are mixing systems with some type of coarse graining
introduced. As we shall see, not any type of coarse graining leads to irreversibil-
ity. Many factors enter, such as the large size of the system, the particular initial
conditions chosen, or the time-scales at work. This is where it calls for special
caution in doing the analysis. Better understanding of the chaotic behavior
in classical molecular dynamics has provided a firmer microscopic basis for
nonequilibrium statistical mechanics. Such studies for quantum systems are less
developed and for this reason we shall refrain from describing them. In Chapter
3 we shall have occasion to discuss quantum decoherence and dissipation where
the interplay of quantum and thermal fluctuations in the environment and their
effects on the system will be discussed. We shall also revisit these issues of
irreversibility and approach to equilibrium in Chapter 12.

A. Dispersion
Consider a system of dilute gas made up of interacting particles modeled as hard
spheres with diameter d. For simplicity, let us work in two dimensions with hard
disks. (Our illustration here follows [Gas98]; see also [Ma85] which contains excel-
lent conceptual discussions.) Assume the particles move with constant velocity v
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6 Basic issues in nonequilibrium statistical mechanics

and traverse a distance given by the mean free path � � d before colliding with
another particle elastically. The trajectory of any particle governed by the laws
of mechanics is of course reversible in time. However, upon just a few collisions
two neighboring trajectories will deviate from each other very rapidly if the scat-
tering surface is convex, as a sphere is. To see this, let’s set our stop watch time
zero (t = 0) right after the first collision (call this collision the n = 0 one) and
follow the particle’s trajectory for n subsequent collisions. Call the scattering
angle of the first collision θ(0) and the uncertainty associated with it δθ(0) and
likewise for the scattering angle after an additional n collisions θ(t) and its uncer-
tainty δθ(t). For each additional collision the uncertainty in the scattering angle
increases by a factor of �/d deduced from the simple trigonometry of incident
and scattered trajectories. So after n collisions then

|δθ(t)| ∼ |δθ(0)|n ≡ |δθ(0)|eλt (1.1)

The second equivalence relation above defines the parameter λ, which is called
the Lyapunov exponent (actually its maximal value enters into this expression).
The time for n successive collisions is given by t = nτ where τ is the time
between collisions related to the mean free path � by v = �/τ . Thus the (maximal)
Lyapunov exponent is given by

λ ∼ 1
τ

ln
�

d
(1.2)

This simple way of estimating the maximum Lyapunov exponent first given by
Krylov [Kry44, Kry79] remains very useful in illustrating the elemental process
of divergence of neighboring trajectories due to dynamical instability, referred
to here as “dispersion” for short. For hard sphere collisions we see that after a
sufficiently long time |δθ(t)| ≈ 1, the exit direction becomes completely indeter-
minate due to the accumulated error.

The asymmetry in the initial and final conditions of the collection of
trajectories (congruence) comes from the accumulation and magnification of
the uncertainty in the initial conditions due to the collisions, even though
the dynamical law governing each trajectory is time-symmetric. To trace a
particular trajectory backwards in time after a large number of collisions
requires an exponentially high degree of precision in the specification of the
initial condition. This ultra-sensitivity of dynamics to initial conditions is
characteristic of chaotic systems. Note that the divergence of neighboring
trajectories in phase space or parameter space is an intrinsic property of
the nonlinear Hamiltonian of the system, not a result of coarse graining by
the truncation of the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
series and the causal factorizability of the two-particle correlation function as
in Boltzmann’s molecular chaos hypothesis. (Initially uncorrelated particles
become correlated after collisions, thus giving rise to time-asymmetry in the
dissipative dynamics of Boltzmann’s equation.) The evolution of an ensemble
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1.1 Macroscopic description of physical processes 7

of such systems at some finite time from the initial moment often appears to
be unrelated to their initial conditions, not because the individual systems are
insensitive to the initial conditions but because they are overly-sensitive to
them, thus making it difficult to provide an accurate prediction of each system’s
state in the future. It is in this sense that these systems manifest irreversibility.
In contrast, for an integrable system the trajectories stay close to each other
because the regions in phase space for its dynamics are limited by the constants
of motion. Such trajectories in integrable systems are referred to as “stable”
while those in chaotic systems are “unstable” as they become dispersive in the
sense defined above owing to their dynamical instability. We will return in a
later section to irreversibility and nonequilibrium thermodynamics considered
from the framework of Hamiltonian dynamics.

B. Diffusion
Let us look at some simple examples in kinetic theory: gas expansion, ice melt-
ing and an ink drop in water. These are irreversible processes because the ini-
tial states of 1023 molecules on one side of the chamber and a piece of ice
or ink drop immersed in a bath of water are highly improbable configurations
out of all possible arrangements. These initial conditions are states of very low
entropy. The only reason why they are special is because we arrange them to
be so. For these problems, we also know that the system–environment sepa-
ration and interaction make a difference in the outcome. In the case of an
expanding ideal gas, for example, for free expansion the change of entropy is
δSsystem > 0, δSenviron = 0, δStotal > 0. For isothermal quasistatic expansion:
δSsystem = −δSenviron > 0, δStotal = 0 instead (see, e.g. [Rei65]).

Another important factor in determining whether a process is irreversible
is the time-scale of observation compared to the dynamic time-scale of the
process. We are familiar with the irreversible process of an ink drop dispersing
in water which happens in a matter of seconds, but the same dye suspension
put in glycerine takes days to diffuse, and for a short duration after the initial
mixing (say, by cranking the column of glycerine with a vertical stripe of dye
one way) one can easily “unmix” them (by reversing the direction of cranking
[UMDdemo]). We will discuss in the next section under what conditions and in
what sense a “mixing” system, though time-reversible, can be viewed as capable
of approaching equilibrium. Diffusion, when used in the sense of dissipation, is
nevertheless an irreversible process.

C. Dissipation
There are two basic models of dissipation in nonequilibrium statistical mechanics:
the Boltzmann kinetic theory of dilute gas, and the Langevin theory of Brow-
nian motion. Each invokes a different set of concepts, and even their relation
is illustrative. In kinetic theory, the equations governing the n-particle distri-
bution functions (the BBGKY hierarchy) preserve the full information of an
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n-particle system. It is (1) ignoring (more often restricted by the precision of
one’s observation than by choice) the information contained in the higher-order
correlations (truncation of the BBGKY hierarchy), and (2) the imposition of
causal factorization conditions, like the molecular chaos assumption, that brings
about dissipation and irreversibility in the dynamics of the lower-order correla-
tions [Zwa01, Bal75].

In the lowest order truncation of the BBGKY hierarchy valid for the descrip-
tion of dilute gases, the Liouvillian operator L acting on the one-particle distribu-
tion function f1(r1, p1, t) is driven by a collision integral involving a two-particle
distribution function f2(r1, p1, r2, p2, t) (cf. Chapters 2 and 11). Boltzmann’s
molecular chaos ansatz (MCA) assumes an initial uncorrelated state between
two particles: f2(1, 2) = f1(1)f1(2), i.e. that the probability of finding particle
1 at (r1, p1, t) and particle 2 at (r2, p2, t) at the same time t is equal to the
product of the single-particle probabilities (a factorizable condition). Note that
this condition is assumed to hold only initially, but not finally. A short-range
interaction in a collision process will almost certainly generate dynamical cor-
relations between the two collision partners. The truncated BBGKY hierarchy
(with MCA) is an example of what we call an effectively open system (see Sec-
tion 1.5 of this chapter). Boltzmann’s explanation of dissipation in macroscopic
dynamics is one of the crowning achievements of theoretical physics.

Dissipation in an open system described by the Langevin dynamics has
similarities with and differences from that of an effectively open system (as
exemplified by the Boltzmann system). The open system can be one distin-
guished oscillator, the Brownian particle (with mass M), interacting with
many oscillators (with mass m) serving as its environment (see Chapter 2).
Dissipation in the dynamics of the open system arises from ignoring details
of the environmental variables and only keeping their averaged effect on the
system (this also brings about a renormalization of the mass and the natural
frequency of the Brownian particle). Usually one assumes M � m and weak
coupling between the system and the environment to simplify calculations.
The effect of the environment on a particular system can be summarized
by its spectral density function, but other environments can produce equiv-
alent effects. In both of these models, as well as in more general cases,
the following conditions are essential for the appearance of dissipation (see,
e.g. [Hu89]):

(a) System–environment separation. This split depends on what one is interested
in, which defines the system: it could be the slow variables, the low modes,
the low order correlations, the mean fields; or what one is restricted to: the
local domain, the late history, the low energy, the asymptotic region, outside
the event horizon, inside the particle horizon, etc.

(b) Coupling. The environment must have many degrees of freedom to share with
and spread the information from the system; its coupling with the system
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1.1 Macroscopic description of physical processes 9

must be effective in the transfer of information (e.g. nonadiabatic) and the
response of the coarse-grained environment must be sufficiently nonsystem-
atic in that it will only react to the system in an incoherent and retarded
way. (An example of almost the opposite condition is a dressed atom, i.e. an
atom in a high finesse electromagnetic cavity where the quantum coherence
of the system can be preserved to a high degree [CoPaPe95].)

(c) Coarse graining. One must ignore or down-grade the full information in the
environmental variables to see dissipation appearing in the dynamics of the
open system. (The time of observation enters also, in that it has to be greater
than the interaction time of the constituents but shorter than the recurrence
time in the environment.) Coarse graining can be the causal truncation of
a correlation hierarchy, the averaging of the higher modes, the “integrating
out” of the fluctuation fields, or the tracing of a density matrix (discarding
phase information).

(d) Initial conditions. Whereas a dissipative system is generally less sensitive to
the initial conditions in that for a wide range of initial states dissipation
can drive the system to the same final (equilibrium) state, the process is
nevertheless possible only if the initial state is off-equilibrium. The process
manifests irreversibility also because the initial time is singled out as a special
temporal reference point when the system is prepared in that particular
initial state. Thus in this weaker sense, dissipation is also a consequence of
specially prescribed initial conditions.1

While the dynamics of the combined system made up of a subsystem and its
environment is unitarity, and its entropy remains constant in time, when certain
coarse graining is introduced in the environment, the subsystem turns into an
open system, and the entropy of this open system (constructed from the reduced
density matrix by tracing out the environmental variables) increases in time. In
this open system dynamics, the effect of the coarse-grained environment on the
subsystem leads to dissipation and irreversibility in its dynamics.

In our prior discussion of dynamical instability or “dispersion” with the
example of hard-disk scattering we were introduced to irreversible but nondis-
sipative processes. Irreversibility there refers to the ultra-sensitivity of the
dynamics to the initial conditions. It is extremely difficult to trace back in
time a highly divergent congruence of trajectories. The source of irreversibility

1 Note the distinction between these cases: If one defines t0 as the time when a dissipative
dynamics begins and t1 as when it ends, then the dynamics from t0 to −t is exactly the
same as from t0 to t, i.e. the system variable at −t1 is the same as at t1. This is expected
because of the special role assigned to t0 in the dynamics with respect to which there is
time-reversal invariance, but it is not what is usually meant by irreversibility in a
dissipative dynamics. The arrow of time there is defined as the direction of increase of
entropy and irreversibility refers to the inequivalence of the results obtained by reversing
t0 and t1 (or, for that matter reversing t0 and −t1), but not between t1 and −t1. The
time-reversal invariance of the H-theorem has the same meaning.
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10 Basic issues in nonequilibrium statistical mechanics

there is by nature fundamentally different from that found in open systems
discussed here. The former dynamics is irreversible but nondissipative, while
the latter is both dissipative and irreversible. Both types of processes depend
on the stipulation of initial conditions. The difference is that the former
depends sensitively so, the latter less sensitively. Thus dissipative processes
must involve some measure of coarse graining, but coarse graining alone need
not lead to dissipation. We will have a subsection later on the issue of coarse
graining.

D. Phase mixing
Two well-known effects fall under this category: Landau damping and spin echo
(e.g. [Bal75, Ma85]). Let us examine the first example. If one considers long-
ranged forces such as the Coulomb force in a dilute plasma gas where close
encounters and collisions are rare, the factorizable condition can be assumed to
hold throughout, before and after each collision (thus there is no causal condition
like the molecular chaos assumption imposed). Under these conditions the Boltz-
mann kinetic equation becomes a Vlasov (or collisionless Boltzmann) equation
(see, e.g. [Bal75, Kre81]). This problem will be discussed in Chapters 10 and 11.
The dependence on the one-particle distribution function f1(r,p, t) makes the
Vlasov equation nonlinear, and it has to be solved in a self-consistent way. (This
aspect is analogous to the Hartree approximation in many-body theory.) Note
that the Vlasov equation which has a form depicting free streaming is time-
reversal invariant: the Vlasov term representing the effect of the averaged field
does not cause dissipation. This mean-field approximation in kinetic theory,
which yields a unitary evolution of reversible dynamics, is, however, only valid
for times short compared to the relaxation time of the system in its approach to
equilibrium. This relaxation time is associated with the collision-induced dissi-
pation process.

Landau damping in the collective local charge oscillations, being a solution
of the Vlasov equation, is intrinsically a reversible process. The appearance of
apparent “irreversibility” is a consequence of some specially stipulated initial
conditions. One may even be able to find a function which is monotonically
increasing and refer to it as representing entropy generation. However, upon
the choice of some other condition, this feature can disappear and the entropy
function can decrease. (An example in Chapter 4 is the entropy function defined
in the particle number basis.) Landau “damping” is a mixing process, illustrated
here by the Vlasov dynamics. It is fundamentally different from the dissipation
process, in that the latter has an intrinsic damping time-scale but not the former,
and that while dissipation depends only weakly on the initial conditions, mixing
is very sensitive to the initial conditions. Spin echo is another well-known example
of phase mixing [Bal75]. For quantum plasma, one needs to coarse grain the phase
information in the wavefunctions and consider special initial conditions to see
this apparent “damping” effect (more in Chapter 4).
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1.2 Microscopic characterization 11

From the array of examples above we see that irreversibility and dissipation
involve very different causes. The effect of interaction, the role of coarse graining,
the choice of time-scales, and the specification of initial conditions in any process
can give rise to very different results. We will expand on these physical conditions
later, after we have had a chance to look at the microscopic characterization of
these macroscopic processes, i.e. their molecular dynamics basis.

1.2 Microscopic characterization from dynamical systems behavior

From a sampling of these macroscopic processes we see a variety of physical
behavior. The underlying causes should all be traceable to the microscopic molec-
ular dynamics, to which we now turn our attention. Let us start with a decep-
tively simple question: An isolated mechanical system is time-reversible. Under
what conditions and in what sense does a large isolated system reach equilibrium?

1.2.1 Ergodicity describes a system in equilibrium

An isolated system of N molecules in a volume V has a constant total energy
E under the Hamiltonian H(r,p), where r,p each is a 3N-dimensional vector
denoting the position and momenta of all the particles in a 6N-dimensional phase
space Γ. The density function ρ(γ) is defined such that the probability of finding
a member γ of the ensemble in a differential volume dΓ ≡ dr1 · · · drNdp1 · · ·dpN

is equal to ρ(γ)dΓ. Its dynamics is described by the flow of each member of the
ensemble restricted to the constant energy surface or manifold E in Γ. Since the
number of members flowing in and out of a region in phase space should be equal
for all times we have ρ satisfying the Liouville equation,

dρ

dt
≡ ∂ρ

∂t
+

N∑
1

(
ṙi ·

∂

∂ri
+ ṗi ·

∂

∂pi

)
ρ = 0 (1.3)

where an overdot denotes derivative with respect to time.
In statistical mechanics the microcanonical ensemble describes such an iso-

lated system. The number of states is represented by the area of the energy
surface E in phase space:

Ω(E) =
∫
H=E

dμ ≡
∫

Γ

δ(H − E)dμ, (1.4)

where μ is the invariant measure on Γ. The entropy is defined as S = kB ln Ω(E).
The ensemble average of a phase space function F over the energy surface E is
given by

〈F 〉μ ≡
∫
H=E

dμF (γ)∫
H=E

dμ
=

∫
Γ
F (γ)δ(H − E)dμ∫
Γ
δ(H − E)dμ

(1.5)
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We also learned that a system in equilibrium (either by itself, as in a micro-
canonical ensemble, or in contact with a heat bath, as in a canonical ensemble)
will have equal a priori probability to occupy any of its accessible microstates.
How do these concepts: ensemble average, flows in phase space and equilibrium
state, connect with each other? Equivalence between the kinetic theory and sta-
tistical mechanics description implies that there must be a relation between the
way the system points in phase space move (the Liouville flow) and what makes
up a typical copy of the system (ensemble average). Equilibrium suggests that the
system is stationary. Thus a typical system point must spend an equal amount
of time in regions of phase space of equal measure on the energy surface. This is
the gist of Boltzmann’s ergodic hypothesis. If we define the time average of a
phase space function F (γ) on the energy surface E as

〈F 〉t ≡ lim
t→∞

1
T

∫ T

0

F (γt)dt (1.6)

where γt denotes the point in Γ space after evolving a time t, then the ergodic
hypothesis states that

〈F 〉t = 〈F 〉μ . (1.7)

This says that an arbitrary snapshot (time) of the system provides a typical
copy (ensemble) of the system in equilibrium, or, loosely, that time average is
equivalent to ensemble average.

Examples of an ergodic system include a one-dimensional harmonic oscilla-
tor, an automorphism on a 2-torus in phase space such as the baker’s transform
or the Arnold cat map. For a quantum system to be ergodic it has to have a
nondegenerate energy spectrum. Many simple yet important systems in statisti-
cal mechanics are nonergodic. Examples are an ideal gas and multiple harmonic
oscillators. For nonergodic systems the energy manifold is metrically decompos-
able, i.e. E can be partitioned into two or more invariant submanifolds each of
which is invariant under the flow in phase space Γ. An equilibrium condition is
described by an ensemble density which is constant on each submanifold, but
not necessarily on the entire energy manifold.

Note that ergodicity is a microdynamics condition depicting a system in equi-
librium but the property is irrelevant to whether a system can approach equilib-
rium [Far64].

1.2.2 Mixing system is time-reversible; weak sense

of approach to equilibrium

One would think that if the flow in a system is chaotic enough such that the
initial probability distribution spreads sufficiently evenly throughout the phase
space then there may be a chance for the energy surface to be uniformly occupied.
The first condition constitutes what is known as a mixing system. The second
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condition is close to, but still insufficient to define a state of equilibrium. Let
μ(A) be the measure2 on a set A on the energy surface (the complete energy
surface is denoted by E) in phase space. Denote by At the same set at time t. It
is obvious that μ(A) = μ(At). A system is mixing if for all sets B on the energy
surface the following holds:

lim
t→∞

μ(At

⋂
B)

μ(B)
=

μ(A)
μ(E)

(1.8)

In practice the infinite time limit can be just the laboratory or observation time-
scale. What this means is that in a mixing system the stretching of the original
set will enable it to intersect with almost any region in the entire energy surface.
This requires two conditions. First, there must exist in the system trajectories
which spread out rapidly in certain directions of the phase space on the energy
surface. Second, that the flow can traverse the whole energy surface E , so it has
to be metrically nondecomposable (i.e. that it cannot be subdivided into two or
more regions of nonzero measure such that a trajectory starting in one region will
never leave it). Common examples of mixing systems are the baker’s transform
and the Arnold cat map. Since a mixing system has flows which are nearly
uniform in the phase space it can be understood to imply ergodicity. However
the converse is not true. Both ergodic and mixing systems are time-reversible.

To see irreversible behavior and the approach to equilibrium one needs to
introduce some measure of coarse graining, such as considering only the slow
variable associated with the unstable direction of the flows, or imposing certain
assumptions on the initial conditions in the distributions.

1.2.3 Dissipative system: coarse-grained mixing permits

approach to equilibrium

For a system whose unstable trajectories stretch out any initial distribution
into very “long and narrow” filaments on the energy surface in the course of
time they can produce a uniform spread in phase space. We refer to systems
having these properties as satisfying the “chaotic hypothesis” of Cohen and
Gallavoti [GalCoh95], or chaotic systems (strictly speaking, the system needs
to satisfy the set of criteria which define a hyperbolic or an Anosov system,
which is much stronger than mixing; to delve into this topic will go beyond the
scope of our book, and we refer interested readers to nice monographs such as
[Dor99, Gas98]). In such systems neighboring trajectories diverge from each other
exponentially fast – with positive Liapunov exponents, in an unstable direction.
The chaotic hypothesis is to dissipative systems as ergodicity is to equilibrium

2 For hyperbolic systems, to capture the smoothness in the unstable directions and the
fractal nature in the stable directions, one needs to use the Sinai–Ruelle–Bowen measure
[RueEck85, Sinai72, BowRue75, Rue76].
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systems. Thereupon one can speculate that averages taken with the distribu-
tion function defined on this extended set be equal to the average taken with
a smooth equilibrium distribution. (To fulfill the exact criterion of equilibrium
one also needs to consider whether the equal spreading in any region of phase
space on the energy surface is also uniform in time.) Gibbs correctly observed
that a mixing system will not reach the uniform phase space density ρ̄(γ) in the
fine-grained sense, i.e. limt→∞ ρt(γ) = ρ̄(γ) for each phase space point γ in Γ.
But it is likely to do so in a coarse-grained sense, i.e. that the average of ρt(γ)
over each fixed region of phase space will become uniform. ρ̄ is called the weak
limit of the family of functions ρt [Pen70].

It is only in this weak sense that a statement like “a mixing system approaches
equilibrium” becomes valid. Bear in mind that a mixing system is time-reversal
invariant without coarse graining. Even coarse graining does not automatically
turn a mixing system into a dissipative one. We will expand on this point in
the next section. Some additional conditions need to be introduced to turn
a mixing system into one which shows irreversibility and approaches equilibrium.

Averaging and tracing. Since irreversibility appears in macroscopic systems one
may attempt to scale up the system and hope that averaging over a larger
phase space may lead to irreversibility. Coarse graining in this way does lead to
entropy increase, but it does so in both time directions, so the system remains
time-reversible. On the other hand, projection to a lower dimension, or “tracing”
(in a sense defined by e.g. [Mac74]) does allow for increase in one time direction.

Molecular chaos assumption. Boltzmann’s Stosszahlansatz, or molecular chaos
assumption, is a causal condition, i.e. before each collision the two molecules are
uncorrelated but afterwards they are: This is where the irreversibility enters.
The dynamical origin of Boltzmann’s Stosszahlansatz is not clear. Note the
choice of time-scales involved here: the shorter time-scales describing higher
order correlation functions play a less important role in the long-time behavior
which is dominated by the time-scale associated with the behavior of the
one-particle distribution function.

Unstable versus stable direction. On the microscopic level we notice already some
coarse graining is introduced when we focus on the divergent trajectories in
defining the unstable directions of flow in phase space. In the simplest exam-
ple ([Dor99]) of a Boltzmann equation derived from the baker’s map it is the
distribution function projected in the slow variables associated with the unsta-
ble direction which has a chance to approach the equilibrium distribution. This
happens at a time-scale which is much shorter than the time it takes for any
small region of phase space to get mixed in the full space. Again this presumes
two conditions: that we are dealing with a projected distribution function by
paying attention only to the trajectories with positive Lyapunov exponents, and
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1.2 Microscopic characterization 15

that the initial conditions are conducive to starting the chaotic flow. Notice the
time factor involved. Here we see some similarity between our description of the
molecular (micro) dynamics of a few degrees of freedom and the gas (macro)
dynamics in terms of invoking projection (or reduction), imposing initial condi-
tions, and choosing time-scales. Their connection certainly depends on the role
of very large numbers, multi-time-scales or interaction strength. We now turn
our attention to these issues.

1.2.4 Nonequilibrium thermodynamics and chaotic dynamics3

It is often said that information loss is the source of irreversibility and the
approach to equilibrium. From the molecular dynamics description this is not
always the case. The baker model gives a good example here. It is essential that,
for chaotic systems at least (we really don’t understand much about nonchaotic
systems, paradoxically) the projection catches at least a piece of the unstable
directions in phase space, so the stretching mechanism can smooth out an irreg-
ular distribution function. It is also important that the distribution functions
be smooth enough not to be concentrated on special orbits which are insensi-
tive to the projection. The application of the molecular chaos assumption in the
Boltzmann theory is interesting in the sense that if one takes the correlations
to be destroyed by collisions, then one gets an anti-Boltzmann equation, with
funny properties. So to get irreversibility one needs both the projection onto a
space that has some stretching mechanism in phase space as well as some special
conditions imposed on an initial state distribution function.

The other form of coarse graining is more subtle and connected to chaos.
Even if no projections onto lower dimensional phase spaces are made, chaotic
dynamics, when present, forces a distribution function to become closer and
closer to a fractal with structure on arbitrarily fine scales. In the limit of large
times, distribution functions do not have nice mathematical properties. They
are not differentiable, for example. Thus some coarse graining is required to
go from an SRB fractal measure to a distribution function that can be used
to calculate averages. This necessitates a loss of information and is a source of
entropy increase.

The source of irreversibility in Landau damping is also connected with the
construction of a fractal structure.4 Mathematically the distribution function
becomes a Schwartz distribution and lives in a space where the usual theorems

3 The authors are grateful to Professor Robert Dorfman for sharing with them the latest
view on these issues in a correspondence from which some of the description in this
subsection is adopted.

4 In the opinion of some leading statistical physicists, Dorfman being one of them, who
conveyed this to the authors, the earliest notion of fractals was introduced in the physics
literature by van Kampen in his discussion of Landau damping. He called the distribution
function “corrugated” for lack of a better word.
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16 Basic issues in nonequilibrium statistical mechanics

about the spectra of differential operators no longer apply, and decays can appear
in unexpected ways. The notion of a “Gelfand triple” is useful here for its descrip-
tion [LaCaId99, ACGI00]. To delve further into these directions is beyond the
scope and intent of this book, but interested readers should consult the excellent
books of Dorfman [Dor99], Gaspard [Gas98] on the micro–macro relations. Pierre
Gaspard has pioneered this approach to irreversibility and the Second Law by
showing explicitly the deep connection between Kolmogorov–Sinai (KS) entropy
and thermodynamic entropy production as well as other distinct properties of
nonequilibrium thermodynamics from the theories of dynamical systems (see,
e.g. the book of Nicolis [Nic95]). Some salient features are mentioned below (see
Gaspard’s 2006 summer school lectures [Gas06]).

The aim is to understand the statistical behavior of a collection of particles
such as relaxation, diffusion, dissipation, viscosity from the microdynamics of
the particles and the divergence properties of their trajectories (congruence) in
time. The starting point is the familiar Liouville equation for Hamiltonian sys-
tems. One can extract the instrinsic relaxation rates from this equation under
certain assumptions on the dynamics. Two important quantities characterizing
the microdynamics of the particle congruence are the Lyapunov exponents and
the KS entropy per unit time. (The Lyapunov exponents characterize the sensi-
tivity to initial conditions of the underlying microscopic dynamics while the KS
entropy per unit time measures the degree of dynamical randomness developed
by the trajectories of the system during their time evolution.) The new focus in
this recent work is on the large deviations or large fluctuations that the dynam-
ical properties of a system develop in time. In the escape-rate formalism, these
large-deviation relationships relate these microscopic quantities to the trans-
port functions in the macroscopic dynamics of the collective particles (see, e.g.
[Gas98, Dor99]). These large-deviation relationships are also the basis for the for-
mulation of new fluctuation theorems [EvCoMo93, EvaSea94, GalCoh95, Jar97].
The concepts and techniques in these interfaces have also proven to be
invaluable in treating new mesoscopic physical phenomena at the nanoscale
[BuLiRi05].

1.3 Physical conditions

Let us be reminded that in addition to examining the microscopic basis of
nonequilibrium statistical mechanics via abstract dynamical systems we also need
to consider the fact that we are dealing with a large system. It is well-known
that the thermodynamic limit is obtained by taking N,V to infinity while keep-
ing the ratio of these two quantities finite. What is the effect of a large system
on fluctuations and irreversibility? How does the imposition of some specific
initial condition alter the macroscopic dynamics? How can we understand the
fundamental difference between microscopic and macroscopic behavior in terms
of time-scales or interaction strength? How do the averaging or coarse-graining
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procedures affect the outcome of a macroscopic observation? One needs to seek
answers to these questions in order to address the fundamental issue of how the
macroscopic features arise from its microscopic dynamics. We shall now combine
the micro and macro descriptions in exploring these important physical factors.
The following items also make up a useful checklist to examine whenever we
encounter a new quantum field process and attempt to understand its basic
statistical mechanical meaning.

1.3.1 Large systems: Fluctuations, Poincaré recurrence and

thermodynamic limit

We are familiar with the advantage of taking the large number N and large
volume V limit. Thermodynamics obtained in this limit while keeping n = N/V

constant is a simple yet powerful theory which captures the essential features of
macroscopic phenomena. From microdynamics, a chaotic system (one which sat-
isfies the “chaotic hypothesis”) approaches equilibrium in a coarse-grained sense
([Dor99]). For systems whose microdynamics has the right properties the average
〈F 〉t of a dynamical variable F taken over the appropriate ensembles approaches
an equilibrium value 〈F 〉Eq. To infer that in any of the individual systems in the
ensemble F is close to 〈F 〉Eq one needs to ensure that the fluctuations of F are
small, and for this one needs to invoke the large size of the system as well as its
mixing or chaotic properties ([Pen79]).

On the relation of fluctuations, the size of the system, and the time-scales
involved, it is instructive to bring up the Poincaré recurrence and Zermelo’s
(1896) objection to Boltzmann’s theory. Poincaré (1892) stated that any isolated,
finite, conservative system will in a finite time come arbitrarily close to its initial
configuration. Boltzmann’s HB(t) function cannot decrease monotonically but
must eventually increase to reach its original value HB(0) in a finite time. Thus,
Zermelo argued that Poincaré recurrence would undermine Boltzmann’s theory
of approach to equilibrium.

Boltzmann’s answer to this paradox invokes fluctuations and probabilistic
arguments. We know from statistics that if N were just a few particles the fluc-
tuations are comparable to the mean. The Poincaré recurrence time TP is short
and there is no discernible trend of irreversibility. This case is not addressed by
Boltzmann’s theory. The larger the system the smaller the fluctuations become,
and the longer the Poincaré recurrence time. For example, Mazur and Montroll
[MazMon70] considered a linear chain of N classical point masses m harmoni-
cally (with natural frequency ω0) coupled to each other’s nearest neighbors. For
N = 10 and ω0 = 10/sec they found that TP = 1010 years, about the age of the
universe. Only with a long Poincaré recurrence time will the distribution function
for the macroscopic variables become sharp and the tenets of statistical mechan-
ics apply. In addition to the size of the system the recurrence time depends
sensitively and irregularly on the initial state. Because of random fluctuations
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individual sample occurrences cannot be used for reliable prediction of the robust
behavior of the overall physical systems, which can only be made in a probabilis-
tic sense. Taking the thermodynamic limit permits one to construct a simpler,
asymptotic, statistical theory for large systems. In this limit Poincaré’s recur-
rence is probabilistically suppressed.

From kinetic theory considerations, the dynamical correlations established
between particles after collisions will become less significant, at least for a dilute
gas, when a larger system is considered by observers interested in the long-time
behavior of the system. This enables one to focus on those physical quantities of
most interest in the long-time limit, such as the expected value of the one-particle
distribution function. It is in this same context where Boltzmann proposed his
truly original and remarkable theory in depicting the dynamical behavior of the
macroscopic world.

1.3.2 Initial conditions: Specific, randomized,

dynamical correlations

For a mixing system any set of nonzero measure will be spread out in time
uniformly on the energy surface. This suggests that the trajectories must be
very sensitive to the initial conditions. Indeed it is so.

Boltzmann assumes that the molecular chaos assumption holds for each
collision. Lanford in 1975 [Lan75], using a Lorenz gas of hard spheres of
radius a, showed that in the (Grad) limit: a → 0 while n = N/V → ∞ in
such a way that the mean free path λ = (nπa2)−1 remains constant (it thus
applies for all values of the mean free path), and Boltzmann’s Stosszahlansatz
can be replaced by the assumption that the particles are uncorrelated ini-
tially: ρ(z1 . . . zN ; 0) =

∏N
i=1 fi(zi, 0) [zi = (ri,pi) denotes the coordinates and

momenta of the i-th particle] since in this limit the r-particle distribution con-
verges almost everywhere to products of one-particle distribution functions at
all times, i.e. lim fr(z1, · · · zr, t) =

∏r
i=1 f1(z1, t). (Note that the Grad limit is

different from the thermodynamic limit in that the volume is kept constant.)
Time-reversal of Boltzmann’s dynamics can be exact but any small uncer-

tainty or error can wipe out reversibility. Thus random initial conditions ensure
that we can extract the system’s generic and not specific behavior (by design,
such as putting all particles on one side of a partition). Let us see how the
Loschmidt paradox (1876) can illuminate the role played by the initial condi-
tions on irreversibility. An isolated system is time-reversal invariant. If a system
evolves towards equilibrium there must be an equally acceptable evolution which
takes the system away from equilibrium which is not seen in nature. At the dawn
of the computer age, one of the first computer simulations of molecular dynamics
was performed by Orban and Bellemans in 1967 [OrbBel67, Ald73] who numer-
ically integrated the equations of motion for a two-dimensional dilute gas (at
a density of 0.04 of close packing) of 100 hard disks in a square box colliding
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with each other and the box. They let the system evolve for a definite number
of collisions up to time t1 short compared to the equilibration time tEq, and
then reversed all the velocities. Since this is a reversible microdynamics one may
expect to recover the initial state after a time 2t1. They found that the accu-
racy with which the original state is restored at time 2t1 falls off rapidly as t1 is
increased, due to the rounding errors in the numerical integration. This can be
understood in light of the divergence of trajectories (“dispersion,” or dynamical
instability) discussed in Section 1.1. It is also a good illustration of the important
role played by initial conditions: In the numerical simulation, Orban and Belle-
mans chose as initial condition t = 0 the molecules being placed at the vertices of
a square mesh in the box with equal speed but random direction. The gas reaches
equilibrium after about 200 collisions as the distribution approaches a Maxwell–
Boltzmann form and the Boltzmann H-function of the velocities HB(t) reaches a
minimum. In contrast the initial condition at t1 for the time-reversed evolution
is a very special one [Pri73], because the correlations established amongst the
particles (hard disks) are very particular to that instant in the entire history
of the system. If we consider the condition of the system close to equilibrium
(t ≈ tEq) as natural (highest probability of occurrence) then the condition of
the system at t1 is highly unnatural (very low probability) with respect to the
equilibrium state. Indeed it shows anti-kinetic (contrary to Boltzmann’s predic-
tions) behavior when HB(t) increases over a period of time. The result of these
numerical simulations in spin-echo experiments was obtained by Rhim, Pines
and Waugh in 1971 [RhPiWa71]. For experimental realization of the Loschmidt
echo see [PLURH00].

Note also that the anti-kinetic behavior (Boltzmann’s H-function HB(t)
increasing) cannot be obtained from solutions of the Boltzmann equation,
because it is predicated upon a molecular chaos assumption. To do the velocity
or time reversal one must solve for the correlations in time from the complete
BBGKY hierarchy of the N-body system, which is difficult but possible numeri-
cally or experimentally, but almost impossible analytically.

Thus the resolution of the Loschmidt paradox is that Boltzmann’s equation is
only an approximation to the exact equations of motion which describe systems
with random initial states and no dynamical correlations. This is a very differ-
ent situation from the time-reversed evolution, where the initial condition at t1
registers information of strong dynamical correlations.

1.3.3 Time-scales and interaction

We have already seen how one can characterize the condition for a system to
approach equilibrium by the discrepancy between characteristic time-scales. In
Bogoliubov’s explanation of the kinetic conditions, Boltzmann’s equation govern-
ing the one-particle distribution function measures the time between collisions
which is the slow variable (the relevant variable), while the fast variables giving
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the time during collisions are ignored (the irrelevant variables). We saw a simi-
lar division of time-scales in the microdynamics of the chaotic systems. In such
systems, the unstable direction defines a slow variable while a stable direction
defines a fast variable. One can construct a Boltzmann equation (in the form of
a gain–loss equation) which permits the approach to equilibrium (see [Dor99]).
Such a Markovian equation shows irreversibility.

We also saw the relation of long time-scale (Poincaré recurrence) and large
systems in relation to the formulation of thermodynamic and kinetic theories in
the depiction of physical reality, likewise the dependence on the initial conditions.

It is often remarked that interaction (e.g. collisions amongst gas molecules) is
needed for a system to equilibrate and to show irreversibility. Interaction is neces-
sary for equilibration but interaction does not generate irreversibility. Mean field
dynamics such as that described by the Vlasov equation has interaction but the
dynamics is reversible. Equilibration (or thermalization when we refer to energy
specifically but not particle numbers or chemical species) shows irreversibility,
but irreversibility does not imply equilibration. We already saw at the molecular
dynamics level that divergent trajectories show irreversibility, but it takes more
to show equilibration (e.g. Anosov systems under coarse graining).

1.3.4 Coarse graining

Coarse graining in the most general sense refers to some information lost,
removed, or degraded from a system. It could come about because this infor-
mation is inaccessible to us, due to the limited accuracy in our observation or
measurement. A drastic example is Planck-scale physics, the details of which are
mostly lost (hard to retrieve) because the world we live in today is an ultra-low-
energy construct. For this one needs to invoke ideas like effective field theory
[Wei95]. Even when information is fully accessible to us in principle, in prac-
tice one may only be interested in some aspects of the system. We choose to
ignore certain variables such as ignoring the higher order correlations in Boltz-
mann’s kinetic theory, or ignoring the phase information in a quantum system
by imposing a random phase approximation. We do this by “integrating over”
or “projecting out” these “irrelevant” variables.5

Let us see some examples of coarse graining in action. We start with the famil-
iar Boltzmann theory: implementation of the molecular chaos assumption (i.e.

5 Quotation marks are put here to emphasize the colloquial usage and the warning that
operations bearing the same name could bring forth different results depending on the
assumptions introduced. For example, the projection operator formalism of Zwanzig and
Mori et al. ([Nak58] [Zwa60] [Zwa61] [Mor65] [WilPic74] [Gra82] [Kam85] [GoKaZi04]
[GorKar04] [Bal75]) applied to a closed system will turn the differential equations of motion
for each subsystem into an integro-differential equation for a particular subsystem. Without
casting away some information somewhere in the system this equation is just another way
to express the interaction of the subsystems. It contains no more or no less information as
the original equations describing the total system.
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1.4 Coarse graining and persistent structure 21

the two-particle distribution function f2 = f1f1 can be expressed schematically
as a product of two one-particle distribution functions f1) entails performing a
coarse graining in the collision integral of space over the range of interaction and
of time over the duration of a collision.

Another example concerns particle creation from an external background field
or changing spacetime. Since particle pairs originate from the vacuum which is
a pure state, there should not be any entropy generation. On the other hand,
in a thermodynamics description, the entropy S is related to the number N of
particles present. We may wonder whether to trust either or both of these state-
ments. The key lies in understanding that the thermodynamic description has
undergone several levels of coarse graining from the fundamental quantum field
theory description. Indeed it is a very educational intellectual exercise to see
what coarse-graining measures are introduced and what concepts are at work as
we move from a microscopic (quantum field theory) to a macroscopic (nonequi-
librium thermodynamics) description of this same system, but with different
degrees of precision.

Note also that coarse graining is a necessary but not sufficient condition for
entropy generation. It does not always produce a dissipative system. Truncation
of the BBGKY hierarchy leads to a closed subsystem composed of n-particle
correlation functions whose dynamical equations are unitary. (An example men-
tioned before is the Vlasov equation describing particle interaction via long-range
forces.) In quantum field theory equations derived from a finite-loop effective
action are also unitary – at one loop the effect of the quantum field on the par-
ticles manifests through the renormalized masses and charges (to be exact, the
equations of motion derived from a finite-loop effective action are unitary if none
of the relevant correlation functions are “slaved” – see Chapter 6 Section 6.3 and
Chapter 9 Section 9.2.3 for a discussion of this concept; for � loops, one must keep
the first (� + 1)th-order correlations, otherwise dissipation in the sense defined
above sets in – dissipation is absent only in very specific situations, such as a free
theory or equilibrium initial conditions). That is perhaps why (if one limits one’s
attention to loop expansions) statistical mechanical concepts rarely came to the
fore, until one starts asking questions of a distinct nature, such as how dissipative
dynamics appears in an otherwise unitary system, and the origin and nature of
noise in quantum field theory. A causal condition needs to be introduced to ren-
der the dynamics of the subsystem irreversible. This opens up another important
theme in this book: effective field theory viewed in the open system framework,
which will be developed in later chapters.

1.4 Coarse graining and persistent structure in the physical world

We have seen from the above discussions that the appearance of irreversibil-
ity is often traced to the initial condition being special in some sense. The
dynamics of the system and how it interacts with its environment also enter
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in determining whether the system exhibits mixing or dissipative behavior. For
the sake of highlighting the contrast we could broadly divide the processes into
two classes depending on how sensitive they are to the initial conditions ver-
sus the dynamics.6 One can say that the first class is a priori determined by
the initial conditions, the other is a posteriori rather insensitive to the initial
conditions. Of the examples we have seen, the first group includes divergent
trajectories in molecular (micro) dynamics, Landau damping, vacuum particle
creation, and the second class includes gas (macro) or fluid dynamics (see the
discussions at the end of Section 1.2.3), diffusion, particle creation with interac-
tion, decoherence. Appearance of dissipation is accompanied by a degradation
of information via coarse graining (such as the molecular chaos assumption in
kinetic theory, restriction to one-particle distribution in particle creation with
interaction, “integrating out” some class of histories in decoherence). An arrow
of time appears because of some special prearranged conditions; how it mani-
fests in the system also depends on the system dynamics and the coarse graining
introduced to the system. The issues we have touched on involve the transforma-
tion of a closed to an open system, the relation between the microscopic and the
macroscopic world, and the transition from quantum multiplicities to classical
realities. Many perceived phenomena in the observable physical world, includ-
ing the phenomenon of time-asymmetry, can be understood in the open-system
viewpoint via the approximations introduced to the objective microscopic world
by a macroscopic observer [GKJKSZ96, Omn94, Per93].

Thus, time asymmetry in these processes is influenced by many factors: the
way one stipulates the boundary conditions and initial states, the time-scale of
observation in comparison with the dynamical time-scale, how one decides what
the relevant variables are and how they are separated from the irrelevant ones,
how the irrelevant variables are coarse grained, and what assumptions one makes
and what limits one takes in shaping a macroscopic picture from one’s imperfect
knowledge of the underlying microscopic structure and dynamics.

We have discussed the procedures which can bring about these results. How-
ever, a set of more important and challenging issues remain largely unexplored,
i.e. under what conditions the outcomes become less subjective and less sensi-
tive to these procedures, such as the system–environment split and the coarse
graining of the environment. These procedures provide one with a viable pre-
scription to get certain general qualitative results, but are still not specific and
robust enough to explain how and why the variety of observed phenomena in the
physical world arise and stay in their particular ways. To address these issues
one should ask a different set of questions:

6 As discussed earlier, dissipation also requires the stipulation of a somewhat special initial
condition, i.e. that the system is not in an equilibrium state; but, in the words of R. Sorkin,
“not more special than it needs to be”.
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(1) By what criteria are the system variables chosen? Collectivity and hierarchy
of structure and interactions

In a model problem, one picks out the system variables – be it the Brownian
particle or the mini-superspace variables – by fiat. One defines one’s system in a
particular way because one wants to calculate the properties of that particular
system. But in the real world, certain variables distinguish themselves from oth-
ers because they possess a relatively well-defined, stable, and meaningful set of
properties for which the observer can carry out measurements and derive mean-
ingful results. Its meaningfulness is defined by the range of validity or degree of
precision or the level of relevance to what the observer chooses to extract infor-
mation from. In this sense, it clearly carries a certain degree of subjectivity – not
in the sense of arbitrariness in the exercise of free will of the observer, but in the
specification of the parameters of observation and measurement. For example,
the thermodynamic and hydrodynamic variables are only good for systems close
to equilibrium; in other regimes one needs to describe the system in terms of
kinetic-theoretical or statistical-mechanical variables.

The soundness in the choice of a system in this example thus depends on
the time-scale of measurement compared to the relaxation time. As another
example, contrast the variables used in the nuclear collective model and the
independent nucleon models. One can use the rotational–vibrational degrees of
freedom to depict some macroscopic properties of the motion of the nucleus,
and one can carry out meaningful calculations of the dissipation of the collective
trajectories (in the phase space of the nucleons) due to stochastic forces. In such
cases, the noncollective degrees of freedom can be taken as the noise source.
However, if one is interested in how the independent nucleons contribute to
the properties of the nucleus, such as the shell structure, one’s system variable
should, barring some simple cases, not be the elements of the SO(3) group, or
the SU(6) group. At a still higher energy where the attributes of the quarks
and the gluons become apparent, the system variables for the calculation of, say,
the stability of the quark–gluon plasma should change accordingly. The level of
relevance which defines one’s system changes with the level of structure of matter
and the relative importance of the forces at work at that level. The improvement
of the Weinberg–Salam model with W,Z intermediate bosons over the Fermi
model of four-point interactions is what is needed in probing a deeper level of
interaction and structure which puts the electromagnetic and weak forces on the
same footing. Therefore, one needs to explore the rules for the formation of such
relatively distinct and stable levels, before one can sensibly define one’s system
(and the environment) to carry out meaningful inquiries of a statistical nature.

What is interesting here is that these levels of structures and interactions come
in approximate hierarchical order (so one doesn’t need QCD to calculate the
rotational spectrum of a nucleus, and the Einstein spacetime manifold picture
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will hopefully provide most of what we need in the post-Planckian era). One
needs both some knowledge of the hierarchy of interactions and the way effective
theories emerge from “integrating out” variables at very different energy scales
in the hierarchical structure (e.g. ordinary gravity plus particle theory regarded
as a low-energy effective higher-dimension or Kaluza–Klein theory). The first
part involves fundamental constituents and interactions and the second part the
application of statistical methods. One should also keep in mind that what is
viewed as fundamental at one level can be a composite or statistical mixture at a
finer level. There are system–environment separation schemes which are designed
to accommodate or reflect these more intricate structures, from the mean-field–
fluctuation-field split to the multiple source or nPI formalism (see Chapter 6)
for the description of the dynamics of correlations and fluctuations. The validity
of these approximations depends quite sensitively on where exactly one wants to
probe in between any two levels of structure. Statistical properties of the system
such as the appearance of dissipative effects and the associated irreversibility
character of the dynamics in an open system certainly depend on this separation.

(2) How does the behavior of the subsystem depend on coarse graining? Sen-
sitivity and variability of coarse graining, stability and robustness of emergent
structure

Does there exist a common asymptotic regime as the result of including succes-
sively higher order iterations in the same coarse-graining routine? This measures
the sensitivity of the end result to a particular kind of coarse graining. How well
can different kinds of coarse-graining measure produce and preserve the same
result? This is measured by its variability. Based on these properties of coarse
graining, one can discuss the relative stability of the behavior of the resultant
open system after a sequence of coarse grainings within the same routine, and its
robustness with respect to changes to slightly different coarse-graining routines.

Let us illustrate this point with some simple examples. When we present a
microscopic derivation of the transport coefficients (viscosity, heat conductivity,
etc.) in kinetic theory via the system–environment separation scheme, we usually
get the same correct answer independent of the way the environment is chosen
or coarse grained. Why? It turns out that this is likely only if we operate in the
linear-response regime (see [FeyVer63]). The linear coupling between the system
and the environment makes this dependence simple. This is something we usually
take for granted, but has some deeper meaning. For nonlinear coupling, the above
problem becomes nontrivial. Another aspect of this problem can be brought out
[BalVen87, Spo91] by comparing these two levels of structure and interaction,
e.g. the hydrodynamic regime and the kinetic regime. Construct the relevant
entropy from the one-particle classical distribution function f1, that gives us
the kinetic theory entropy Skt which is simply −kHB, where HB is Boltzmann’s
H-function. Now comparing it with the hydrodynamic entropy function Shd given
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in terms of the hydrodynamic variables (in this case, the number and energy
density), one sees that Shd > Skt. A simple physical argument for this result is
that the information contained in the correlations amongst the particles is not
included in the hydrodynamic approximation. Even within the kinetic theory
regime there exist intermediate stages described by suitably chosen variables
[Spo91]. The entropy functions constructed therefrom will reflect how much fine-
grained information is lost. In this sense Shd is a maximum in the sequence of
different coarse-graining procedures. In the terminology we introduced above, by
comparison with the other regimes, the hydrodynamic regime is more robust in
its structure and interactions with respect to varying levels of coarse graining.
One way to account for this is that, as we know, the hydrodynamic variables
enter in the description of systems in equilibrium and they obey conservation
laws [HaLaMa95, Bru96, Hal98]. Further coarse graining on these systems is
expected to produce the same results, i.e. the hydrodynamic regime is a limit
point of sorts after the action from a sequence of coarse grainings. Therefore, a
kind of “maximal entropy principle” with respect to variability of coarse graining
is one way where thermodynamically robust systems can be located.

While including successively higher orders of the same coarse-graining mea-
sure usually gives rise to quantitative differences (if there is a convergent result,
that is, but this condition is not guaranteed, especially if a phase transition inter-
venes), coarse graining of a different nature will in general result in very different
behavior in the dynamics of the open system. Let us look further at the relation
of variability of coarse graining and robustness of structure.

Sometimes the stability of a system with respect to the variability of coarse
graining is an implicit criterion behind the proper identification of a system.
For example, Boltzmann’s equation governing the one-particle distribution func-
tion which gives a very adequate depiction of the physical world is, as we have
seen, only the lowest order equation in an infinite (BBGKY) hierarchy. If coarse
graining is by the order of the hierarchy – e.g. if the second and higher order cor-
relations are ignored – then one can calculate without ambiguity the error intro-
duced by such a truncation. The dynamics of the open system which includes
dissipation effects and irreversible behavior will not change drastically if one uses
a different (say more fine-grained) procedure, such as retaining the fourth-order
correlations (if the series converges, which is a nontrivial issue, see, e.g. [Dor81]).
Consider now a different approximation: For a binary gas of large mass discrep-
ancy, if one considers the system as the heavy mass particles, ignore their mutual
interactions and coarse grain the effect of the light molecules on the heavy ones,
the system now behaves like a Brownian particle motion described by a Fokker–
Planck equation. We get a qualitatively very different result in the behavior of
the system.

In general the variability of different coarse grainings in producing a quali-
tatively similar result is higher (more variations allowed) when the system one
works with is closer to a stable level in the interaction range or in the hierarchical
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order of structure of matter. The result is more sensitive to different coarse-
graining measures if it is far away from a stable structure, usually falling in
between two stable levels.

One tentative analogy may help to fix these concepts. Robust systems are like
the stable fixed points in a parameter space in the renormalization group theory
description of critical phenomena: the points in a trajectory are the results of
performing successive orders of the same coarse-graining routine on the system
(e.g. the Kadanoff–Migdal scaling [Kad76, Kad77, WilKog74, Fis74, Fis83]), a
trajectory will form if the coarse-graining routine is stable. An unstable routine
will produce in the most radical situations a random set of points. Different
trajectories arise from different coarse-graining routines. Neighboring trajectories
will converge if the system is robust, diverge if not. Therefore the existence of a
stable fixed point where trajectories converge to is an indication that the system
is robust. Only robust systems survive in nature and carry definite meaning in
terms of their persistent structure and systematic evolution. This is where the
relation of coarse graining and persistent structures enters.

So far we have only discussed the activity around one level of robust structure.
To investigate the domain lying in-between two levels of structures (e.g. between
nucleons and quark–gluons) one needs to first know the basic constituents and
interactions of the two levels. This brings back our consideration of levels of
structures above. Studies in the properties of coarse graining can provide a use-
ful guide to venture into the often nebulous and elusive area between the two
levels and extract meaningful results pertaining to the collective behavior of the
underlying structure. But one probably cannot gain new information about the
fine structure and the new interactions from the old just by these statistical
measures (cf. the old bootstrapping idea in particle physics versus the quark
model).7

1.5 Physical systems: Closed, open, effectively closed and
effectively open

1.5.1 Open systems: Coarse graining and back-reaction

In treating physical systems containing many degrees of freedom one often
attempts to select out a small set of variables to render the problem techni-
cally tractable while preserving its physical essence. Familiar examples abound:
e.g. thermodynamics from statistical mechanics, hydrodynamic limit of kinetic
theory, collective dynamics in condensed matter and nuclear physics [Wil82].

7 In this sense, one should not expect to gain new fundamental information about quantum
gravity just by extrapolating what we know about the semiclassical theory, although
studying the way the semiclassical theory takes shape (viewed as an effective theory) from
possible more basic theories is useful. It may also be sufficient for what we can understand
or care about in this later stage of the universe we now live in.

https://doi.org/10.1017/9781009290036.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.003


1.5 Physical systems 27

When one starts from the microscopic picture, one distinguishes the variables
which depict the system of interest from those which can affect the system but
whose detail is otherwise of lesser interest or importance. Making a sensible
distinction involves recognizing and devising a set of criteria to separate the rel-
evant from the irrelevant variables. This procedure is simplified when the two
sets of variables possess very different characteristic time or length or energy
scales or interaction strengths. An example is the separation of slow–fast vari-
ables as in the Born–Oppenheimer approximation in molecular physics where
the nuclear variables are assumed to enter adiabatically as parameters in the
electronic wavefunction. Similar separation is possible in quantum cosmology
between the “heavy” gravitational sector characterized by the Planck mass and
the “light” matter sector. In statistical physics this separation can be made for-
mally with projection operator techniques. This usually results in a nonlinear
integro-differential equation for the relevant variables, which contains the causal
and correlational information from their interaction with the irrelevant variables.

Apart from finding some way of separating the overall closed system into a
“relevant” part of primary interest (the open system) and an “irrelevant” part
of secondary interest (the environment) in order to render calculations possible,
one also needs to devise some averaging scheme to reduce or reconstitute the
detailed information of the environment such that its effect on the system can
be represented by some macroscopic functions, such as the transport functions.
This involves introducing certain coarse-graining measures. It is usually by the
imposition of such measures that an environment is turned into a bath, and
certain macroscopic characteristics such as temperature and chemical potential
can be introduced to simplify its description. A coarse-grained description of the
effect of the environment on the system (in terms of, say, thermodynamic or
hydrodynamic variables and their associated response functions) is qualitatively
very different from the detailed description (in terms of the underlying micro-
scopic variables and dynamics). A familiar example in many-body theory used
for simplifying the effect of the environment is by assuming that each indepen-
dent particle interacts with an effective potential depicting the averaged effect
of all other particles. Vlasov dynamics in a plasma is of such a nature, so is the
mean field approximation in quantum field theory (where the effect of quantum
fluctuations of fields is described at this level of approximation in terms of a
renormalized interaction potential and couplings to the system).

How good an effective theory is in its depiction of physical phenomena at a
particular scale is usually determined by the appropriateness in the choice of
the collective variables, the correctness and extent of coarse graining in rela-
tion to the probing scale and the precision of measurement. How the environ-
ment affects the open system is determined by the back-reaction effects. By
referring to an effect as a back-reaction, it is implicitly assumed that a sys-
tem of interest is preferentially identified, that one cares much less about the
details of the other sector (the “irrelevant” variables in the “environment”). The
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back-reaction can be significant, but should not be too overpowering, so as to
invalidate the separation scheme. To what extent one views the interplay of
the two sectors as interaction (between two subsystems of approximately equal
weight) or as back-reaction (of a less relevant environment on the more impor-
tant system) is reflexive of and determined by the degree to which one decides
to keep or discard the information in one subsystem versus the other. It also
depends on their interaction strength. Through reaction and back-reaction the
behavior of each sector is linked to the other in an inseparable way, i.e. by their
interplay.

Self-consistency is thus a necessary requirement in back-reaction considera-
tions. This condition can manifest itself as the fluctuation–dissipation theorem
(FDT). When the environment is a bath, for systems near equilibrium, their
response can be depicted by linear response theory. Even though such relations
are usually presented in such a context, its existence in a more general form can
be shown to cover nonequilibrium systems. Indeed as long as back-reaction is
included, such a relation can be understood as a corollary of the self-consistency
requirement, which ultimately can be traced to the unitary condition of the
original closed system.

A familiar example of a self-consistent back-reaction process is the time-
dependent Hartree–Fock approximation in atomic physics or nuclear physics,
where the system could be described by the wavefunction of the electrons obey-
ing the Schrödinger equations with a potential determined by the charge density
of the electrons themselves via the Poisson equation. In a cosmological back-
reaction problem, one can view [Hu89] the system as a classical spacetime, whose
dynamics is determined by Einstein’s equations with sources given by particles
produced by the vacuum excited by the dynamics of spacetime and depicted by
the appropriate wave equations in this particular curved spacetime [BirDav82].

Much of the physics of open systems is concerned with the appropriateness
in the devising and the implementation of these procedures. They are: (1) the
identification and separation of the physically interesting variables which make
up the open system – one needs to first come up with the appropriate collective
variables; (2) the “averaging” away of the environment or irrelevant variables –
how different coarse-graining measures affect the final result is important (as
discussed in the last section); and (3) the evaluation of the averaged effect of
the environment on the system of interest. We will refer to these procedures as
separation, coarse graining and back-reaction for short.

These considerations surrounding an open system are common and essential
not only to well-posed and well-studied examples of many-body systems like
molecular, nuclear and condensed-matter physics, they also bear on some basic
issues at the foundations of quantum mechanics and statistical mechanics, such
as decoherence and the existence of the classical limit [HarGel93], with pro-
found implications on the emergence of time and spacetime [Har92], or quantum
mechanics itself [Adl04].

https://doi.org/10.1017/9781009290036.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.003


1.5 Physical systems 29

1.5.2 From closed to effectively open systems

There are many systems in nature which are apparently closed (to the observer),
in that there is no obvious way to define a system which is so much different from
an environment. These systems do not possess a parameter which can enable the
observer to distinguish possible heavy–light sectors, high–low frequency behavior
or slow–fast dynamics. Boltzmann’s theory of molecular gas is a simple good
example: All molecules in the gas are on an equal footing, in that no one can
claim to be more special than the others. Because of the lack of parameters which
marks the discrepancy of one component from the other, these systems do not
lend themselves to an obvious or explicit separation from their environment (like
open systems would), and appear like closed systems. However, usually in their
effective description a separation is introduced implicitly or operationally because
of their restricted appearance or due to the imprecision in one’s measurement.
These are called effectively open systems.

In this example, on the microscopic level (of molecular dynamics) all molecu-
lar movements are time-reversal invariant, but on the macroscopic level (of our
observation), dissipation and violation of time-reversal invariance obviously exist.
To reconcile this difference and understand the origin of dissipation in nature
was of course the great challenge Boltzmann posed for himself and which he so
ingeneously resolved. Boltzmann came up with the idea that if only one-particle
distribution functions were observed, and the molecular chaos assumption was
imposed (for any collision process), there is an explanation for the origin of dis-
sipation in macroscopic phenomena. Using the correlation functions (the lowest
order being the one-particle distribution function) as a way to systemize the
information in the gas, one would get the BBGKY hierarchy, which contains the
full information of the gas. It is only upon the truncation of the hierarchy and the
re-expression of the higher correlation functions in terms of the lower ones, e.g.
the causal factorization condition (assuming that colliding partners are uncorre-
lated initially, what we shall call “slaving,” to be discussed in detail later), that
the otherwise closed system expressed by the full hierarchy is rendered open, and
dissipation appears. It is in this sense that it is called an effectively open system.

1.5.3 Two major paradigms of nonequilibrium

statistical mechanics

We can highlight the distinction between open and effectively open systems
by comparing the two primary models which characterize these two major
paradigms of nonequilibrium statistical mechanics (see, e.g. [AkhPel81, Pri62,
ToKuSa92]): the Boltzmann–BBGKY theory of molecular kinetics, and the
Langevin (Einstein–Smoluchowski) theory of Brownian motions. The differences
between the two are of both formal and conceptual nature.

To begin with, the setup of the problem is different: As we remarked above,
in kinetic theory one studies the overall dynamics of a system of gas molecules,
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treating each molecule in the system on the same footing, while in Brownian
motion one (Brownian) particle which defines the system is distinct, the rest are
relegated as the environment. The terminology of “relevant” versus “irrelevant”
variables not so subtly reflects the discrepancy.

The object of interest in kinetic theory is the (one-particle) distribution func-
tion (or the nth-order correlation function), while in Brownian motion it is the
reduced density matrix. The emphasis in the former is the behavior of the gas as
a whole (e.g. dissipative dynamics) taking into account the correlations amongst
the particles, while in the latter it is the motion of the Brownian particle under
the influence of the environment.

The nature of coarse graining is also very different: in kinetic theory coarse
graining resides in confining one’s attention to one-particle distribution functions,
a factorization condition for the two-point functions and the adoption of the
molecular chaos assumption. This corresponds formally to a truncation of the
BBGKY hierarchy and introducing a causal slaving condition, while in Brownian
motion it is in the integration over the environmental variables. The part that
is truncated or “ignored” is where the noise comes from, while its main physical
effect on the “system” is to render its dynamics dissipative. Thus the fluctuation–
dissipation relation and other features.

Finally the philosophies behind these two paradigms are quite different: In
Brownian motion problems, the separation of the system from the environment
is prescribed: it is usually determined by some clear disparity between the two
systems. These models represent “autocratic systems,” where some degrees of
freedom are more relevant than others. By contrast, molecular gas models sub-
scribing to the effectively open systems represent “democratic systems” where
all particles in a gas are equally relevant. In the lack of any clear discrepancy
in scales, making a separation “by hand” is ad hoc, contrived, and often leading
to wrong description. Coarse graining in Boltzmann’s kinetic theory is also very
different from that of Brownian motion. The latter is explicit while the former
appears implicit (having its own systematics). However, as we shall see later,
the coarse graining in the Boltzmann theory lies in the truncation and slaving
procedures, where information attached to higher correlation orders is not kept
in full. Now just what correlation order is sufficient for the physics under study
is an objectively definable and verifiable fact, which ultimately is determined by
the degree of precision in a measurement and judged by how well it depicts the
relevant physics.

In Chapter 2 we will provide a physical discussion of the Boltzmann and
Langevin dynamics, two prime examples of these two major paradigms. To see
the mathematical origin of these stochastic equations it is best to acquire some
knowledge of stochastic processes. A brief summary of this subject is given in
Appendix A, which starts with rudimentary probability theory and ends with
a derivation of the Chapman–Komogorov/Einstein–Smolochousky equation and
the Kramers–Moyal/Fokker–Planck equation.
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1.6 Appendix A: Stochastic processes and equations in
a (tiny) nutshell

We give here a brief summary of the theory of stochastic processes, leading
to the derivation of the Chapman–Komogorov/Einstein–Smolochousky equa-
tion and the Kramers–Moyal/Fokker–Planck equation. We will convey the
necessary yet minimal set of information to enable the reader without prior
knowledge of this subject to follow the development of later chapters lead-
ing to its application to quantum field theory of nonequilibrium processes.
The emphasis here is more on physical ideas than mathematical rigor. One
can find nice discussions of these topics in standard books such as those
by van Kampen [Kam81], Papooulis [Pap84], Gardiner [Gar90], Gardiner and
Zoller [GarZol00b], Carmichael [Car93], and Reichl [Rei98]. More succinct and
accessible summaries can be found in, for example, Weissbluth [Wei88] and Man-
del and Wolf [Man95]. Here we follow mainly the discussions by van Kampen.

1.6.1 Probability, random variables and stochastic processes

Probability

We start with some basic concepts and definitions in probability theory. A prob-
ability space, or simply, an experiment, consists of the triplet (Ω,F, P ) where
Ω is the sample space containing all possible outcomes of the experiment. An
event A is a subset of Ω, and F is a collection of subsets of Ω. P is the prob-
ability of finding A in such an experiment. Example: In a single throw of a
dice (our experiment) what is the probability of finding an even number fac-
ing up? Then Ω = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6}, P = 1

2 . Set theory is usefully
applied to probability theory starting with P (Ω) = 1, P (∅) = 0, where ∅ denotes
the empty set. Two events are said to be mutually exclusive, or disjoint, if
P (A ∪B) = P (A) + P (B) or P (A ∩B) = 0. Two events A,B are independent
iff P (A ∩B) = P (A)P (B). Note that independent events are not mutually exclu-
sive events because for mutually exclusive events P (A ∩B) = 0.

Let A1, . . . , An be a finite collection of events. They are called mutually inde-
pendent if for any 1 ≤ i1 < i2 < · · · < ik ≤ n

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik) (1.9)

The events are called pairwise independent if for any 1 ≤ i1 < i2 ≤ n

P (Ai1 ∩Ai2) = P (Ai1)P (Ai2) (1.10)

Obviously pairwise independence is a much weaker condition than mutual inde-
pendence.

Finally we define the conditional probability P (A|B) as the probability that
event A will occur if B occurs, or simply, A given B. Obviously the probability
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that both events A,B will occur is P (A ∩B) = P (A|B)P (B). From this it is
easy to derive Bayes’ rule

P (A|B)P (B) = P (B|A)P (A) (1.11)

Random variables

A random variable X defined on a sample space Ω is a function which maps
Ω into the set of real numbers. It assigns a real number to each sample point. In
the example of throwing a dice, winning a certain amount of money xi (out of
the whole range X(Ω) = {xi}) when some number in the set i = {1 · · · 6} faces
up is one such mapping. One can define a probability distribution P (xi) = f(xi).
For continuous variables the probability P that an event occurs resulting in X

taking on values in an interval a ≤ X ≤ b is given by

P (a ≤ X ≤ b) =
∫ b

a

fX(x)dx (1.12)

fX(x) is called the probability density for such an occurrence. The cumulative
probability distribution function (cdf) FX(x) ≡ P (X ≤ x) is obtained by inte-
grating fX up to the value x, i.e.

FX(x) =
∫ x

−∞
fX(x′)dx′ (1.13)

Now consider two stochastic variables X,Y on the same sample space
Ω, X(Ω) = {xi}, Y (Ω) = {yj}. We define the joint probability distribu-
tion f(X,Y ) of X and Y as the probability of an ordered pair occurring,
P (xiεX, yjεY ) = f(xi, yj). For continuous variables f(x, y) ≥ 0 is normalized∫ ∫

dxdyf(x, y) = 1. The single-variable distribution fX is obtained if one disre-
gards (integrates over) the value of Y in f(x, y), i.e.

fX(x) =
∫

dyf(x, y), fY (y) =
∫

dxf(x, y) (1.14)

We now generalize the number of stochastic variables to r and define an r-
dimensional vector X = (X1, X2, . . . , Xr). We can think of this as the vector
denoting the space and momenta of N particles in the phase space Γ, in which
case r = 6N . (Note we used i, j earlier to denote the (discrete) sample space vari-
ables, while r, s here denote the dimension of the space of stochastic variables.)
The probability density Pr(X) is the joint probability density of the r variables
(X1, X2, . . . , Xr). For a projection of X into a smaller space of dimension s, s < r,
the joint probability density of a subset s < r of variables Ps(X1, X2, . . . , Xs)
regardless of the remaining variables Xs+1, . . . , Xr is obtained from integrating
over these variables, i.e.

Ps(X1, X2, . . . , Xs) =
∫

Pr(X1, . . . , Xs, Xs+1, . . . , Xr)dXs+1 · · · dXr (1.15)
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In probability theory this is called the marginal distribution of subset r. In
statistical mechanics this is called the reduced (probability density) distri-
bution function.

One can define the nth moments of a stochastic variable X by

〈Xn〉 =
∑
i

xn
i fX(xi) =

∫
dx xnfX(x) (1.16)

where the first is for discrete and the second for continuous variables. The first
two moments are familiar: For n = 1, 〈X〉 is called the mean; for n = 2, σ2

X =〈
X2
〉
− 〈X〉2 is called the variance.

One can also define the characteristic function Φ as the Fourier transform
of the probability density

ΦX(k) =
〈
eikX

〉
=
∫ +∞

∞
dx eikxfX(x) =

∞∑
n=0

(ik)n

n!
〈Xn〉 (1.17)

with inverse transform

fX(x) =
1
2π

∫
dk e−ikxΦX(k) (1.18)

Equivalently, in terms of Laplace transforms we can define the moment gen-
erating function

MX(s) =
〈
esX
〉

(1.19)

This name becomes obvious when we rewrite the moments as

〈Xn〉 =
dnMX(s)

dsn
|s=0 (1.20)

Likewise one can define a cumulant expansion by the relation

ln ΦX(k) =
∞∑

n=1

(ik)n

n!
Cn(X) (1.21)

The relations between cumulants and moments are as follows:

C1(X) = 〈X〉 C2(X) =
〈
X2
〉
− 〈X〉2

C3(X) =
〈
X3
〉
− 3
〈
X2
〉
〈X〉 + 2 〈X〉3

C4(X) =
〈
X4
〉
− 4
〈
X3
〉
〈X〉 − 3

〈
X2
〉2

+ 12
〈
X2
〉
〈X〉2 − 6

〈
X4
〉

(1.22)

Note again that the first two cumulants are the mean and the variance. The
covariance and correlation of two different stochastic variables X,Y are
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defined respectively as

Cov(X,Y ) ≡
∫ ∫

dxdy (x− 〈X〉)(y − 〈Y 〉)f(x, y)

= 〈XY 〉 − 〈X〉 〈Y 〉

Cor(X,Y ) ≡ Cov(X,Y )
σXσY

(1.23)

Stochastic processes

Given a stochastic variable X, one can define a stochastic function Ξ obtained
from X by some mapping

ΞX(t) = g(X, t) (1.24)

where t is some smooth variable. If t denotes time, Ξ(t) is called a stochas-
tic process. When X takes on the value x, Ξx(t) = g(x, t) becomes a sample
function or a realization of the process.

The probability density for a stochastic function Ξx(t) to take on value ξ at
time t is given by

P1(ξ, t) =
∫

δ(ξ − Ξx(t))fX(x)dx (1.25)

We recognize that fX(x) is the probability density for the stochastic variable X.
The subscript 1 denotes a function of one stochastic variable. The probability
over all values of ξ1 at any particular time t1 should be unity, thus the normal-
ization condition is

∫
P1(ξ, t1)dξ = 1. Generalizing to n we can define the joint

probability density as

Pn(ξ1, t1, · · · ξn, tn) ≡
∫

δ(ξ1 − Ξx(t1)) · · · δ(ξn − Ξx(tn))fX(x)dx (1.26)

When one ignores one stochastic function ξn one obtains the reduced joint
probability density∫

Pn(ξ1, t1, · · · ξn, tn)dξn = Pn−1(ξ1, t1, · · · ξn−1, tn−1) (1.27)

The correlation between values of Ξ at different times is measured by the time-
dependent moments

〈ξ1(t1)ξ2(t2) · · · ξn(tn)〉 =
∫

· · ·
∫

dξ1dξ2 · · · dξn ξ1ξ2 · · · ξn Pn(ξ1, t1, · · · ξn, tn)

(1.28)
For stationary processes

Pn(ξ1, t1, · · · ξn, tn) = Pn(ξ1, t1 + τ, · · · ξn, tn + τ) (1.29)

for all n, tj and τ .
The conditional probability density P1|1(ξ2, t2|ξ1, t1) for Ξ to take on values

ξ2 at t2 given that it took on values ξ1 at t1 is defined by the joint probability
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density

P1|1(ξ2, t2|ξ1, t1)P1(ξ1, t1) = P2(ξ1, t1, ξ2, t2) (1.30)

In physics language this is often referred to as the transition probability
between state 1 and state 2. Generalizing this, the conditional probability density

Pm|k(ξk+1, tk+1, · · · ξk+m, tk+m|ξ1, t1, · · · ξk, tk) (1.31)

for Ξ to take on the value ξk+1 at tk+1 · · · ξk+mat tk+m given that it took on the
value ξ1 at t1, · · · ξk at tk is defined by

Pm|k(ξk+1, tk+1, · · · ξk+m, tk+m|ξ1, t1, · · · ξk, tk) ≡
Pk+m(ξ1, t1, · · · ξk+m, tk+m)

Pk(ξ1, t1, · · · ξk, tk)
(1.32)

where Pk+m is the joint probability density.

1.6.2 Markov processes

A Markov process is a stochastic process where the random variable has mem-
ory only of its immediate past, i.e.

P1|n−1(ξn, tn|ξ1, t1, · · · ξn−1, tn−1) = P1|1(ξn, tn|ξn−1, tn−1) (1.33)

A Markov process is entirely determined by P1(ξ1, t1) and P1|1(ξ2, t2|ξ1, t1). It is
easy to show by using the Bayes rule that for Markov processes

P1|1(ξ3, t3|ξ1, t1) =
∫

dξ2P1|1(ξ3, t3|ξ2, t2)P1|1(ξ2, t2|ξ1, t1) (1.34)

i.e. the two steps are statistically independent. This is the Chapman–
Komogorov (CK) or Einstein–Smolochousky (ES) equation. For stationary
Markov processes, if we define

P1|1(ξ2, t2|ξ1, t1) ≡ Pτ (ξ2|ξ1) (1.35)

since they depend only on τ = t2 − t1, the CK or ES equation can be written
schematically as

Pτ ′+τ = Pτ ′Pτ (1.36)

in the sense of integral kernels.8 We now derive a differential form of the CK
equation which is known as the (Markovian) Pauli master equation. Consider a
small increment τ in time from t1 and expand P1|1(ξ2, t1 + τ |ξ1, t1) in a Taylor

8 In probability theory understandably the symbol P is used profusely. Here a single
subscript τ denotes the conditional probability density P1|1 in a stationary process. Notice
this equation which we see quite commonly in physics actually presupposes the Markovian
property. When it involves probability concepts, as in quantum mechanics, interpreting
physics equations in the stochastic process sense may reveal a deeper layer of meaning for
these common objects.
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series around t1 making sure that the normalization condition is preserved to all
orders in τ ; we have

P1|1(ξ2, t1 + τ |ξ1, t1) = P1|1(ξ2, t1|ξ1, t1) + τ∂P1|1/∂τ + . . . (1.37)

Extract the singular part from ∂P1|1/∂τ

∂P1|1
∂τ

≡ −a0(ξ1)δ(ξ2 − ξ1) + W (ξ2|ξ1) (1.38)

We say W (ξ2|ξ1) is the transition probability per unit time. In physics
language this is called the transition rate. a0(ξ1) is determined by the condi-
tion that the normalization condition

∫
P1|1(ξ2, t2|ξ1, t1)dξ2 = 1 is satisfied to all

orders of τ . To first order in τ , the condition yields

a0(ξ1) =
∫

W (ξ2|ξ1)dξ2 (1.39)

Using this we have

Pτ (ξ2|ξ1) = (1 − a0(ξ1)τ)δ(ξ2 − ξ1) + τW (ξ2|ξ1) (1.40)

Writing down a copy of this equation for Pτ ′(ξ3|ξ2)

Pτ ′(ξ3|ξ2) = (1 − a0(ξ2)τ ′)δ(ξ3 − ξ2) + τ ′W (ξ3|ξ2) (1.41)

and putting them back into the CK equation we obtain

Pτ+τ ′(ξ3|ξ1) =
∫

(1 − a0(ξ2)τ ′)δ(ξ3 − ξ2)Pτ (ξ2|ξ1)dξ2

+
∫

τ ′W (ξ3|ξ2)Pτ (ξ2|ξ1)dξ2 (1.42)

Performing the integral in the first term, we obtain upon dividing by τ ′ on both
sides and letting τ ′ → 0

∂Pτ (ξ3|ξ1)
∂τ

=
∫

dξ2[−W (ξ2|ξ3)Pτ (ξ3|ξ1) + W (ξ3|ξ2)Pτ (ξ2|ξ1)] (1.43)

where we have used the expression for a0 above. This is the CK equation for
stationary Markov process which include the familiar gain–loss, birth–death
processes.

To cast this in a more familiar form we can eliminate ξ1 by introducing the
two conditional probability densities

Pτ (ξ3|ξ1) = P1(ξ3, t) → Pn(t) (1.44)

Pτ (ξ2|ξ1) = P1(ξ2, t) → Pn′(t) (1.45)

The right arrow indicates transforming to a notation for processes via discrete
variables Ξ, as in quantum states. We get the familiar Pauli master equation

dPn

dt
=
∑
n′

[−Wn→n′Pn(t) + Wn′→nPn′(t)] (1.46)
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In conventional (less rigorous) physics language we call Pn(t) the probability to
find the system in state n, and Wn→n′Pn(t) the transition probability from state
n to state n′ in time t. Thus the first term measures the “loss” of system in state
n (depletion), and the second term its “gain” (increase).9

1.6.3 Kramers–Moyal and Fokker–Planck equations

For linear systems and in the limit where the jumps in a Markov process are
small, this equation takes a special form known as the Fokker–Planck equation.
Define η = ξ − ξ′ as the jump size. The transition probability W (ξ|ξ′) = W (ξ′; η)
is assumed to vary slowly with ξ, ξ′, and is a sharply peaked function of η. From
the CK equation,

∂P1(ξ, t)
∂t

=
∫

dξ′[W (ξ|ξ′)P1(ξ′, t) −W (ξ′|ξ)P1(ξ, t)]

=
∫

dη[W (ξ − η; η)P1(ξ − η, t) − P1(ξ, t)
∫

dηW (ξ − η;−η) (1.47)

Taylor expanding P1 around ξ in the integrand of the first term on the right-hand
side, i.e.

P1(ξ − η, t) = P1(ξ) − η
∂P1

∂η
+

η2

2
∂2P1

∂η2
+ · · · (1.48)

we have

∂P1(ξ, t)
∂t

=
∞∑
ν=1

(−1)ν

ν!
∂ν

∂ξν
[aν(ξ)P1(ξ, t)] (1.49)

where

aν(ξ) =
∫ ∞

∞
ηνW (ξ; η)dη (1.50)

This is called the Kramers–Moyal expansion of the Markovian master equation.
Keeping only the first two terms and dropping the subscript 1 on P1 (to convert

9 The Pauli equation could be the first instance we learn about the master equation, usually
in the context of quantum mechanics (e.g. Chapter 15 of Reif [Rei67]), but it is not tied to
any quantum notion whatsoever. (The only relevant concept from quantum physics is the
discrete state, but we know there is a corresponding version of the CK equation for
continuous variables.) To begin with, it deals with probabilities, not amplitudes, so there is
no phase information, and thus is useless in dealing with issues like quantum decoherence,
which probes into how the quantum phase information gets lost as a system’s classical
behavior emerges. More importantly it describes only Markovian stationary process – we
will see that it is far from the most general conditions. For example these are the conditions
behind the Fermi Golden rule, or the Wigner-Weisskopf lineshape, which are built upon
time-dependent perturbation theory. What this tells us is that it is always helpful to ask a
few questions about the tacit assumptions behind any physical law, no matter how familiar
they appear.
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to physics notation) yields the Fokker–Planck (FP) equation

∂P (ξ, t)
∂t

= − ∂

∂ξ
[a1(ξ)P (ξ, t)] +

1
2
∂2

∂ξ2
[a2(ξ)P (ξ, t)] (1.51)

For small changes in time we can write the coefficients a1, a2 as follows:

a1(ξ) =
∫

ηW (ξ, η)dη � 〈Δξ〉
Δt

= 〈vξ〉 (1.52)

a2(ξ) =
∫

η2W (ξ, η)dη �
〈
(Δξ)2

〉
Δt

(1.53)

If there is no external force a1 = 0, the FP equation is in the form of a diffusion
equation

∂P (ξ, t)
∂t

= Dξ
∂2P (ξ, t)

∂ξ2
(1.54)

with diffusion coefficient

Dξ =
a2

2
=

〈
(Δξ)2

〉
2Δt

(1.55)

This is known as the first Einstein relation.
In Chapter 2 we shall use intuitive physical reasoning to give a derivation of

the Boltzmann and Langevin equation, and their quantum version in Chapter 3.
These equations, together with the general (not just the Pauli) master equation,
will be the starting point for our expedition into nonequilibrium quantum field
processes.
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