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Recent developments in neural networks have shown the potential of estimating drag on
irregular rough surfaces. Nevertheless, the difficulty of obtaining a large high-fidelity
dataset to train neural networks is deterring their use in practical applications. In this
study, we propose a transfer learning framework to model the drag on irregular rough
surfaces even with a limited amount of direct numerical simulations. We show that transfer
learning of empirical correlations, reported in the literature, can significantly improve the
performance of neural networks for drag prediction. This is because empirical correlations
include ‘approximate knowledge’ of the drag dependency in high-fidelity physics. The
‘approximate knowledge’ allows neural networks to learn the surface statistics known
to affect drag more efficiently. The developed framework can be applied to applications
where acquiring a large dataset is difficult but empirical correlations have been reported.

Key words: machine learning

1. Introduction

Nearly all surfaces in fluid-related industries are rough at their operating Reynolds
numbers. These rough surfaces easily alter the aero- or hydrodynamic properties of a fluid
system and induce unfavourable consequences; for instance, reduced stability of aircraft,
increased fuel consumption of cargo ships and reduced energy harvesting capacity of
wind turbines (Gent, Dart & Cansdale 2000; Dalili, Edrisy & Carriveau 2009; Schultz
et al. 2011). Therefore, it is crucial to restore or replace surfaces that have degraded past
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a critical level. This requires monitoring roughness on industrial surfaces and efficiently
predicting their effect on the flow.

One of the most important effects of surface roughness on flow is the increased drag.
This additional drag is generally expressed by the Hama roughness function (Hama 1954)
or the equivalent sand-grain height. The Hama roughness function is the downward shift
of the mean velocity profile induced by roughness. The equivalent sand-grain height is the
roughness height from the Moody diagram (Moody 1944) that would cause the same drag
as the rough surface of interest. It is worth noting that to calculate the equivalent sand-grain
height, the Hama roughness function in the fully-rough regime – where the skin-friction
coefficient is independent of Reynolds number – needs to be determined. To accurately
determine the Hama roughness function of irregular surfaces, numerical simulations with
fully resolved rough structures or experiments are needed. However, neither simulations
nor experiments are cost-efficient and hence not feasible for practical purposes. To
alleviate the high costs, researchers have found empirical correlations between rough
surface statistics and their contribution to drag (Flack & Schultz 2010; Chan et al. 2015;
Forooghi et al. 2017; Flack, Schultz & Barros 2020). However, no universal model has
emerged that is able to accurately predict the drag from a sufficiently wide range of
roughness. This is mainly attributed to the high-dimensional feature space of irregular
rough structures (Chung et al. 2021).

Neural networks are known to be capable of extracting patterns in high-dimensional
spaces and therefore have been successfully used in various studies using fluid flow
data (Lee & You 2019; Kim & Lee 2020; Fukami, Fukagata & Taira 2021). Jouybari
et al. (2021) developed a multilayer perceptron (MLP) type neural network to find a
mapping of 17 different rough surface statistics to equivalent sand-grain height. They
reported a state-of-the-art performance in predicting equivalent sand-grain heights from
rough surface statistics. A total of 45 data samples, obtained from direct numerical
simulations (DNSs) and experiments, were used for training and validating their neural
network. Having a large number of data samples to train a neural network is invariably
advantageous; nonetheless, constructing a fluid database that is sufficiently large to train
a network from scratch imposes significant computational or experimental cost and is
often considered impractical. Therefore, for the practical usage of neural networks in
fluid-related applications, a framework that allows neural networks to learn a generalized
mapping from a limited number of data samples is needed.

In this study, we propose a transfer learning framework to improve the generalization
ability of neural networks for predicting the drag on rough surfaces when only a limited
number of high-fidelity data samples are available. Transfer learning is a method that
improves learning performance by adapting knowledge learned from one domain to
another (Pan & Yang 2009; Chakraborty 2021). The method has been used, for example,
for self-driving cars, which can be pre-trained with data from virtual car simulators
(Martinez et al. 2017; Pan et al. 2017; Akhauri, Zheng & Lin 2020). Obviously, the driving
environment in virtual car simulators is inherently different from the real world, however,
pre-training a neural network with ‘approximate knowledge’ can provide better initial
weights for training real self-driving cars.

Similarly, for flow over rough surfaces, empirical correlations between drag and surface
roughness provide an approximate knowledge of real flow physics (Colebrook & White
1937; Moody 1944; Flack & Schultz 2010; Chan et al. 2015; Forooghi et al. 2017; Flack
et al. 2020). These correlations were developed by a fitting procedure of large experimental
and numerical datasets. However, it is not straightforward to make direct use of these
datasets, in particular because the information of surface topographies and flow statistics
is not always accessible. Indeed, in many cases we have advanced our understanding of
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Empirical dataset (large)
Neural networks

DNS dataset (small)

(1) Pre-training (2) Fine-training

Figure 1. Overview of the transfer learning framework.

physics from the valuable information embedded in empirical correlations, such as those
developed by Colebrook & White (1937) and Moody (1944).

The aim of this study is to show that transfer learning of empirical correlations can
significantly improve the performance of neural networks for modelling drag on rough
surfaces. Our aim is also to analyse a simple neural network with and without transfer
learning to gain insight of the learning behaviour, which is strongly connected to the
physics of the problem. The objective of the developed neural network model is to predict
drag of a particular class of roughness contained in one high-fidelity dataset, which is
composed of irregular homogeneous rough surfaces. However, we foresee that transfer
learning will play a central role in combining empirical relations with larger datasets from
a range of sources to develop predictive models of a significantly larger class of rough walls
than those considered here. The paper is organized as follows: the details of the developed
transfer learning framework including the neural networks and datasets are explained in
§ 2. The results of learning a mapping of surface statistics to the Hama roughness function
using the transfer learning framework are shown in § 3. The effects of transfer learning are
analysed and discussed in § 4, followed by the concluding remarks in § 5.

2. Transfer learning framework

The developed transfer learning framework is composed of two parts: (1) pre-training step
and (2) fine-tuning step (figure 1). In the pre-training step, neural networks were trained
to learn an ‘approximate’ knowledge of the mapping of surface statistics to the Hama
roughness function. The training data are created by evaluating empirical correlation
functions given the surface statistics of different surface topographies. In the fine-tuning
step, neural networks were tuned to learn high-fidelity physics from a small DNS dataset
by adapting their pre-trained ‘approximate’ knowledge to the domain of real physics. In
§ 3, we show that transfer learning of empirical correlations improves the generalization
ability of neural networks when learning the drag of rough surfaces from a small amount
of data. First, however, we explain the details of the neural networks and pre-training and
fine-tuning steps.

2.1. Neural network
We used a variation of the MLP type neural network architecture developed by Jouybari
et al. (2021). The input of the employed network is a set of 17 different rough surface
statistics calculated from the surface topography of interest. The 17 input parameters
are composed of eight primary surface statistics and nine products of the eight primary
statistics. These parameters are selected based on their perceived importance on affecting
drag on rough surfaces (Jouybari et al. 2021).

Let x, y and z be the streamwise, wall-normal and spanwise directions, k(x, z) the
roughness height distribution and At the total roughness plan area. Then, one may define
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I1 = krms/Ra I2 = Sk = 1
At

∫
x,z(k − kavg)

3 dA/k3
rms

I3 = kur = 1
At

∫
x,z(k − kavg)

4 dA/k4
rms I4 = ESx = 1

At

∫
x,z

∣∣∣∣∂k
∂x

∣∣∣∣ dA

I5 = ESz = 1
At

∫
x,z

∣∣∣∣∂k
∂z

∣∣∣∣ dA I6 = por = 1
Atkc

∫ kc
0 Af dy

I7 = incx = tan−1
{

1
2

Sk
(

∂k
∂x

)}
I8 = |incz| =

∣∣∣∣tan−1
{

1
2

Sk
(

∂k
∂z

)}∣∣∣∣
I9 = I4I5 I10 = I4I2
I11 = I4I3 I12 = I5I2
I13 = I5I3 I14 = I2I3
I15 = I4I4 I16 = I5I5
I17 = I2I2

Table 1. Statistical input parameters of the employed neural network.

the following measures of an irregular rough surface:

average roughness height: kavg =
∫

x,z
k dA/At;

average height deviation: Ra =
∫

x,z
(|k − kavg|) dA/At;

root-mean-squared roughness height: krms =
(∫

x,z
(k − kavg)

2 dA/At

)1/2

.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.1)

In addition, we define the crest height kc and finally the fluid area at each wall-normal plane
Af ( y). From these quantities, the 17 statistical input parameters ({I1, I2, . . . , I17}) can be
calculated as listed in table 1. Here, Sk, kur, por, ESx, ESz, incx and incz indicate skewness,
kurtosis, porosity, and effective slopes and average inclinations in x and z directions,
respectively. Before training, the parameters I1 to I17 were normalized with the mean and
standard deviation values calculated from the dataset of empirical correlations (see § 2.2
for the details of the empirical dataset).

Information of input parameters travels through three hidden layers with 18, 7 and
7 neurons, respectively (see figure 2). Leaky rectified linear unit (ReLU) activations
(max(0.01x, x)) were applied after the hidden layers. The output of the employed neural
network was a scalar value of the Hama roughness function �U+. The superscript +
indicates the normalization by the viscous scale δν = ν/uτ , where ν and uτ are the
kinematic viscosity and the friction velocity, respectively. In this study, the friction
Reynolds number Reτ = uτ H/ν = 500 was used, where H is the channel half-height.
At the output layer, a Sigmoid activation function, a/(1 + ex), was applied to bound the
prediction value (a = 20 in this study).

2.2. Pre-training step
In the pre-training step, neural networks were trained with a large dataset obtained from
empirical correlation functions between rough surface statistics and the Hama roughness
function �U+. We used three correlations:

�U+ = 2.5 log Ra+ + 1.12 log ESx + 1.47; (EMP1)
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Input: surface statistics

{I1, I2..., I17}

Neural network

Output:

�U+

17 18 7 7

Figure 2. Architecture of the used neural network.

�U+ = 2.5 log
[
k+

c

(
0.67Sk2 + 0.93Sk + 1.3

) (
1.07
(

1 − e−3.5ESx
))]

− 3.5; (EMP2)

and

�U+ =

⎧⎪⎨⎪⎩
2.5 log

[
2.48k+

rms(1 + Sk)2.24]− 3.5, Sk > 0

2.5 log
[
2.11k+

rms
]− 3.5, Sk ≈ 0,

2.5 log
[
2.73k+

rms(2 + Sk)−0.45]− 3.5, Sk < 0.

(EMP3)

Here, (EMP1) was proposed by Chan et al. (2015), (EMP2) by Forooghi et al. (2017) and
(EMP3) by Flack & Schultz (2010); Flack et al. (2020).

As mentioned earlier, we will develop neural networks to predict the drag of rough
surfaces contained in a small high-fidelity dataset (see § 2.3 for the details of the DNS
dataset). The range of the roughness function in this dataset was 5.3 < �U+ < 8.3.
The lower bound lay at the boundary between transitionally and fully rough regimes.
Equation (EMP1) was derived using surfaces in the transitionally and fully rough regimes
with 0.4 < �U+ < 11.4. Equation (EMP2) was modelled from surfaces with roughness
function in the range of 5.4 < �U+ < 10.1. Finally, (EMP3) was developed with rough
surfaces in the fully rough regime, where most of the surfaces became fully rough when
�U+ was over 5.5–6.0. Therefore, all three empirical models contained ‘approximate’
knowledge of the drag of rough surfaces that could help the neural networks to learn the
DNS dataset in the fine-tuning step.

A large dataset was constructed by randomly generating 10 000 irregular rough surfaces
and calculating the associated Hama roughness function using (EMP1), (EMP2) and
(EMP3). The surfaces were constructed using the Fourier-filtering algorithm suggested
by Jacobs, Junge & Pastewka (2017). The algorithm generated self-affine surfaces with a
pre-defined power spectrum C,

C(q) ∝ q−2−2h, (2.2)

where q is the wavenumber and h the Hurst exponent. The Hurst exponent h = 0.8 was
used as in Jacobs et al. (2017). This power-law dependence is a well-known attribute of
self-affine realistic surfaces (Mandelbrot 1982; Persson et al. 2004). Figure 3(a) shows a
few examples of the generated random surfaces. The randomness was imposed by choosing
random amplitudes of the power spectrum and random phase shifts of Fourier modes.
Accordingly, the surface statistics, such as the skewness and the effective slope, depended
on the particular combination of the random amplitudes and phases of Fourier modes.

For training and validating the neural network, 7000 and 3000 data samples were
used, respectively. Figure 3(b) shows the scatter plots of the Hama roughness functions,
calculated by (EMP1), (EMP2) and (EMP3), against k+

rms, Sk and ESx from the 3000
validation data samples. The surface generation method based on the spectral density
(EMP1), generated surfaces with skewness bounded between −1 to +1 and effective
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(a)

(b)
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Figure 3. (a) Examples of patches of the generated surfaces in the empirical dataset. The size of the patches
is 500 × 500 (viscous unit) in the streamwise and spanwise directions. The visualized heights of the surfaces
are exaggerated five times to show the topography explicitly. (b) Scatter plots of the Hama roughness functions
(�U+), calculated by (EMP1), (EMP2) and (EMP3), against k+

rms, Sk and ESx from the 3000 validation data
samples.

slopes limited to �0.35. The bounded skewness and limited effective slopes arose from
the wavy surfaces generated by Fourier modes and the self-affine power spectrum defined
for realistic surfaces, as in Jacobs et al. (2017). The random surfaces were thus considered
to be in the low-slope regime, where the drag tends to increase with increasing effective
slope (Flack & Schultz 2014). From figure 3(b), we observed different distributions, or
knowledge, of the Hama roughness function from the different empirical models. The aim
is to seed this diverse knowledge of empirical correlations in neural networks during the
pre-training step.

Three neural networks with the same architecture and the same initial weights and biases
were trained simultaneously to learn the different empirical models, (EMP1) to (EMP3).
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Let NNi be the neural network trained with the ith empirical model, Wi
j,k the weight matrix

connecting the jth and kth layers of NNi, Nw the total number of weights in NNi, bi
j the

bias vector added in the jth layer, �U+
i the Hama roughness function predicted by the ith

empirical model and �Ũ+
i the Hama roughness function predicted by NNi. The neural

networks were trained to minimize a loss for pre-training:

Lp = 1
3

3∑
i=1

⎡⎣(�U+
i − �Ũ+

i

)2 +
∑
j,k

tr
{
(Wi

j,k)
T(Wi

j,k)
}⎤⎦ . (2.3)

The first term in the right-hand side is the mean-squared-error loss and the second is the
weight regularization loss, also used in Jouybari et al. (2021). The sizes of the weight
matrix Wi

j,k and bias vector bi
k are nj × nk and nk, respectively, where nj and nk are the

number of neurons on the jth and kth layers.
The weights and biases of the neural networks were updated in the direction of

minimizing the pre-training loss Lp on the training data samples through the Adam
optimizer (Kingma & Ba 2014). The pre-training loss Lp on the validation data samples
was also evaluated after each iteration of updates. Batch sizes of 16 and 32 were used
for training and validating, respectively. To provide a wide distribution of data samples in
the batches, i.e. preventing neural networks from learning biased data focused on average
characteristics, we imposed batches to contain 50 % of the data samples with �U+ in the
range of 6 to 8, 25 % of the data samples with �U+ in the range of 4 to 6 and the remaining
25 % of the data samples with �U+ in the range of 8 to 10. After a sufficient number of
iterations for training and validating, the set of networks ({NN1, NN2, NN3}) that produced
the lowest pre-training loss on the validation data samples was chosen to be merged into
a single pre-trained network NNpre. The learned sets of weights and biases in the three
neural networks, {W1

j,k, W2
j,k, W3

j,k} and {b1
k, b2

k, b3
k}, were averaged into the weights and

biases of Wpre
j,k and bpre

k as Wpre
j,k =∑3

i=1 Wi
j,k/3 and bpre

k =∑3
i=1 bi

k/3. These pre-trained
weights and biases were employed as the initial weights for the fine-tuning step (§ 2.3) to
transfer the knowledge of empirical correlations to the domain of high-fidelity physics.

A key factor for the performance of the fine-tuned neural network is the contents of
the database used in the pre-training step. If the bound of the �U+ in one’s high fidelity
dataset is known a priori, then using a narrow range of �U+ for pre-training increases the
transfer learning performance significantly. We provide an example of this by training the
neural networks with a bound of �U+ in Appendix A. In the main text, we assume that
the range of �U+ of the high-fidelity dataset is a priori unknown.

2.3. Fine-tuning step
A total of 35 DNSs of channel flow over rough surfaces at Reτ ≈ 500 were conducted
to construct a high-fidelity dataset. The 35 rough surfaces were generated following
the method proposed by Pérez-Ràfols & Almqvist (2019). Figure 4(a) shows a few
examples of the generated surfaces. Note that different surface generation methods
were used to construct the DNS and empirical datasets (§ 2.2). The method used for
DNS imposed an additional constraint on the roughness height probability distribution.
This constraint enabled the generation of rough surfaces with distinctive characteristics.
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Figure 4. (a) Examples of patches of the generated surfaces in the DNS dataset. The size of the patches is
500 × 500 (viscous unit) in the streamwise and spanwise directions. The visualized heights of the surfaces are
exaggerated five times to show the topography explicitly. (b) Scatter plots of the calculated Hama roughness
function (�U+) against various surface statistics of the 35 DNS data samples. The markers ◦ (red), � (green)
and × (black) indicate the training, validation and test data samples, respectively. The plots are drawn from an
example of a combination of training and validation data samples.

For the probability distribution, we used Weibull distributions of the form:

f (x; λ, s) = s
λ

( x
λ

)s−1
e−(x/λ)s

. (2.4)

By using different shape (s) and scale (λ) parameters, rough surfaces with non-zero
skewness were generated. Gaussian distributions were used to generate rough surfaces
with zero skewness. Rough surfaces generated with (EMP3) imitate the roughness caused
by wear (Pérez-Ràfols & Almqvist 2019). By using different surface generation methods in
the pre-training and fine-tuning steps, we can verify that pre-training on one class of rough
surfaces can help learn the drag on a different class of rough surfaces. Such verification is
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important, as in practice, artificially generated rough surfaces for pre-training would not
perfectly imitate real-world rough surfaces.

Details of the methodology and validation of the conducted DNS are reported in
the study of Yang et al. (2021). Here, we provide a brief overview. A pseudo-spectral
incompressible Navier–Stokes solver, SIMSON (Chevalier, Lundbladh & Henningson
2007) with an immersed boundary method (Goldstein, Handler & Sirovich 1993), was
employed for the channel simulations. Periodic boundary conditions were used in the
streamwise and spanwise directions. No-slip conditions were applied at the top and bottom
planes of the channel. Roughness effects were added to both the top and bottom planes.
A minimal channel approach was adopted to find a small computational domain size that
could accurately reproduce the Hama roughness function calculated from a full channel
simulation (Chung et al. 2015). Further details on the domain size and grid resolution are
provided in Appendix B.

The scatter plots of the calculated Hama roughness function on the 35 data samples
against the surface statistics involved in calculating the input of neural networks are shown
in figure 4(b). The generated surfaces in the fine-tuning and pre-training steps showed
moderately different characteristics. For instance, the surfaces generated in the fine-tuning
step showed higher limits of the effective slopes (up to ∼0.8) compared with those in the
pre-training step (up to ∼0.35). However, note that despite the larger effective slope, the
surfaces were not in the regime where drag tends to decrease with increasing effective
slope (Flack & Schultz 2014). The 35 data samples were split into 6, 4 and 25 data
samples for training, validation and test, respectively. More than 70 % of the data samples
were used for testing, i.e., not used during the fine-tuning step, to fairly evaluate the
generalization ability of the developed neural networks. Note that a total of 10 data samples
were used in the fine-tuning step and these fine-tuning data samples were completely
separated from the test data samples. The data used for fine-tuning and testing the neural
networks are provided in table 2. The surface statistics and the Hama roughness function
in the test dataset are distributed widely in the total dataset as shown by the × markers in
figure 4(b).

To reduce the uncertainty arising from splitting a very small dataset into training
and validation sets, we adopted an approach based on averaging many neural networks.
More specifically, we employed 210 neural networks, {NN1, NN2, . . . , NN210}, to learn
from the 210 different data combinations derived by selecting six training and four
validation data samples from the ten fine-tuning data samples ((10

6 ) = (10
4 ) = 10!/(6! 4!) =

210). The weights and biases of these 210 neural networks ({W1
j,k, W2

j,k, . . . , W210
j,k } and

{b1
k, b2

k, . . . , b210
k }) were initialized by the pre-trained weights and biases, Wpre

j,k and bpre
k .

Similar to the pre-training step, the weights and biases of each neural network NNi were
updated by the Adam optimizer that minimizes a loss for fine tuning Li

f ,

Li
f =
(
�U+ − �Ũ+

i

)2 + 1
Nw

∑
j,k

tr
{
(Wi

j,k)
T(Wi

j,k)
}

. (2.5)

Here, �U+ is the ground truth and �Ũ+
i is the roughness function predicted by NNi.

After a sufficient amount of updates, the networks with the smallest fine-tuning loss on
the validation data samples were chosen to predict the roughness function �U+ on test
data (§ 3).
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Fine-tuning data �U+ k+
rms Sk ESx ESz incx incz Ra+ kur por

F1 5.46 8.712 −0.721 0.178 0.180 0.092 0.008 6.681 4.186 0.386
F2 5.51 10.408 −0.484 0.371 0.370 −0.019 −0.006 8.406 2.954 0.373
F3 6.05 11.385 −0.568 0.549 0.533 0.006 0.048 9.411 2.734 0.347
F4 6.09 10.407 −0.483 0.543 0.542 0.003 0.000 8.405 2.951 0.373
F5 6.14 10.411 −0.483 0.557 0.558 0.010 0.002 8.407 2.952 0.373
F6 6.60 8.578 0.868 0.248 0.247 −0.020 −0.049 6.832 3.664 0.711
F7 6.84 9.453 −0.001 0.363 0.361 −0.012 −0.005 7.547 2.943 0.498
F8 7.36 9.417 0.755 0.456 0.435 0.020 0.057 7.394 3.759 0.638
F9 7.70 11.546 0.433 0.260 0.261 −0.071 −0.072 9.328 2.890 0.612
F10 8.29 10.956 0.718 0.476 0.476 0.009 0.061 8.786 3.336 0.681

Test data �U+ k+
rms Sk ESx ESz incx incz Ra+ kur por

T1 5.32 9.035 −0.770 0.187 0.176 0.022 −0.062 6.902 4.306 0.384
T2 5.63 10.406 −0.483 0.399 0.392 0.030 0.033 8.397 2.956 0.372
T3 5.88 9.986 0.003 0.372 0.373 0.012 −0.019 7.978 2.936 0.504
T4 5.97 8.958 0.274 0.242 0.240 0.022 −0.047 7.256 2.745 0.567
T5 6.17 8.667 0.132 0.289 0.289 −0.033 −0.013 6.897 3.030 0.521
T6 6.31 10.439 −0.730 0.230 0.223 0.091 0.080 7.993 4.243 0.387
T7 6.39 9.978 0.001 0.387 0.382 −0.037 0.096 7.972 2.934 0.505
T8 6.46 8.889 0.001 0.271 0.274 −0.012 −0.005 7.100 2.937 0.498
T9 6.46 9.481 −0.133 0.362 0.363 −0.005 0.015 7.550 3.015 0.479
T10 6.57 10.408 0.484 0.371 0.370 0.019 0.006 8.406 2.954 0.627
T11 6.59 9.986 0.003 0.529 0.517 −0.020 0.028 7.977 2.937 0.505
T12 6.60 9.512 −0.004 0.194 0.193 −0.068 0.052 7.597 2.943 0.495
T13 6.65 9.976 0.001 0.489 0.472 0.011 −0.007 7.972 2.926 0.505
T14 6.67 9.980 0.002 0.537 0.535 −0.006 0.002 7.973 2.936 0.502
T15 6.80 9.992 0.003 0.574 0.551 0.058 0.025 7.983 2.933 0.504
T16 6.92 10.429 0.491 0.444 0.441 −0.116 0.027 8.416 2.972 0.629
T17 7.00 9.208 0.864 0.266 0.267 0.027 −0.012 7.337 3.633 0.709
T18 7.23 10.407 0.483 0.543 0.542 −0.003 0.000 8.405 2.951 0.627
T19 7.27 10.706 0.120 0.355 0.355 0.051 0.007 8.632 2.751 0.522
T20 7.28 10.400 0.480 0.554 0.547 0.004 0.017 8.399 2.946 0.627
T21 7.34 9.419 0.754 0.398 0.380 0.086 0.029 7.397 3.755 0.638
T22 7.35 10.886 0.491 0.284 0.283 −0.042 −0.018 8.792 2.957 0.627
T23 7.59 10.262 −0.418 0.815 0.808 0.015 0.007 8.023 3.573 0.429
T24 7.70 10.688 0.001 0.557 0.552 0.000 0.000 8.532 2.944 0.496
T25 7.77 11.233 −0.001 0.482 0.483 −0.007 0.041 8.970 2.946 0.495

Table 2. The data of roughness function (�U+) and surface statistics used for fine-tuning and testing the
neural networks.

3. Prediction of roughness functions

We compare the predicted Hama roughness functions on the 25 test data samples that
were not included in the fine-tuning step. The roughness functions were calculated by the
following prediction methods: (1) neural networks trained with transfer learning (NNTF);
(2) neural networks trained without transfer learning (NN) and (3) empirical correlations
(EMP). Neural networks in NN were trained without the pre-training step, i.e. the weights
and biases of the networks were randomly initialized instead of being initialized by Wpre

j,k
and bpre

k . Our focus here is on the comparison between NNTF and NN to demonstrate the
effects of transfer learning. However, we also include EMP predictions in the comparison
because these methods are widespread in the literature.
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Figure 5. Average and maximum errors from the ensemble predictions performed by NNTF, NN and EMP.

The performance of neural networks can vary greatly depending on the selection of
data for training and validation. This is because it is generally hard to form a distribution
covering the entire feature space from a limited number of data samples. By ensemble
averaging the predictions from neural networks learned from different data combinations,
we can partly alleviate this problem. The ensemble predictions from NNTF and NN are
thus obtained by averaging the prediction values of the 210 neural networks as

�Ũ+ =
210∑
i=1

�Ũ+
i /210. (3.1)

Similarly, we use ensemble predictions of the empirical models {(EMP1), (EMP2),
(EMP3)} in EMP as

�Ũ+
emp =

3∑
i=1

�Ũ+
i,emp/3, (3.2)

where �Ũ+
i,emp is the Hama roughness function predicted by the ith empirical model.

Figure 5 shows the maximum and average errors calculated from the ensemble
predictions by NNTF, NN, and EMP. The predictions from NN exhibited 7.62 % and
23.05 % of the average and maximum errors, respectively, while the corresponding error
associated with the predictions from NNTF were 6.25 % and 14.15 %. Note that both NN
and NNTF are performing better than EMP here. The most significant advantage of using
transfer learning is in the reduction of the maximum error; a nearly ten percent decrease
is achieved by using NNTF instead of NN. As we will discuss more quantitatively in the
next section, this error reduction demonstrates the capability of NNTF in learning a better
generalized mapping from a small amount of DNS data.

To further investigate transfer learning, the best and worst performing neural networks
out of the 210 networks in NNTF and NN were extracted and compared in figure 6. The
errors from the best performing networks in NNTF and NN (figure 6a) showed a similar
trend as the ensemble predictions (figure 5); both average and maximum errors were
clearly reduced by using transfer learning. We also note that the ensemble predictions from
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Figure 6. Average and maximum errors from the (a) best and (b) worst performing neural networks and
empirical correlations.

NNTF (figure 5) performed marginally better compared with both the best performing
neural network in NN and empirical correlation in EMP (figure 6a).

The advantage of using transfer learning was more clearly demonstrated in the worst
performing case (figure 6b). The maximum error of the worst performing neural network in
NN was nearly 60 %, which showed that this network failed to provide a reliable prediction.
However, the network in NNTF exhibited significantly smaller errors, which indicated that
transfer learning was helping the network to provide a safer prediction even in the worst
scenario. Therefore, these results showed that transfer learning enables the networks to
learn a more generalized mapping from limited DNS data by adapting an ‘approximate’
knowledge from empirical correlations. It is also important to emphasize that ensemble
predictions should be used in practice to reduce the uncertainty arising from a limited
pool of data as can be seen from the wide range of errors that occurred with the best and
worst performing neural networks in figure 6.

4. Analysis of transfer learning and approximate knowledge

In the previous section, we demonstrated that transfer learning of empirical correlations
improves the learning performances of neural networks. In this section, we analyse the
effects of transfer learning and why ‘approximate knowledge’ in the empirical correlations
can help neural networks.

4.1. Effects of transfer learning on weight generalization
In this section, we investigate how transfer learning improves the generalization ability by
characterizing the learning weights of the networks. Let wi

l, where l = 1, 2, . . . , Nw is the
vectorized elements of the weight matrices Wi

j,k in NNi (Nw = 488 in this study). Then,
we define the deviation of weights wi

l from different NNi as

σl =

√√√√ 210∑
i=1

(
wi

l − μl

)2
/

210

210∑
i=1

∣∣∣wi
l

∣∣∣/ 210

, (4.1)
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Figure 7. Distributions of the deviations of weights σl in NNTF (red) and NN (black).

where μl =∑210
i=1 wi

l/210. Note that the networks in NNTF were initialized with the
pre-trained weights, and the networks in NN were initialized with the same random
weights. Therefore, the deviation σl indicates how a weight in a neural network is updated
differently for different combinations of training and validation data samples (i.e. different
NNi). In the ideal case with an infinite amount of data samples, the deviation will approach
zero as the network converges to specific weights representing a unique generalized
mapping of the real physics.

The distributions of the deviation σl calculated from NNTF and NN are compared in
figure 7. A number of weights with large σl were observed in NN, which indicated that the
updates of weights largely deviated depending on the data. This implied that the current
data were insufficient for NN to learn a generalized mapping. However, the deviations were
significantly reduced in NNTF, which implied that the networks in NNTF were learning a
better-generalized mapping compared with NN. This was because the networks in NNTF
were initialized with the pre-trained weights containing the ‘approximate’ knowledge.
These weights provided a better initial state for the weight optimization problem in the
fine-tuning step.

4.2. Effects of transfer learning on sensitivities of input surface statistics
This section investigates how transfer learning affects the neural networks in learning the
sensitivities of the input surface statistics. The sensitivities of input surface statistics in
predicting drag were obtained by calculating the derivatives of drag with respect to each
input (surface statistical measure). A similar analysis was employed by Kim & Lee (2020)
for evaluating the influences of flow variables in predicting heat transfer characteristics.
We define the sensitivity of the input Ii in predicting drag �Ũ+ (defined in (3.1)) as

Si =
〈∣∣∣∣∂�Ũ+

∂Ii

∣∣∣∣〉 . (4.2)

Here, 〈·〉 is the averaging operation along with the calculated derivatives from the 25
test DNS dataset. The derivative ∂�Ũ+/∂Ii can be analytically calculated as neural
networks are composed of differentiable function compositions and matrix multiplications.
However, more efficiently, it can be done by using an automatic differentiation algorithm.
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Figure 8. Sensitivities of the input surface statistics in NNTF (red) and NN (black). The sensitivities are
normalized with their total sum (Si/

∑
i Si). The input surface statistics are sorted in descending order from the

largest to smallest sensitive surface statistics in NNTF.

In this study, we used the automatic differentiation algorithm implemented in PyTorch
(Paszke et al. 2017).

Figure 8 shows the sensitivities of the input surface statistics when trained with NNTF
and NN. It was observed that for both neural networks, I12 = ESz × Sk, I10 = ESx × Sk
and I6 = por had the highest sensitivities. In other words, these were the most important
surface measures when it came to predicting the friction drag for the particular class of
rough surfaces contained in the high-fidelity dataset. These statistics are not explicitly
included in the empirical models (EMP1), (EMP2) and (EMP3). Therefore, this indicates
that the neural networks were learning the mapping of surface statistics to drag beyond
the empirical models. However, the importance of I12, I10 and I16 was partially implied
by previous studies. The importance of the product of effective slope and skewness was
partly implied in the study by Forooghi et al. (2017), as their empirical model (EMP2)
was nonlinear with respect to skewness and effective slope. The importance of porosity
in predicting drag was recently emphasized by Jouybari et al. (2021). Although the result
shown here was for a particular class of rough surfaces, it demonstrated the necessity
of expanding the feature space of surface statistics for drag prediction to more complex
nonlinear combinations of the most basic statistical moments.

To understand what influence transfer learning has on sensitivities, we can identify
from figure 8 the input statistics that are ranked differently by NN and NNTF in terms
of importance. The surface statistics related to effective slopes and skewness, e.g. I12 =
ESz × Sk, I10 = ESx × Sk, I2 = Sk, I4 = ESx and I5 = ESz, were found to be more
sensitive in NNTF. These higher sensitivities in NNTF mainly arose from the inclusion of
the approximate knowledge about the drag dependencies on effective slope and skewness
in the empirical correlations. Conversely, the sensitivity of the input defined as the square
of skewness (I17 = Sk × Sk) was smaller in NNTF compared with NN. This indicated
that NNTF learns that the square of skewness compromises the information about the
sign of skewness, which is known to be important for drag prediction (Jelly & Busse
2018). In addition, NNTF reduces the sensitivities of statistics related to kurtosis (I3 = kur,
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Figure 9. Contours of the roughness function calculated from (EMP1), (EMP2) and (EMP3). The roughness
heights (Ra+, k+

c , k+
rms) = (0.234, 0.474, 1.106) are used for calculating the empirical correlations. The × (red)

and ◦ (red) markers indicate the test and fine-tuning DNS data samples, respectively. The ◦ (black) markers
indicate the fitting data samples used for deriving the empirical datasets (data extracted from Chung et al.
2021).

I13 = ESx × kur and I11 = ESz × kur). As kurtosis measures the outliers (DeCarlo 1997),
the reduction indicates that the effects of the outlier roughness heights are relaxed in
NNTF.

4.3. Approximate knowledge in the empirical correlations
As briefly introduced in § 2.2, the empirical correlations contain different types of
approximate knowledge. This is because the empirical correlations were fitted from
different types of surfaces (Chung et al. 2021); (EMP1) was derived from data of a pipe
with sinusoidal irregular roughness; (EMP2) was developed from data of rough surfaces
with different arrangements and size distributions of roughness elements; and (EMP3) was
constructed from a wide range of realistic rough surfaces, such as gravel and commercial
steel pipes. As a consequence, each of the relations (EMP1), (EMP2) and (EMP3) depends
on a different measure of roughness height (Ra+, k+

c or k+
rms) and different combinations

of surface statistics (Sk and/or ESx). Figure 9 shows contour levels of the drag predicted by
(EMP1), (EMP2) and (EMP3) in a map spanned by skewness Sk and effective slope ESx.
Note that the roughness heights for (EMP1)– (EMP3) (Ra+, k+

c and k+
rms) were chosen by

their respective values that produced �U+ = −3.5 at a common location (ESx = 0.3 and
Sk = 0) as in Chung et al. (2021).

The correlation (EMP1) contains the approximate knowledge that drag tends to increase
with increasing effective slope, while it does not contain any dependency of drag with
respect to skewness. This is because (EMP1) was derived from fitting data with a narrow
regime of skewness, as shown by the black ◦ markers in EMP1 of figure 9. Oppositely,
the correlation (EMP3) contains the knowledge that drag tends to increase with increasing
skewness, without a dependency on the effective slope. This is because the majority of
the fitting data for (EMP3) (black ◦ markers in EMP3 of figure 9) lies in an insensitive
regime of effective slope – between the sparse regime (ES < 0.3–0.6) and dense regime
(ES > 0.4–3.0) – with relatively small effects on drag (Jiménez 2004). Equation (EMP2)
shows a nonlinear dependence of drag on the skewness and the effective slope. As a result,
this model includes approximate knowledge about the drag dependency on the product of
skewness and effective slope as also discussed in § 4.2.
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Figure 10. Visualization of the knowledge domains of the DNS domain (red), EMP domain (blue) and
non-physics domain (green). Comparisons between the (a) DNS and non-physics domains and the (b) DNS
and EMP domains.

As the empirical correlations are derived by fitting data from a particular set of surfaces,
a naive extrapolation of them for predicting drag of other sets of rough surfaces may
lead to large errors. For example, if the correlations are directly applied to predict
drag on the current test surfaces of the DNS dataset (red × markers in figure 9), the
average and maximum errors of (EMP1), (EMP2) and (EMP3) are (17 %, 29 %), (8 %,
17 %) and (25 %, 44 %), respectively. Note that the errors from (EMP2) are the smallest
owing to the similar surface spaces between the current DNS data and the fitting data.
Interestingly, large errors of the empirical models do not necessarily lead to inaccurate
fine-tuned neural networks. To demonstrate this, we fine-tuned neural networks pre-trained
only with one empirical correlation. We found that the average and maximum errors
of the ensemble networks fine-tuned from (EMP1), (EMP2) and (EMP3) were (6 %,
18 %), (6 %, 17 %) and (7 %, 14 %), respectively. Despite the high errors of the empirical
correlations of (EMP1) and (EMP3), their resulting fine-tuned networks were as effective
as the fine-tuned network from (EMP2). This indicated that an empirical model for
pre-training does not necessarily need to be accurate, it merely needs to provide an
approximate knowledge of the dependencies on surface statistics. Moreover, NNTF, which
is pre-trained with all of the approximate knowledge provided by the three empirical
models, achieves a more favourable overall performance (figure 5), compared with the
fine-tuned networks pre-trained with any single EMP. This is because the knowledge
contained in each empirical model contributes with information of drag dependencies.
This can be qualitatively shown by visualizing knowledge domains.

Figure 10 compares the knowledge domains of high-fidelity physics (DNS domain),
approximate knowledge in the empirical models (EMP domain) and non-physical
knowledge from the randomly initialized neural networks (non-physics domain). To
visualize the knowledge domains, we extracted principal axes of the data samples
composed of (ESx, Sk, �U+) in each domain. Note that �U+ in the DNS, EMP and
non-physics domains are obtained from simulations, empirical models and randomly
initialized neural networks, respectively. The DNS domain is composed of rough surfaces
in the DNS dataset, while the EMP and non-physics domains are composed of rough
surfaces in the empirical dataset. After computing the principal axes in each domain,
ellipsoids that approximately bound the DNS, EMP and non-physics domains along their
principal axes are visualized. As shown in figure 10(a), no particular correlation (or rather
alignment) can be found between the non-physics domain and the DNS domain. However,
an alignment between the EMP domain and the DNS domain is observed in figure 10(b).
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Therefore, it is expected that neural networks with approximate knowledge from the EMP
domain can more easily adapt to the DNS domain compared with those without any
physical knowledge.

We also quantified the alignment between the knowledge domains by calculating the
angles between the principal axes. The angles between the principal axes in the EMP
and DNS domains were computed as (16.5◦, 18.1◦, 8.9◦), while the angles between
the principal axes in the non-physics and DNS domains were computed as (120.9◦,
119.9◦, 12.3◦). Accordingly, the aligned ‘approximate knowledge’ from EMPs assisted
the networks to adapt to the DNS domain; thus, a better performance of neural networks
was achieved by transfer learning of empirical correlations.

5. Conclusions

We have developed a transfer learning framework to learn the Hama roughness function
from a limited number of DNS data samples. The framework is composed of two steps:
(1) pre-training step and (2) fine-tuning step. In the pre-training step, neural networks
learn an ‘approximate’ knowledge from empirical correlations. In the fine-tuning step,
the networks are fine-tuned using a small DNS dataset. Neural networks trained with
transfer learning show a significant improvement in predicting the roughness function on
test data samples not included in the fine-tuning step. This is because the ‘approximate’
knowledge in empirical correlations is aligned to high-fidelity physics, which assists neural
networks to learn better-generalized weights. In addition, a sensitivity analysis shows that
the neural networks with transfer-learning were clearly emphasizing the importance of
certain input surface statistics (effective slopes, skewness and porosity) in predicting drag.
These extracted statistics are in general good agreement with what has been reported
by other investigations, but also highlight that nonlinear functions of several surfaces
statistics could provide high correlation with drag. We have shown that the prediction
performance is enhanced when the ‘approximate’ knowledge of the empirical dataset is
well aligned to the high-fidelity dataset. Therefore, it is advantageous to employ empirical
correlations developed for classes of rough surfaces that are similar to one’s high-fidelity
dataset. The current NNTF, trained with irregular homogeneous rough surfaces, would not
be effective when predicting drag on regular rough surfaces (e.g., cuboids, bars, etc.) or
inhomogeneous rough surfaces. Similarly, predicting values of roughness function beyond
training is also expected to not be effective owing to the general limitations of data-driven
methods in extrapolation.

To further increase the generalization ability of neural networks, ultimately, the dataset
has to be expanded. A large database would also help to study classes of rough surfaces
with undiscovered empirical correlations, where pre-training is currently not possible.
Accordingly, a collective community effort is needed to construct and train Big Data
of flows over many classes of rough surfaces in different flow conditions. One step in
this direction is the online database at http://roughnessdatabase.org (Engineering and
Physical Sciences Research Council & University of Southampton 2020), currently under
construction. Moreover, new primary surface statistics that strongly affect drag may be
discovered in the future by extending the sensitivity analysis in § 4.2 with a larger surface
parameter space and Big Data. Also, expansion of the network structure would enable one
to fully leverage information inside large databases. The structure of the neural network in
this study is very simple, as our focus has been to show that transfer learning can improve
the performance of a given network. Thus, this network structure should not be considered
as the optimal model for predicting drag. In addition to expanding the database, further
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optimization of the neural networks will also improve the performance for drag prediction.
The current transfer learning code will be made available online (e.g. see https://www.
bagherigroup.com/research/open-source-codes/).

Finally, while we have considered transport of momentum (i.e. drag coefficient),
empirical relations are widespread also for characterizing transport of energy (Nusselt
number) and mass (Sherwood number). Therefore, the proposed framework can also be
applied to other engineering applications where only a limited amount of high-fidelity
data is available, but a significant amount of knowledge has been accumulated.
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Appendix A. Effects of a bounded roughness function in the datasets

Here, we provide an example of training the neural networks with bounded �U+. If the
bound of �U+ in one’s high-fidelity dataset is known, the transfer learning performance
can be improved by accordingly bounding the �U+ for pre-training. In this example, we
used the bound of �U+ > 6, as the surfaces in the current DNS dataset asymptotically
reach the fully rough regime when �U+ ≈ 6 (Yang et al. 2021). We excluded the data
samples with �U+ < 6 from the 35 DNS data samples (figure 4). As a result, a total of 29
DNS data samples were used in this section. The 29 data samples were split into 5, 3 and
21 data samples for training, validation and testing. Note that more than 70 % of the data
samples were used for testing, as in § 3. The �U+ of the empirical dataset was bounded
to �U+ > 6 as the DNS dataset. After pre-training neural networks with the bounded
�U+, we fine-tuned a total of 56 neural networks, which learnt from the 56 different
combinations of 5 training and 3 validation data samples out of the total 8 fine-tuning data
samples ((8

5) = (8
3) = 8!/(5! 3!) = 56).

The average and maximum errors on the 21 test data samples predicted by the ensembles
of (1) NNTF with bounded �U+ (NNTF-BU), (2) NN with bounded �U+ (NN-BU)
and (3) EMP with bounded �U+ (EMP-BU) were (5.49 % and 14.60 %), (19.61 % and
45.61 %) and (13.22 % and 27.07 %), respectively (figure 11). The errors from NN-BU
were notably increased compared with the errors from NN (7.62 % and 23.05 %, figure 5).
This was because the number of data samples used for training NN-BU had decreased by
∼20 % compared with the number used for training NN. However, despite the decrease of
the number of fine-tuning data samples, NNTF-BU showed similar errors compared with
NNTF (6.25 % and 14.15 %, figure 5). Accordingly, NNTF-BU achieved nearly 15 % and
30 % decrease in error percentages compared with NN-BU, which was more significant
than those achieved from NNTF (figure 5). Therefore, the transfer learning performance
can be improved when the range of �U+ of surfaces in one’s high-fidelity dataset is a
priori known. It is also worth mentioning that the errors from EMP-BU are similar to those
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Figure 11. Average and maximum errors from the ensemble predictions performed by NNTF-BU, NN-BU
and EMP-BU.

15

10

5

0

101 102

300 500

15

19

103

U +
U +

y+

y+

Figure 12. Profiles of �U+ calculated from case 1 (green dotted line), case 2 (blue dashed line), case 3
(black solid line), case 4 (◦) and case 5 (

�
).

from EMP (12.30 % and 27.07 %, figure 5), which indicates that the employed empirical
models are reasonably valid even for �U+ slightly under 6.

Appendix B. Grid resolution and domain size

To determine the appropriate mesh resolution in our simulations, a grid independence
test was conducted. We conducted the test for the rough surface with the smallest Taylor
microscale (λT ) along with the 35 DNS data samples. The definition of the Taylor
microscale proposed by Yuan & Piomelli (2014) was adopted in the current study. We
studied the grid independence using five different resolutions in a minimal channel domain
(2.0H × 2.0H × 0.4H): case 1, (192 × 401 × 36); case 2, (256 × 361 × 48); case 3,
(256 × 401 × 48); case 4, (256 × 451 × 48); case 5, (300 × 401 × 60). The calculated
mean velocity (U+) profiles are shown in figure 12. The profiles from the five different
cases were found to be nearly identical in both the inner and outer layers. Thus, in the
current study, we used the grid resolution of case 3. This resolution corresponded to
Δ+ < 5 in both streamwise and spanwise directions. In addition, with this resolution,
the grid sizes were at least four times smaller than the Taylor microscales of all surfaces in

933 A18-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1041


S. Lee, J. Yang, P. Forooghi, A. Stroh and S. Bagheri

both streamwise and spanwise directions (λT/Δ > 4.5), which satisfied the grid resolution
constraint introduced in Jouybari et al. (2021).

The sensitivity of the domain size was also studied. We performed additional 12 full
channel DNS to inspect the feasibility of using minimal channel DNS in the current
study. For a given channel half-height H, the domain and grid sizes for the full channel
simulations were respectively (8H × 2H × 4H) and (900 × 401 × 480) in the streamwise,
wall-normal and spanwise directions. The smallest domain and grid sizes for the minimal
channel simulations were (2.0H × 2.0H × 0.4H) and (256 × 401 × 48), respectively. The
surface statistics of the rough surfaces were reasonably well converged in both domains.
For instance, the maximum differences of k+

rms, ES and Sk between the full and minimal
channel domains for the rough surfaces were 0.038, 0.025 and 0.006, respectively. The
resulting average and maximum errors between �U+ calculated from the full and minimal
channel domains were 1.5 % and 4.6 %, respectively. As these errors were notably smaller
than those from the predictions of neural networks (§ 3 and Appendix A), we found the
current minimal channel approach to be sufficient for our purposes. The full details of the
surfaces and simulations are available in Yang et al. (2021).
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