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The red blood cell (RBC) membrane is composed of a lipid bilayer and a cytoskeleton
interconnected by protein junction complexes, allowing for potential sliding between the
lipid bilayer and the cytoskeleton. Despite this biological reality, it is most often modelled
as a single-layer model, a hyperelastic capsule or a fluid vesicle. Another approach
involves incorporating the membrane’s composite structure using double layers, where
one layer represents the lipid bilayer and the other represents the cytoskeleton. In this
paper, we computationally assess the various modelling strategies by analysing RBC
behaviour in extensional flow and four distinct regimes that simulate RBC dynamics
in shear flow. The proposed double-layer strategies, such as the vesicle–capsule and
capsule–capsule models, account for the fluidity and surface incompressibility of the lipid
bilayer in different ways. Our findings demonstrate that introducing sliding between the
layers offers the cytoskeleton a considerable degree of freedom to alleviate its elastic
stresses, resulting in a significant increase in RBC elongation. Surprisingly, our study
reveals that the membrane modelling strategy for RBCs holds greater importance than
the choice of the cytoskeleton’s reference shape. These results highlight the inadequacy
of considering mechanical properties alone and emphasise the need for careful integration
of these properties. Furthermore, our findings fortuitously uncover a novel indicator for
determining the appropriate stress-free shape of the cytoskeleton.
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1. Introduction

The red blood cell (RBC) is a unique cell that, during maturation, frees all typical internal
organisation (Mohandas & Gallagher 2008; Kim, Kim & Park 2012). Its impressive
mechanical performance is due to its membrane, which is made up of a lipid bilayer
supported by a cortical spectrin cytoskeleton (Evans & Skalak 1980; Mohandas & Evans
1994; Mohandas & Gallagher 2008; Kim et al. 2012). This organisation gives the RBC
a richness of dynamics in flow, critical to understanding blood rheology. Numerical
modelling of the RBC presents a challenge in identifying the dominant features necessary
to reproduce this richness.

Some models retain the main membrane organisation into two structures of different
nature, likely to slide in relation to each other (Krishnaswamy 1996; Noguchi & Gompper
2005; Peng, Asaro & Zhu 2010, 2011; McWhirter, Noguchi & Gompper 2011; Peng &
Zhu 2013; Peng et al. 2013; Li et al. 2014; Peng, Mashayekh & Zhu 2014; Peng, Salehyar
& Zhu 2015b; Chang et al. 2016; Pivkin et al. 2016; Salehyar & Zhu 2016; Chang, Li &
Karniadakis 2017; Zhu et al. 2017; Lu & Peng 2019). Each structure then has its own mesh,
allowing for different kinematics to be considered. However, although these models have
provided compelling arguments in their favour (Peng et al. 2015a; Zhang et al. 2015; Li,
Lu & Peng 2018), they are not the most common approach.

In the quest for simplicity, a single-layer model is often preferred, despite the inevitable
compromise of sacrificing some mechanical properties. When modelling the lipid bilayer
as a vesicle, it becomes challenging to consider the shear elasticity provided by the
cytoskeleton, as the focus shifts to favouring the fluidity and incompressibility of the
bilayer. Conversely, when modelling the cytoskeleton as a capsule, the fluid nature of
the lipid bilayer is compromised in favour of the elasticity of the cytoskeleton. In any
case, a single-layer model imposes the same kinematics on the cytoskeleton and the lipid
bilayer. For the out-of-plane kinematics, this assumption is limited only to the rare cases of
cytoskeleton detachment (Peng et al. 2013; Zhu et al. 2017). For the in-plane kinematics,
the limitation of prohibiting the sliding of the cytoskeleton is less clear. The lipid bilayer,
being in direct contact with the external environment, is susceptible to hydrodynamic
stress and can, in turn, only drive the cytoskeleton via frictional forces that the lipid
medium exerts on the junction proteins. Although the theoretical analysis of Fischer
(1992) suggests that the kinematics of the cytoskeleton and the lipid bilayer are identical
in the tank-treading regime in shear flow, and the surface incompressibility constraint is
transmitted from the lipid bilayer to the cytoskeleton, these findings cannot be generalised
due to the lack of research in this area.

Vesicle modelling has proven useful in understanding the dynamics of flowing RBCs
and is still used to study ensemble behaviour and its extrapolation to the rheology of blood
(Brust et al. 2014; Kabacaoğlu & Biros 2019; Lu et al. 2019). However, the fundamental
contribution of shear elasticity provided by the cytoskeleton cannot be overlooked (Hoore
et al. 2018; Mendez & Abkarian 2018). To account for this, the single-layer capsule
representation has emerged as the more prevalent modelling strategy.

While the various modelling strategies for RBCs contribute to our understanding of
their dynamics, a comparative study to assess the impact of each simplification has not
yet been undertaken, to our knowledge. Only the choice between a capsule represented
by a network of springs or a continuum model has been considered (Omori et al. 2011;
Tsubota 2014). However, this may lead to bias in the identification of mechanical properties
necessary to reproduce experimental observations. To be meaningful, a comparative
study must minimise the specificities of numerical implementation for each choice. This
entails treating the method of flow solution and the geometric representation of surfaces
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Modelling strategy for red blood cell dynamics in flow

with the same precision. The numerical platform we have developed to investigate the
fluid–structure interaction problem of surfactant-coated drops, vesicles and capsules,
enables such study (Boedec, Leonetti & Jaeger 2017). In the vesicle model, we employ
distinct approaches to handle the movements of the bilayer in the normal and tangential
directions. Specifically, we adopt a Lagrangian approach for the normal movement, while
we use an Eulerian description for the tangential movement. Consequently, the tangential
motion of mesh vertices (or nodes within a finite-element framework), which does not alter
the membrane’s shape, is entirely decoupled from the tangential movement of the lipids. In
fact, this decoupling allows us to conveniently prescribe the tangential velocities of mesh
vertices to maintain mesh quality in the context of vesicle simulations. Additionally, in Lyu
et al. (2018), we demonstrated that different in-plane kinematics of the cytoskeleton and
lipid bilayer can be considered without duplicating meshes. This is achieved by using an
Eulerian kinematic description for the fluid lipid bilayer and a Lagrangian one for the solid
cytoskeleton. The motion of the mesh coincides with that of the cytoskeleton, while the
Eulerian description allows for different tangential motions of the lipid bilayer. Using only
one mesh prohibits consideration of different out-of-plane kinematics but allows different
in-plane ones at a minimal cost.

We believe that a comparative study to characterise the impact of different RBC
modelling strategies is justified for another important reason: the contribution of surface
viscosity. The origin of this viscosity can be explained by several mechanisms, but its
inclusion in simulations depends on the choice of membrane representation (Li, Vlahovska
& Karniadakis 2013; Vlahovska, Barthes-Biesel & Misbah 2013; Yazdani & Bagchi 2013;
Fedosov, Noguchi & Gompper 2014; Freund 2014; Gounley & Peng 2015; Peng et al.
2015a; Prado et al. 2015; Li et al. 2018; Guglietta et al. 2020; Tsubota 2021). For instance,
the friction of the junction proteins in the lipid bilayer can lead to significant variation in
the effective surface viscosity of the RBC. Therefore, we feel it is essential to first assess
the purely elastic aspects of RBC mechanics before considering the contribution of surface
viscosity.

The rest of this paper is organised as follows. In § 2, we outline the implementation of
the different modelling strategies, which are then subjected to a comparative study of their
elastic properties under axisymmetric extensional flow in § 3 and simple shear flow in § 4,
respectively. The former, akin to laser tweezer stretching, is a widely used technique for
characterising the mechanical properties of cells, while the latter is the reference flow for
characterising the dynamics of RBCs. In § 5, we discuss the results and their implications
and provide new insights into the dynamics of RBCs. Finally, in § 6, we draw broader
conclusions that extend beyond the modelling framework.

2. Red blood cell modelling strategies

We have implemented the vesicle and capsule models in our platform, which have been
previously described in Boedec et al. (2017) and Lyu et al. (2021) for use in unbounded
and confined spaces, respectively. The vesicle model accounts for the fluid nature of the
membrane and enforces surface incompressibility by projecting the three-dimensional
(3-D) velocity field onto a space with zero surface divergence (Boedec, Leonetti & Jaeger
2011). In addition, the isogeoparametric representation of the geometry (Cottrell, Hughes
& Bazilevs 2009), which has at least C1 (i.e. continuous first derivatives) regularity, allows
for the incorporation of the Helfrich bending energy using a rigorous weak mathematical
formulation. Meanwhile, the capsule model can utilise several models of polymerised
membrane behaviour and incorporate bending elasticity through the Helfrich formulation
developed for the vesicle model or other common forms of thin-shell modelling. Although
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the vesicle and capsule models can incorporate shear and dilatation surface viscosity
developed for a surfactant drop (Gounley et al. 2016), we will not be utilising this option for
our objective of this paper, which is to assess the purely elastic aspects of RBC mechanics.
As the details of these models are available elsewhere, we will focus solely on their key
elements in this section.

Our isogeometric representation is obtained using the Loop subdivision method (Loop
1987; Cirak, Ortiz & Schröder 2000; Cirak & Ortiz 2001). To generate the control mesh
for a vesicle or capsule, we start with an icosahedron and perform N Loop subdivisions.
The value N = 0 corresponds to the initial icosahedron, which has Nelem = 20 equilateral
triangular elements that correspond to 20 Loop elements. With each refinement level,
each element is subdivided into four equivalent equilateral triangles, and a node is
inserted at the centre of each edge. The spatial position of all nodes in the refined
mesh is determined using Loop’s rules, which ensure zero geometric representation error.
The level N generates a mesh with Nelem = 20 × 4N . We typically achieve satisfactory
accuracy using N = 3, resulting in Nelem = 1280. Note that the twelve nodes of the
N = 0 level have fifth-order connectivity, while all other nodes introduced afterwards
have sixth-order connectivity. These twelve nodes are called singular, and they are an
inevitable trace of the icosahedron. The regularity of the Loop approximation is only C1 at
these nodes, while it is C2 everywhere else. It is worth highlighting that our isogeometric
finite-element method, which relies on the Loop subdivision, diverges from traditional
shell modelling techniques commonly used in structural mechanics. The advantage of our
approach is its ability to circumvent the shear-locking phenomenon typically observed in
conventional methods (Cirak et al. 2000; Cirak & Ortiz 2001).

The boundary element method (Pozrikidis 1992, 2002) is used with the surface mesh
described earlier to obtain the velocity of the lipid medium at each node. We can then
determine the velocity at any point of an element using Loop’s interpolation functions.
The normal component of this velocity field determines the evolution of the surface
position between two time steps in the simulation. Meanwhile, the movement of the
nodes tangentially to the membrane is identified with the kinematics of a cytoskeleton.
This tangential movement is determined by equilibrating the elastic forces exerted by the
cytoskeleton with the viscous friction forces of the points of attachment of the cytoskeleton
in the lipid bilayer. The viscous friction force is proportional to the velocity difference
between the bilayer and the cytoskeleton. For the unconfined case and without considering
a viscosity contrast to simplify the presentation, the system can be formulated as follows
(Lyu et al. 2018):

vBL = v3D = P
(
v∞ + Gf RBC

)
with f RBC = f BL + f SC, (2.1)

x(t + dt) = x(t) + vSC dt with vSC = vBL + vSC/BL. (2.2)

Position and velocity fields of the RBC membrane are denoted by x and v, respectively.
Superscripts BL and SC are used to distinguish between the lipid bilayer and the spectrin
cytoskeleton, respectively, while 3D is for the bulk flow and ∞ for the imposed background
one. The velocity difference between the cytoskeleton and the lipid bilayer vSC/BL =
vSC − vBL is a tangential vector. The Green’s operator associated with the Stokeslet is
represented by G, and the projection operator on a subspace with zero surface divergence
is denoted by P. This operator ensures that the surface tension γ , which is the Lagrange
multiplier of the surface incompressibility constraint, satisfies the condition that the
surface divergence of the velocity field vBL is zero. The surface densities of force induced
by the lipid bilayer and the cytoskeleton correspond to f BL and f SC, respectively, and their
sum f RBC corresponds to the surface force density exerted by the entire RBC membrane
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vBL
vSC = vBL

vBLvBL
vSCvSC

f e⊥

f γ

f e‖

(b)(a)

(c) (d )

Figure 1. Schematic representation of the RBC models illustrating the relevant surface force densities
on the respective layers. (a) Single-layer vesicle model with out-of-plane elasticity ( f e⊥) and surface
incompressibility ( f γ ). (b) Single-layer capsule model with in-plane ( f e‖) and out-of-plane elasticities (surface
incompressibility is approximatively considered). (c) Double-layer vesicle–capsule model with in-plane and
out-of-plane elasticities, along with surface incompressibility. (d) Double-layer capsule–capsule model with
in-plane and out-of-plane elasticities (surface incompressibility is approximatively considered). All models
employ a single mesh, with the distinction that, in double-layer models, vBL /= vSC due to the differing assumed
tangential kinematics of the two layers.

on the ambient fluids. The matrix expression of the system (2.1)–(2.2) and the principle of
the solution algorithms are presented in detail in Boedec et al. (2017) and Lyu et al. (2018,
2021). While we encourage interested readers to refer to these sources, we note that the
rest of the paper is accessible without prior knowledge of them.

Using this validated approach, which has been successfully applied in our previous
studies of vesicles and capsules, we have developed several strategies for modelling
RBCs. These strategies encompass single-layer vesicle and capsule models, as
well as double-layer vesicle–capsule and capsule–capsule models. To aid in visual
comprehension, figure 1 presents a schematic depiction of the surface densities relevant
to the RBC models. In the subsequent sections, we provide a detailed outline of the
implementation for each of these models. To aid in the comparison of the results across all
the studies, the same colour coding is utilised in all figures, where the vesicle is represented
in black, the capsule in blue, the vesicle–capsule in red and the capsule–capsule in green.

Throughout this paper, we use dimensionless variables, denoted by a star symbol.
Lengths are expressed in units of a volume-based radius R ≡ [3V/(4π)]1/3, where V �
94 μm3 represents the enclosed volume of RBCs. The surface area A is approximately
135 μm2, giving a reduced volume v ≡ 3

√
4πVA−3/2 = 0.64 (Evans & Skalak 1980).

Time is scaled by ηextR/μs, where ηext is the viscosity of the suspending fluid and μs is the
surface shear modulus. A summary of the mechanical properties utilised in the simulations
is provided in table 1. These data are based on averages of recognised values for a healthy
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Property (units) Vesicle Capsule Vesicle- capsule Capsule- capsule

In-plane elasticity (2.6a,b)
Gs (μN m−1) — 6.0 — 6.0 10−3 6.0
CSK | ks (μN m−1) — 80.0 | 103 — 2.0 | − 80.0 | 103 2.0 | −
Out-of-plane elasticity (2.4a–c)
kb (×10−19 J) 2.4 2.4 2.4 — 2.4 —
Cytoskeleton/bilayer friction (2.17)
Cf (pN s μm−3) — — — 144.0 — 144.0
Inner viscosity
ηint (mPa s) 10.0 10.0 — 10.0 — 10.0

Table 1. Mechanical properties.

RBC (see, e.g. table 1 in Levant & Steinberg 2016). The table also displays the distribution
of properties between the cytoskeleton and the lipid bilayer in the modelling strategies that
distinguish them.

The reference shape, whether quasi-spherical or biconcave, represents the shape relative
to which in-plane and out-of-plane deformations are defined. In simpler terms, when
the cytoskeleton (Skalak capsule) adopts the reference shape, the in-plane deformations
are zero. It is important to clarify that all our simulations begin with an RBC
already in the biconcave shape (i.e. v = 0.64), which we obtain directly from an
analytical expression (Evans & Skalak 1980) and consistently used in our prior work,
as outlined in Lyu et al. (2018). The reference shapes we consider include the biconcave
shape itself, a quasi-spherical shape (v = 0.96) with zero spontaneous curvature and a
quasi-spherical shape (v = 0.96) with positive curvature (C∗

0 = C0/R = 4) (Peng et al.
2014). If not specified, we have used quasi-spherical with zero spontaneous curvature. The
quasi-spherical reference shape, achieved through a relaxation process, corresponds to the
deflated shape of a vesicle with a reduced volume of v = 0.96.

2.1. Single-layer vesicle strategy (colour code = black)
The vesicle model does not consider a separate contribution of the cytoskeleton (i.e. f SC =
0), while

f BL(x) = f γ (x) + f e⊥(x) = −δWBL

δx
= −δ(Wγ + WH)

δx
, (2.3)

Wγ =
∫

S
γ dS, WH =

∫
S

wH dS, wH = kb

2
(2H + C0)

2. (2.4a–c)

The f e⊥ contribution represents the out-of-plane elastic forces, namely the bending
forces induced by the Helfrich surface energy density wH , which depend on the mean
curvature H and the spontaneous curvature C0. The spontaneous curvature C0 is defined
as C0 = −2H0, where H0 is the mean curvature of the spontaneous or reference shape
of the lipid bilayer. For zero spontaneous curvature, the Helfrich energy reduces to the
simple expression wH = 2kbH2, where kb = 2.4 × 10−19 J is the bending modulus. We
omit the contribution of the Gaussian curvature, which can occur in wH but is not useful
due to the Gauss–Bonnet theorem, as we are not considering a change in surface topology.
The contribution of f γ corresponds to the forces induced by the surface tension γ . For
a constant tension, it results in an out-of-plane force contribution, but it can also produce
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Modelling strategy for red blood cell dynamics in flow

in-plane forces if the tension varies, as f γ = 2γ Hn + ∇sγ , where n is the normal vector
to the surface and ∇s = (I − nn) · ∇ is the surface gradient operator, with I being the
identity in R

3.
We want to emphasise that in the vesicle model, surface incompressibility, expressed

as ∇s · vBL = 0, is enforced through a projection algorithm, specifically, the projection
operator P as defined in (2.1). This projection introduces the surface tension parameter
γ , acting as a Lagrange multiplier for the surface incompressibility constraint. While this
method effectively ensures both local and global surface area conservation, it does come
at a significant computational cost, as previously discussed (Boedec et al. 2017).

2.2. Single-layer capsule strategy (colour code = blue)
The capsule model does not consider a separate contribution of the cytoskeleton (i.e.
f SC = 0). While bending is still modelled using the Helfrich energy, the in-plane elasticity
of the cytoskeleton is nicely represented by a capsule. On the other hand, fluidity is lost
and surface incompressibility can only be approximated since the projector P is replaced
by the identity. Thus, we obtain the capsule model with

f BL(x) = f e‖(x) + f e⊥(x) = −δWBL

δx
= −δ(WSK + WH)

δx
, (2.5)

where f e‖ represents the in-plane elastic forces deduced from a polymerised membrane
strain energy, which is usually defined on the reference configuration (S0). Surface
deformations are computed relative to this reference configuration (Boedec et al. 2017,
(24)). To model the strain-hardening behaviour of the RBC membrane, we typically use
the expression proposed by Skalak et al. (1973), which is given by

WSK =
∫

S0
wSK dS0, wSK = Gs

4
(I2

1 + 2I1 − 2I2 + CSKI2
2), (2.6a,b)

where the two invariants I1 and I2 are expressed as functions of the two main strains λ1 and
λ2. The resistance to shear is controlled by the coefficient Gs, which is the surface shear
modulus μs = 6 μN m−1, and the resistance to local area variation is controlled by the
coefficient CSK , which is the ratio of the area dilatation modulus to the shear modulus. The
limiting case of surface incompressibility is obtained by making CSK tend towards infinity,
where I2 cancels. In practice, however, the numerical problem becomes too steep when
CSK exceeds a hundred (Dodson & Dimitrakopoulos 2010). For long-term simulations,
we add a global area conservation constraint to prevent a strong drift of the RBC surface
area. This constraint results in a contribution of the same type as Wγ , with the surface
tension γ being replaced by a constant tension ks(S − S0)/S0. In all our simulations, we
used CSK = 80 in combination with ks = 103 μN m−1 (Sigüenza, Mendez & Nicoud
2017) when surface incompressibility has to be considered. Our extensive investigation
has revealed that the contribution of ks remains negligible, as local area preservation is
consistently maintained throughout our study.

2.3. Double-layer vesicle–capsule strategy (colour code = red)
The vesicle–capsule model is obtained by combining the expression (2.3) of f BL and

f SC(x) = f e‖(x) = −δWSC

δx
= −δWSK

δx
. (2.7)
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In contrast to the vesicle model, the contribution from the cytoskeleton f SC is not set
to zero. The incompressibility constraint is still rigorously ensured by the P projector.
The coefficient CSK in Skalak’s law is then fixed to represent the contribution of
the cytoskeleton only, which is negligible compared with the resistance to expansion
provided by the lipid bilayer. The dilatation modulus of the cytoskeleton was determined
experimentally to be within the range of 1–10 μN m−1 (Lenormand et al. 2001, 2003;
Kim et al. 2012), with a theoretical value for a regular hexagonal lattice being twice
the shear modulus (Discher, Mohandas & Evans 1994; Hansen et al. 1996). Thus, we
set the expansion rigidity of the capsule representing the cytoskeleton to CSK = 2 in our
double-layer strategy simulations. In other words, the cytoskeleton only provides resistance
to shear deformation, with Gs = 6 μN m−1 and CSK = 2.

2.4. Double-layer capsule–capsule strategy (colour code = green)
The distinction between the vesicle–capsule model and the capsule–capsule model lies
in how the lipid bilayer is represented, with the former using a vesicle and the latter
using a capsule to mimic an incompressible fluid membrane. This disparity is particularly
noticeable in (2.5), which incorporates the necessary bending energy to represent the
bilayer. In contrast, (2.7) lacks a bending energy term, which is essential for modelling the
cytoskeleton. These variations in mechanical properties are outlined in detail in table 1.

To derive the capsule–capsule model, we combine (2.5) for f BL and (2.7) for f SC.
Similar to the vesicle–capsule model, Skalak’s law is used to represent the cytoskeleton,
employing the same parameter values (Gs = 6 μN m−1 and CSK = 2). However, achieving
the behaviour of the lipid bilayer in f e‖ within f BL necessitates another capsule model
and a second application of Skalak’s law. To accomplish this, the elastic shear modulus
Gs is chosen to be sufficiently small to ensure that the shear strength contribution remains
negligible in comparison with the cytoskeleton. For this purpose, we have selected Gs =
10−3 μN m−1 (Zhu et al. 2017), alongside CSK = 80 and ks = 103 μN m−1. While this
approach does not perfectly emulate the fluid nature of the lipid bilayer due to the non-zero
shear modulus, it enhances computational efficiency.

2.5. Membrane elastic force determination
The boundary conditions between the two-layer structure are implicit. Because of the
single mesh representation, the two structures are constrained to have the same motion
in the normal direction. In the tangent plane, sliding is permitted and limited exclusively
by tangential friction forces. Therefore, the double-layer models depend on the frictional
coupling between the lipid bilayer and cytoskeleton through junction protein complexes.
Let f BL/SC be the surface density of frictional force exerted by the lipid bilayer on the
cytoskeleton. By the action–reaction principle, f SC/BL = − f BL/SC. The static equilibrium
of the two structures can be expressed as

f SC + f BL/SC = 0, f BL + f SC/BL + f ext = 0, (2.8a,b)

where f ext represents the action of the ambient fluids on the RBC membrane, which is in
equilibrium with the forces induced by the deformation of the RBC, namely

f ext = −f RBC = −( f BL + f SC), (2.9)

consistent with (2.1).
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The finite-element method is used to determine the external forces through a weak
formulation using the virtual work principle, for a given membrane configuration

δWext + δW int = 0, (2.10)

δWext =
∫

S
f ext · δx dS = −

∫
S

f RBC · δx dS, (2.11)

δW int = −(δWBL + δWSC) =
∫

S
−δWBL

δx
· δx dS +

∫
S
−δWSC

δx
· δx dS

=
∫

S
f BL · δx dS +

∫
S

f SC · δx dS. (2.12)

The internal virtual work δW int depends on the surface stress and strain tensors, which
can be determined based on the membrane configuration, see Boedec et al. (2017) for
details

δW int = −
∫

S

[
σαβδ(Eαβ) + μαβδ(Bαβ)

]
dS =

∫
S

[
1
2
σαβδ(aαβ) + μαβδ(bαβ)

]
dS.

(2.13)
Here, σαβ and μαβ correspond to the stresses induced by membrane and bending
strains, respectively. The tensor of components Eαβ with 2Eαβ = aαβ − a0

αβ is the surface
Green–Lagrange strain tensor and the tensor of components Bαβ = bαβ − b0

αβ is the
bending equivalent, where superscript 0 refers to the reference configuration. The aαβ are
components of the metric tensor a that correspond to the identity operator in the tangent
plane IS = I − nn. Its determinant a = det(a) expresses the surface element as a function
of the surface parameterisation (s1, s2) as dS = √

a ds1 ds2.

2.6. Cytoskeleton drag force determination
We define CfJC as the mean friction coefficient of a protein junction complex in the lipid
bilayer. The frictional force generated by the movement of a single junction complex, on
average, can be expressed as

f BL/SC
JC = CfJC

(
vBL(xJC) − vSC(xJC)

)

= CfJCvBL/SC(xJC) = −CfJCvSC/BL(xJC). (2.14)

The equivalent friction coefficient per unit area of the membrane, denoted as Cf , is given
by ∫

	S
Cf v

BL/SC(x) dS =
∑

xJC∈	S

CfJCvBL/SC(xJC). (2.15)

For a small patch of surface 	S, where the velocity variations can be ignored (i.e. ∀x ∈
	S, vBL/SC(x) = vBL/SC(xJC) ≈ const.), we can simplify the expression to

Cf 	S = CfJC NJC, (2.16)

where NJC is the number of junction complexes within the patch. We can also introduce
the areal density of the junction complex, denoted as ρJC, and obtain

Cf = NJC

	S
CfJC = ρJCCfJC . (2.17)
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For our study, we adopted Cf = 144 pN s μm−3 (Peng et al. 2011). The sensitivity of the
double-layer modelling strategies to this parameter is discussed in § 5.

2.7. Cytoskeleton kinematics
The velocity differential between the cytoskeleton and the lipid bilayer is defined by the
expression

vSC/BL(x) = vSC(x) − vBL(x) = − 1
Cf

f BL/SC(x) = 1
Cf

ISf SC(x). (2.18)

To obtain the weak formulation of the problem, we employ the weighted residual method
with δx as the test function, leading to the expression∫

S
vSC/BL(x) · δx dS = 1

Cf

∫
S

ISf SC(x) · δx dS. (2.19)

The first member of this equation can be expressed as a function of the mass matrix
in terms of the Loop interpolation functions, as given in Boedec et al. (2017). Notably,
the second term in the equation, which represents the internal force density of the
cytoskeleton, is similar to the corresponding expression used to determine the elastic
membrane forces of the RBC.

3. Comparison of RBC modelling strategies on extensional flow

Laser tweezer stretching is a widely used method to measure the mechanical properties of
cells. However, numerical studies have two major shortcomings. Firstly, there is variability
in how the opposing forces are applied in simulations (Sigüenza et al. 2017). Secondly, it
is not representative of the stretch that an RBC may experience in a flow since it does not
consider the interaction with the surrounding fluid. An alternative approach that avoids
these limitations is extensional flow, which has been used for studying vesicles in previous
studies (Kantsler, Segre & Steinberg 2007, 2008; Zhao & Shaqfeh 2013; Narsimhan,
Spann & Shaqfeh 2014; Dahl et al. 2016). In this method, the flow is defined by a single
parameter, ε̇, which represents the stretching rate. In a Cartesian coordinate system, the
velocity component in the direction of stretching (z coordinate) is given by vz = ε̇z. In
its planar version, the other two velocity components are vx = −ε̇x and vy = 0. In its
axisymmetric version, they are written as vx = −ε̇x/2 and vy = −ε̇y/2. We considered
both configurations, with the axis of symmetry of the RBC along the y axis and a value
of ε̇ = 55 s−1. The viscosity of the surrounding fluid was set at ηext = 25 mPa s. As the
behaviours were found to be similar, we only present the results for the axisymmetric
configuration.

We first checked that the double-layer models behave similarly to the single-layer
capsule model when the layers are prevented from sliding. This similarity is expected
because all models employ the same set of elastic properties, as outlined in table 1.
The difference lies in the distribution of these properties. In the capsule–capsule model,
the outer capsule mimics the lipid bilayer and assumes responsibility for bending
resistance and area conservation. The coefficient of shear elasticity for the outer capsule is
considered negligible compared with that of the inner capsule, which solely represents the
cytoskeleton properties. The vesicle–capsule model follows a similar approach. However,
as the lipid bilayer is now represented by a vesicle, surface incompressibility is treated
more rigorously. Consequently, a slightly reduced elongation compared with the other
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Figure 2. Shape evolution in the (x∗, y∗) plane perpendicular to the stretching direction for the axisymmetric
extensional flow (capsule = blue, vesicle–capsule = red, capsule–capsule = green), for t∗ = 0 ((a) initial shape
– plotted in green hereafter), 1 (b), 3 (c) and 6 (d).

models is observed, reflecting the stiffening effect caused by the surface incompressibility
constraint.

When sliding is allowed, the double-layer models deviate significantly from the
single-layer capsule model, with a much higher elongation. In dimensionless time t∗, the
capsule model reaches a state of permanent deformation at t∗ = 3, while the double-layer
models continue to stretch out to t∗ = 6. Despite the slightly lower elongation of the
vesicle–capsule model due to its better consideration of surface incompressibility, it
remains close to that of the capsule–capsule model. The evolution of the RBC’s shape is
illustrated by the cross-sectional profiles in the three planes of symmetry in figures 2, 3 and
4 at t∗ = 0 (initial biconcave shape), 1, 3 and 6. In all models, the dimple is reduced under
stretching, with complete flattening observed in the capsule–capsule model, consistent
with its higher elongation.

The mechanical properties of all models are identical, resulting in similar behaviour
when sliding is prohibited in the double-layer strategies. However, when sliding is allowed,
the observed variation in behaviour must be explained by this additional degree of
freedom. To quantify the intensity of sliding, figure 5 displays the dimensionless velocity
difference between the cytoskeleton and lipid bilayer, which shows that sliding is maximal
in the initial stages and disappears completely when the stationary state is reached. The
sliding velocity in the (x∗, y∗) plane as a function of x∗ (figure 5a) and in the (y∗, z∗) plane
as a function of z∗ (figure 5b) is given for t∗ = 1, 2 and 6. The curves of sliding velocity
as a function of z∗ in the (x∗, z∗) plane (not shown here) are similar to those in the (y∗, z∗)
plane, the intensity is slightly lower, with a maximum of approximately 0.04 instead of
0.06, and the sliding is almost identical for both models at t∗ = 1.

One explanation for the observed behaviour concerns the degree to which the surface
incompressibility of the lipid bilayer is transmitted to the cytoskeleton. In the capsule
model, the transmission is total since it is not possible to uncouple the cytoskeleton from
the lipid bilayer. This is reflected by a value of the CSK coefficient of the Skalak model as
large as possible, i.e. 80 in our simulations. On the other hand, in the double-layer models,
the cytoskeleton can relax this constraint, thanks to the possibility of sliding. For these two
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Figure 3. Shape evolution in the (x∗, z∗) stretch plane for the axisymmetric extensional flow (capsule = blue,
vesicle–capsule = red, capsule–capsule = green), for t∗ = 0 ((a) initial shape), 1 (b), 3 (c) and 6 (d).
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Figure 4. Shape evolution in the (y∗, z∗) stretch plane for the axisymmetric extensional flow (capsule = blue,
vesicle–capsule = red, capsule–capsule = green), for t∗ = 0 ((a) initial shape), 1 (b), 3 (c) and 6 (d).

models, CSK = 2 for the capsule which represents the cytoskeleton. Figure 6 compares
the local relative area variation for the cytoskeleton between the three models. The local
area variation is normalised by the total surface area of the RBC at rest, i.e. at the initial
time. Although the variations are stronger and very comparable for the vesicle–capsule
and capsule–capsule models, this explanation alone does not account for the observed
behaviour.

The stress relaxation in the cytoskeleton offered by the possibility of sliding is more
general, as it is not just about the local variation in the area. Instead, the cytoskeleton
can better manage the whole deformation state imposed on it by the displacement of the
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Figure 5. Decrease of the sliding velocity δv∗ = v∗BL − v∗SC for t∗ = 1, 2 and 6 for the axisymmetric
extensional flow (vesicle–capsule = red, capsule–capsule = green), as a function of x∗ in the (x∗, y∗) plane
(a) and of z∗ in the (y∗, z∗) plane (b).
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Figure 6. Relative cytoskeleton area change (represented by the colour code between −0.25 in blue and 0.25
in red) for the axisymmetric extensional flow at t∗ = 6. CSK = 80 for the capsule model (a) and CSK = 2 for
the capsule representing the cytoskeleton in the vesicle–capsule model (b) and capsule–capsule model (c).

RBC surface to which it is subject. The possibility of sliding gives it complete freedom to
optimise its elastic stress state by the tangential movement to the surface. Moreover, there
is a flow amplification effect, since the intensity of the velocity component according to
the direction of the flow increases linearly in |z∗|. By reducing its deformation energy, the
RBC can stretch further, and its two tips venture into regions where the intensity of the
stretching velocity is greater, in accordance with the linear increase of the latter.

Figure 7 provides validation for this scenario, with a comparison of the elastic strain
energy evolution for the whole RBC membrane (lipid bilayer + cytoskeleton). The graph
shows the deformation energy as a function of elongation, which is characterised by the
position of the RBC tip in the stretching direction, denoted as z∗

max. This position is a
nonlinear function of time, and the maximum elongation is reached when z∗

max stabilises.
When sliding is not allowed, the three evolution curves coincide, as seen in the blue curve
obtained for the capsule model. In contrast, when sliding is allowed, the curves differ from
each other, with the deformation energy being highest for the capsule model and lowest
for the capsule–capsule model. The evolution curve for the vesicle–capsule model falls
within the envelope formed by the other two curves, illustrating the correlation between
the growth of deformation energy and the intensity of elongation. The final z∗

max value
for the capsule model is lower than 1.7, while it is higher for the vesicle–capsule and
capsule–capsule models, reaching almost 1.9 for the latter. The bending contribution to the
deformation energy is also plotted on the graph, but its influence is found to be negligible,
with the three dashed lines being nearly identical.

It is interesting to note that the three curves of the total deformation energy all show
a minimum for the same elongation value of z∗

max ≈ 1.1, which is related to the chosen
reference shape for the cytoskeleton, namely quasi-spherical. The deformation energy
of the cytoskeleton decreases as the RBC comes closer to its reference shape, resulting
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Figure 7. Elastic deformation energy (WBL + WSC) as a function of the RBC elongation, given by the
normalised position of the RBC’s tip z∗

max at normalised time t∗ (capsule = blue, vesicle–capsule = red,
capsule–capsule = green). Solid lines: total elastic energy (lipid bilayer + cytoskeleton). Dashed lines: bending
energy contribution (WH).

in a minimum value for the deformation energy. If the discocyte reference shape is
chosen instead, the curves no longer show a minimum. However, apart from this point,
the evolution of the deformation energy is similar for both reference shapes, and the
conclusion drawn from them is identical. The elastic strain energy curves are also found to
be very close when a spontaneous curvature is considered for the quasi-spherical reference
shape. Overall, these findings provide important insights into the relationship between
deformation energy and elongation for different RBC models.

4. Comparison of RBC modelling strategies for shear flow

The simple shear flow is the most commonly used configuration for characterising the
dynamics of a flowing RBC. By orienting the reference frame such that the x axis
corresponds to the direction of flow and the y axis corresponds to that of the velocity
gradient, the velocity field can be written as v = v( y)ex, with v( y) = γ̇ y, as shown in
figure 8. The (x, y) plane corresponds to the shear plane, and the z axis corresponds
to the vorticity axis. The intensity of the shear rate γ̇ is the single operating parameter
that characterises this plane flow. For a suspended particle, such as an RBC, γ̇ is a
hydrodynamic forcing characterised by a viscous stress τ = ηextγ̇ , where ηext is the
viscosity of the suspending fluid.

Characterising the dynamics of the RBC requires considering its properties as a soft
object, in addition to the characteristics of the flow. The first element determining
its rigidity is the viscosity contrast λ = ηint/ηext. Under physiological conditions, λ is
typically greater than unity because the viscosity of the cytosol of a healthy RBC can
vary from 6 to 20 mPa s (Mohandas & Gallagher 2008; Williams & Morris 2009),
whereas that of the plasma is only approximately 1.5 mPa s (between 1 and 1.3 at body
temperature Késmárky et al. 2008). The value of 6 mPa s is generally considered to be
characteristic of the cytosol viscosity of a young and healthy RBC at body temperature.
All simulations were carried out with ηint = 10 mPa s, the value at room temperature.
However, most experimental studies have been carried out with much more viscous outside
fluids, resulting in characteristic viscosity contrasts below unity.

The second characteristic of the RBC’s stiffness is related to the elastic properties of
the RBC membrane, via its shear modulus μs. Its contribution must be compared with
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Figure 8. Schematic representation of the shear flow configuration ((x, y, z) frame) with an RBC ((X, Y, Z)
frame). The angle φ is the orbit angle, i.e. the angle between the vorticity axis of the flow (z axis) and the
symmetry axis of the particle (Z axis). The angle θ is the inclination angle between the direction of the velocity
gradient (y axis) and the projection in the shear plane of the particle’s axis of symmetry (Z axis).

that of the hydrodynamic strength, which gives rise to the introduction of the capillary
number Ca(γ̇ , μs) = ηextγ̇ R/μs = τ/τref , the ratio of the viscous stress τ = ηextγ̇ and
τref = μs/R, which characterises the intensity of the elastic response of the cytoskeleton.
Note that, with our choice of time reference scale tref = ηextR/μs, the capillary number
may also be defined as Ca(γ̇ , μs) = γ̇ tref .

The dynamic regimes of RBC, and more generally of a capsule, in shear flow can
be represented in the plane λ, Ca(γ̇ , μs). For a vesicle, the reference elastic property is
the bending modulus kb. The capillary number used therefore is Ca(γ̇ , kb) = ηextγ̇ R3/kb,
which is related to the capillary number for capsules by the dimensionless Von Kármán
number K = kb/R2μs = (kb/R3)/τref , reflecting the relative importance of curvature
elasticity (out of plane) vs shear elasticity (in plane). For RBCs, the Von Kármán number
is approximately 5 × 10−3 based on average values from table 1 of Levant & Steinberg
(2016).

We use normalised quantities (indicated by a star) and dimensionless input data in our
simulations. All surface density of force quantities is normalised by the reference elastic
stress τref . Hence, the actual values of μs and kb are not provided. Instead, the former is
specified using the capillary number Ca(γ̇ , μs), while the latter is specified using the Von
Kármán number K.

Successive experimental studies have continued to enrich the RBC’s phase diagram,
and a synthesis of the experimental observations is proposed in Minetti et al. (2019).
Studies often assume the axis of symmetry of the RBC remains in the shear plane. Under
these conditions, the RBC’s dynamics can be characterised by the inclination angle θ

(see figure 8) and the Taylor deformation parameter D = (L − B)/(L + B), in which L
and B are the major and minor axes of the ellipsoid having the same moment of inertia
as the RBC. At low values of τ, the RBC exhibits a tumbling dynamics. As τ increases,
the axis of symmetry moves closer to the direction of the velocity and the deformation
becomes more intense, resulting in the transition from tumbling to tank-treading dynamics.
The inclination angle and the Taylor parameter take constant values in the tank-treading
regime, with periodic variations around their mean values (swinging) but with decreasing
amplitude at higher τ. However, experimental studies indicate that an increase in the shear
rate is more likely to cause the axis of symmetry to drift out of the shear plane, leading
to a rolling dynamics and the appearance of new dynamic regimes showing RBCs with
stomatocyte and then multilobe shapes (Mauer et al. 2018). The critical transition capillary
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number curve Cac(γ̇ , μs) reaches its minimum when ηext is greater than 20 mPa s (Fischer
& Korzeniewski 2013), making it easier to reach the tank-treading regime at high values of
ηext. As we move towards physiological values of ηext, i.e. at λ > 1, the curve Cac(γ̇ , μs)
sharply increases and the transition can only be reached by imposing very high shear rates.

To simplify our analysis, we have assumed that the axis of symmetry of the RBC
remains in the shear plane. Although this assumption may not hold for all transition
routes, it is sufficient for our purpose, which is to compare modelling strategies at
representative points of the RBC dynamics. Moreover, as demonstrated in Levant &
Steinberg (2016), the relationship between simple shear flow and plane linear flow allows
for this simplified configuration. Another reason to restrict to this simpler configuration
is that the characteristic drift time of the RBC symmetry axis out of the shear plane can
be large relative to the time scale of RBC dynamics for large ηext and small γ̇ (Levant
& Steinberg 2016). In addition, under physiological conditions, stable orbits widen as
the shear rate decreases, and all orbits become stable below a certain value of τ, which
is approximately 10−2 Pa (as shown in figure 14(c) in Minetti et al. 2019). This trend
is consistent at both low and high ηext values, as long as we consider equivalent viscous
stress. Therefore, exploring the low τ region is easier when ηext is small, as in physiological
conditions.

To comprehensively explore the diverse dynamic regimes of an RBC in shear flow, our
comparative study focuses on four key points (λ, Ca(γ̇ , μs)) of the phase diagram. The
first point corresponds to the tumbling regime, which is a stable regime for an RBC with
its axis of symmetry in the flow plane under physiological conditions. The second point
corresponds to the tank-treading regime, which is observed at ηext values greater than
20 mPa s. We consider both possible orientations of the axis of symmetry of the RBC,
aligned with the axis of vorticity or in the shear plane. The third point is located in the
intermittency region, where both tumbling and tank-treading dynamics coexist. Finally, the
last point is selected under physiological conditions but with a high shear rate to compare
the modelling strategies in the regime of very high deformations.

4.1. Effect of modelling strategy on tumbling dynamics
Our first investigation point considered a viscous stress of 0.01 Pa and an external viscosity
of 1.5 mPa s, corresponding to the characteristic dimensionless numbers λ = 6.67 and
Ca(γ̇ , μs) = 5 × 10−3. We found that the inclination angle of the RBC (figure 9a)
undergoes a tumbling motion, with the spinning frequency around the vorticity axis
varying based on the model used. Interestingly, the capsule model exhibited the highest
frequency, while the vesicle model’s rotation frequency was almost half that of the other
models.

Additionally, the Taylor deformation parameter D (figure 9b) highlighted a direct
relationship between an object’s stiffness and its rotation frequency, with the effect being
particularly amplified in the vesicle model, which lacks shear elasticity. Further analysis
showed that the stiffening effect of the surface incompressibility constraint was clearly
demonstrated in the comparison between the capsule–capsule and vesicle–capsule models.

Since the RBC’s deformation is small, this dynamic regime is close to that of a rigid
particle, and Jeffery’s theory (Jeffery 1922)

r tan φ = Corbit√
r−2 cos2 θ + sin2 θ

, r tan θ = tan
γ̇ t

r + r−1 , (4.1a,b)

holds well, where Corbit = r tan φ0 is the orbit parameter and r is the particle’s aspect ratio.
The prolate and oblate shapes are characterised by r < 1 and r > 1, respectively, with r
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Figure 9. (a) Time evolution of the inclination angles θ/π in tumbling regime at λ = 6.67, Ca(γ̇ , μs) = 5 ×
10−3. Points: simulations (vesicle = black, capsule = blue, vesicle–capsule = red, capsule–capsule = green).
Solid lines: Jeffery’s theory (second equation of (4.1a,b)) for fitted r on frequency criteria (r = 2.25 for capsule,
r = 2.35 for vesicle–capsule, r = 2.46 for capsule–capsule and r = 4.15 for vesicle). (b) Time evolution of the
deformation parameter D.

appearing in the equation X2 + Y2 + r2Z2 = 1 for the surface of an ellipsoidal object. It
is important to note that, in this theory, all orbits are probable and determined solely by
the initial value φ0 of the angle φ. To verify Jeffery’s theory, we superimposed the curves
obtained for each modelling strategy using the second equation of (4.1a,b) as solid lines
(figure 9a), with the aspect ratio r adjusted to reproduce the oscillation frequency of the
model.

4.2. Effect of modelling strategy on tank-treading dynamics
In the second point, we investigated the effects of increased external viscosity (ηext =
25 mPa s) and high shear rate (τ = 1.06 Pa) on RBCs, characterised by the dimensionless
numbers λ = 0.4 and Ca(γ̇ , μs) = 0.5. When the RBC axis of symmetry is initially
aligned with the axis of vorticity, the transient phase during which it adapts its shape
is longer. Figures 10 and 11 show the shape evolution during this phase in the (x∗, y∗)
and (z∗, y∗) planes, respectively. All models follow a similar transition pattern with
equivalent times, except for the vesicle model, which undergoes a large deformation and
then lengthens. However, a difference in behaviour can be observed between single-layer
and double-layer strategies. While the capsule model still shows a curvature inversion at
y∗ = 0 in the ( y∗, z∗) plane at t∗ = 11, the double-layer models do not. Figure 12 provides
a 3-D view at that time.

When the RBC’s axis of symmetry is initially in the shear plane, it is already well
oriented relative to its final steady state. The transient phase of large deformations is,
correspondingly, reduced. The shape evolution during this phase in the (x∗, y∗) and (z∗, y∗)
planes is shown in figures 13 and 14, respectively. Figure 15 at t∗ = 15 provides a 3-D view.

After the transient phase, the dynamics is identical, regardless of the initial orientation
of the symmetry axis. The evolution curves in figure 16 are indistinguishable from those
obtained when the axis of symmetry is aligned with the axis of vorticity, with a normalised
time shift of 	t∗ = 11.6. Thus, generalisation to any initial orientation is highly likely.

Once the steady state is reached, the inclination angle’s evolution (figure 16a) reveals
that the swinging is most pronounced for the capsule model and least pronounced for
the vesicle–capsule model. The capsule–capsule model is in between. As expected, the
vesicle model exhibits pure tank-treading motion, characterised by a constant value of the
inclination angle.
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Figure 10. Shape evolutions ((x∗, y∗) plane sectional drawing) in tank-treading regime at λ =
0.4, Ca(γ̇ , μs) = 0.5 in the transient phase at t∗ = 0 (a), t∗ = 6 (b), t∗ = 11 (c) and t∗ = 15 (d), for the case
when the RBC’s symmetry axis is initially aligned with the axis of vorticity (vesicle = black, capsule = blue,
vesicle–capsule = red, capsule–capsule = green).

The evolution of deformation via the Taylor parameter D (figure 16b) remains the
most effective way to distinguish between the different models. As expected, the vesicle
model has the most intense deformation and is completely separate from the other models.
The double-layer models produce mean deformations of the same order, with an almost
sinusoidal regularity of the Taylor parameter evolution. However, the stiffness provided by
the surface incompressibility is reflected in an oscillation amplitude half as large for the
vesicle–capsule model as for the capsule–capsule model. Although the mean deformation
intensity is lower for the capsule model, its oscillation amplitude is two to three times
greater than that of the capsule–capsule model, with the oscillations appearing to be much
less symmetrical. We also note that there is an apparent increase in the rotation frequency
when the lipid bilayer is modelled as an incompressible fluid film rather than a solid shell.
However, it is difficult to conclude whether this increase is related to the consideration
of the fluid nature of the lipid bilayer or to the more rigorous treatment of the surface
incompressibility constraint.

Figure 17 compares the shape evolutions in the established regime with the vesicle
model excluded due to its much larger deformation. The double-layer models produce
very similar shapes that are relatively stable, while the capsule model undergoes strong
shape variations. In cross-section in the shear plane, the evolution of the capsule model
periodically changes from an elliptical to an S-shape (breathing phenomenon).

A legitimate question is whether the transitional phase in the case where the axis of
symmetry is aligned with the axis of vorticity is only a shape adaptation or whether it is
accompanied by a general pivoting of the cytoskeleton. If the answer is negative, the final
state reached cannot be considered completely identical to the one reached starting from
the other orientation, at least from an energetic point of view. To answer this question, we
tracked the y∗ coordinate of two markers, one initially located on the dimple in the centre
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Figure 11. Shape evolutions (( y∗, z∗) plane sectional drawing) in tank-treading regime at λ =
0.4, Ca(γ̇ , μs) = 0.5 in the transient phase at t∗ = 0 (a), t∗ = 6 (b), t∗ = 11 (c) and t∗ = 15 (d), for the case
when the RBC’s symmetry axis is initially aligned with the axis of vorticity (vesicle = black, capsule = blue,
vesicle–capsule = red, capsule–capsule = green).

(b)(a) (c) (d )

Figure 12. Shapes (3-D view) in tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5 in the transient phase at
t∗ = 11, for the case when the RBC’s symmetry axis is initially aligned with the axis of vorticity. (a) Vesicle,
(b) capsule, (c) vesicle–capsule, (d) capsule–capsule.

of one of the two faces of the RBC and the other on the periphery. The answer is clearly
negative: when the axis of symmetry is initially in the shear plane, the dimple undergoes
the tank-treading movement, whereas when the axis of symmetry is initially aligned with
the axis of vorticity, the marker at the periphery performs the rotation.

4.3. Effect of modelling strategy on the transition to tank treading
Our third point of investigation lies at the upper limit of the intermittency region. For an
external viscosity ηext = 24 mPa s, Fischer & Korzeniewski (2013) identified a critical
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Figure 13. Shape evolutions ((x∗, y∗) plane sectional drawing) in tank-treading regime at λ =
0.4, Ca(γ̇ , μs) = 0.5 in the transition phase at t∗ = 0 (a), t∗ = 6 (b), t∗ = 11 (c) and t∗ = 15 (d), when the
RBC’s symmetry axis is in the shear plane at the start (vesicle = black, capsule = blue, vesicle–capsule = red,
capsule–capsule = green).
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Figure 14. Shape evolutions (( y∗, z∗) plane sectional drawing) in tank-treading regime at λ =
0.4, Ca(γ̇ , μs) = 0.5 in the transition phase at t∗ = 0 (a), t∗ = 6 (b), t∗ = 11 (c) and t∗ = 15 (d), when the
RBC’s symmetry axis is in the shear plane at the start (vesicle = black, capsule = blue, vesicle–capsule = red,
capsule–capsule = green).
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(b)(a) (c) (d )

Figure 15. Shapes (3-D view) in tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5 in the transition phase
at t∗ = 15, when the RBC’s symmetry axis is in the shear plane at the start (a) vesicle, (b) capsule, (c)
vesicle–capsule, (d) capsule–capsule.
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Figure 16. Time evolution of the inclination angle θ/π (a) and the deformation parameter D (b) in
tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5, when the RBC’s symmetry axis is initially in the shear
plane (vesicle = black, capsule = blue, vesicle–capsule = red, capsule–capsule = green).
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Figure 17. Shape evolution in the established tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5, when the
RBC’s symmetry axis is initially in the shear plane. Left panel: (x∗, y∗) plane sectional drawing at t∗ = 7 (a),
t∗ = 15 (b), t∗ = 20 (c) and t∗ = 33 (d) (capsule = blue, vesicle–capsule = red, capsule–capsule = green).
Right panel: corresponding 3-D views for capsule (left), vesicle–capsule (middle) and capsule–capsule (right).
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Figure 18. Time evolution of the inclination angle θ/π (a) and the deformation parameter D (b) in the
tumbling to tank-treading transition region at λ = 0.417, Ca(γ̇ , μs) = 0.113 (vesicle = black, capsule = blue,
vesicle–capsule = red, capsule–capsule = green).

shear rate of 10 s−1 for the transition, corresponding to a critical viscous stress of 0.24 Pa.
The corresponding dimensionless numbers are λ = 0.417 and Ca(γ̇ , μs) = 0.113.

Since this point is located in the transition zone, it is expected that the models’
behaviour is particularly sensitive to the modelling strategy. This sensitivity is clearly
demonstrated in figure 18. The vesicle model exhibits pure tank treading with a constant
inclination angle. The capsule model, on the other hand, stays in the tumbling regime. The
double-layer models initially exhibit tumbling, but after one or two periods, they adopt a
permanent tank-treading dynamic. Their inclination angle oscillates around a mean value
similar to that of the vesicle model, with a slightly larger amplitude for the capsule–capsule
model.

4.4. Effect of modelling strategy in very high deformation regime
Mauer et al. (2018) reported a wide range of RBC shapes and dynamics observed in
their microfluidic experiments and through simulations using two distinct techniques.
Notably, the multilobe regime represents conditions closely resembling the physiological
environment, characterised by an external viscosity of ηext = 1.5 mPa s, at very high
shear rates with τ = 3.19 Pa. This corresponds to dimensionless numbers λ = 6.67 and
Ca(γ̇ , μs) = 1.5. We use these simulation parameters to align with the phase diagram
presented by Mauer et al. (2018), pinpointing a specific point within this multilobe regime.
As anticipated, our simulations effectively yielded multilobe shapes, indicating a strong
alignment between our modelling approaches and experimental observations. It is worth
noting that multilobe shapes have also been observed in a study using a two-dimensional
(2-D) vesicle model (Abbasi et al. 2022), suggesting that the cytoskeleton may not be
necessary for the multilobe manifestation.

The evolution of the inclination angle and the Taylor deformation parameter is shown
in figure 19. The deformation parameter varies between a minimum Dmin and a maximum
Dmax, resulting in different shapes depending on the modelling strategy.

4.5. Comparison with experimental data
In §§ 4.1–4.4, we intentionally selected four points within the phase diagram of an RBC in
shear flow. These points were chosen to comprehensively cover the spectrum of the RBC
dynamics. Across each of these chosen points, our simulations consistently replicated
the anticipated shapes and dynamic responses, including the characteristic multilobe
shape. These consistent agreements between our simulation results and experimental
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Figure 19. Time evolution of the inclination angle θ/π (a) and the deformation parameter D (b) in the
multilobe region at λ = 6.67, Ca(γ̇ , μs) = 1.5 (capsule = blue, vesicle–capsule = red, capsule–capsule =
green). Inserted in (b) are x and y shape views for the capsule and vesicle–capsule models when D is minimal
and maximal.

observations serve as compelling validation, affirming the effectiveness and reliability of
our modelling approaches.

In this subsection, we directly compare our numerical results with existing experimental
data. Specifically, we analyse the relationship between the tank-treading frequency ( f ) and
the shear rate (γ̇ ). Fischer (2007) previously reported that the frequency scales with shear
rate as f ∼ γ̇ β , with the scaling exponent β in the range of 0.85 to 0.95.

Employing the same viscosity value for the suspending medium (ηext = 28.9 mPa s) as
reported in Fischer (2007), which leads to λ = 0.346, we conducted a series of simulations
using both single-layer and double-layer models to investigate the tank-treading frequency
as a function of shear rate. Figure 20 displays a comparison between our simulation
results and experimental data. The results show that both single-layer and double-layer
models indeed exhibit a power-law relationship with β around 0.92. We note that our
numerical results are also consistent with the results obtained by Peng et al. (2013),
where they reported a value of approximately 0.91 for both their one-component and
two-component models. In our simulations, we assumed a quasi-spherical reference shape
with non-zero spontaneous curvature. We also explored scenarios with zero spontaneous
curvature, resulting in negligible deviations from the primary results.

5. Discussion

The choice of modelling strategy, either single or double layers, appears to have
a significant impact on the dynamics of the RBC in shear flow. One way
to assess the significance of this impact is to compare the influence of the
cytoskeleton’s reference shape. Figure 21 provides such a comparison for the study point
λ = 0.417, Ca(γ̇ , μs) = 0.113, located in the transition from tumbling to tank treading.
The capsule and capsule–capsule models are compared with two alternatives of reference
shape: discocyte or quasi-spherical (sphericity of 0.96, which has already been used). For
both modelling strategies, switching to the discocyte reference shape has a slight effect of
reducing the oscillation frequency. Additionally, for the capsule–capsule model, a slight
increase in the amplitude of the oscillations can be observed. However, for neither strategy
does the influence go so far as to alter the nature of the dynamics. The capsule model
remains in tumbling dynamics, while the capsule–capsule model remains in tank treading.
In other words, distinguishing the cytoskeleton from the bilayer appears to have a greater
impact.
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Figure 20. The frequency ( f ) of the tank-treading motion of an RBC in shear flow plotted against the shear
rate (γ̇ ). Simulated results using various models are denoted by filled symbols, while experimental data from
Fischer (2007) are represented by open circles. An exponential fit to the numerical results ( f ∼ γ̇ 0.92) is shown
as a dashed line, and a linear fit ( f ∼ γ̇ ) is depicted by the solid line.
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Figure 21. Time evolution of the inclination angle θ/π in the tumbling to tank-treading transition region at
λ = 0.417, Ca(γ̇ , μs) = 0.113, for capsule (blue) and capsule–capsule (green), using the quasi-spherical (solid
line) and discocyte (dotted line) reference shapes for the cytoskeleton.

Pushing the comparison in the tank-treading regime (λ = 0.4, Ca(γ̇ , μs) = 0.5), we
observe a greater influence of the cytoskeleton’s reference shape. The evolution curves
of the inclination angle and the Taylor deformation parameter are shown in figures 22
and 23 for the two initial orientations of the RBC symmetry axis, i.e. in the shear plane or
along its vorticity axis. Furthermore, the RBC shapes at t∗ = 48 and t∗ = 52 are compared
in figure 24. Switching to the discocyte reference shape has a significant impact, inducing
undeniable discrimination between the two cases of the orientation of the RBC symmetry
axis. This effect is evident for both the capsule and the capsule–capsule models, but it
is more pronounced for the latter. When the axis of symmetry of the RBC is initially in
the shear plane, an increase in the amplitude of the oscillations of the inclination angle
and the deformation parameter is observed for both models. This result is consistent
with the interpretation in terms of the energy barrier required to allow tank-treading
movement, which is greater for the discocyte reference shape than for the quasi-spherical
one. However, when the axis of symmetry of the RBC is aligned with the axis of vorticity,
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Figure 22. Impact of switching from the quasi-spherical (a,c) to the discocyte (b,d) reference shape on
inclination angle in tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5, for capsule (blue) and capsule–capsule
(green). The RBC’s axis of symmetry is initially in the shear plane (solid line) or aligned with the axis of
vorticity (dotted line).

0.40

0.45

0.50

0.55

0.60

0.65

20 30 40 50 60 70 80 90 100
0.40

0.45

0.50

0.55

0.60

0.65

20 30 40 50 60 70 80 90 100

D

t∗ t∗

(b)(a)

Figure 23. Impact of switching from the quasi-spherical (a) to the discocyte (b) reference shape on
deformation in tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5, for capsule (blue) and capsule–capsule
(green). The RBC’s axis of symmetry is initially in the shear plane (solid line) or aligned with the axis of
vorticity (dotted line).

this energy barrier is reduced. For the capsule model, this results in a smaller oscillation
amplitude for both the angle and the deformation, with a lower average deformation
intensity. However, the most significant consequence is the doubling of the oscillation
frequency. In contrast, for the capsule–capsule model, the barrier effect seems to disappear
completely. The inclination angle and the deformation parameter take a constant value,
and the RBC switches to a pure tank-treading dynamics. However, the intensity of the
deformation increases, unlike the capsule model, because of a greater influence of the
dimple from the axis of symmetry towards the periphery for the more rigid capsule model.
Here, the difference in modelling strategy between one or two layers still has a strong
impact, but its influence combines with that of the reference shape for the cytoskeleton.
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Figure 24. Shape evolution ((x∗, y∗) plane sectional drawing) with the discocyte reference shape in
tank-treading regime at λ = 0.4, Ca(γ̇ , μs) = 0.5, for capsule (blue) and capsule–capsule (green), at t∗ = 48
(a,c) and t∗ = 52 (b,d). The RBC’s axis of symmetry is initially in the shear plane (a,b) or aligned with the
axis of vorticity (c,d).

We conducted simulations with a non-zero spontaneous curvature for the
quasi-spherical reference shape. However, we do not present the corresponding curves
as they are very similar to those obtained with zero spontaneous curvature.

We emphasise the significance of conducting a comparative study that minimises the
discrepancies arising from specific numerical implementations, such as the method for
solving flows and the geometric representation of surfaces. It is crucial for these numerical
aspects to share the same level of precision. While the choice of our modelling may be
subject to debate, including the numerical method and solution algorithms, our approach,
built upon the relatively recent finite-element method, known as isogeometric analysis,
provides a coherent and consistent numerical framework. However, the dissipative
contribution of the coupling between the cytoskeleton and the lipid bilayer is not present
in single-layer models. Although our study does not consider the relaxation dynamics, it is
still legitimate to question the sensitivity of double-layer models to the friction coefficient
Cf . To investigate this, we repeated simulations by varying Cf by a factor of ten, but the
impact was almost negligible. While it may seem surprising at first glance, the intensity of
dissipation cannot be directly linked to the friction between the cytoskeleton and the lipid
bilayer, since increasing the friction intensity decreases the velocity differential between
the cytoskeleton and the lipid bilayer.

The double-layer models used in our study clearly differ from the single-layer
capsule model. However, beyond the surface incompressibility constraint that our study
has revealed, what are the fundamental differences between the capsule–capsule and
vesicle–capsule models, and why is it important to model the lipid bilayer as a fluid film?
A fluid nature would allow the lipid bilayer to more easily adapt to ambient fluid flow,
and even exhibit vortices in the surface velocity field if the energy balance is improved.
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(b)(a)

(c) (d )

Figure 25. Surface velocity fields in the multilobe region at λ = 6.67, Ca(γ̇ , μs) = 1.5, for the
capsule–capsule (a) and vesicle–capsule (c) models, when D = Dmin. (b,d) The corresponding surface velocity
field inside the concavity projected on a plane perpendicular to the concavity.

In contrast, modelling the lipid bilayer as a solid shell would make such a scenario
impossible. While the tank-treading dynamics is compatible with a solid membrane and
has been observed experimentally for capsules, it is unclear whether all the dynamics
adopted by an RBC in a shear flow exhibits this behaviour. To investigate this further,
we extended our comparison between capsule–capsule and vesicle–capsule models to
multilobe dynamics (λ = 6.67, Ca(γ̇ , μs) = 1.5). Figure 25 illustrates this comparison,
showing comparable shapes obtained with both models when the Taylor parameter passes
through its minimum. However, the vesicle–capsule model exhibits two counter-rotating
vortices in the concavity, unlike the capsule–capsule model, which widens the concavity.
This difference in surface flow topology may have a more significant effect on other
aspects, including frictional dissipation between the cytoskeleton and lipid bilayer and
the physiological role of the plasma membrane, which relies on its fluidity for proteins to
diffuse widely and be easily mobilised to fulfil biological functions.

6. Conclusions

The RBC is a commonly studied area in the field of biomechanics, and it is traditionally
modelled as a single-layer capsule or vesicle. While a few double-layer models exist,
they often require two separate meshes – one for the lipid bilayer and the other for the
cytoskeleton. In this paper, we have presented an alternative double-layer membrane model
that utilises a single mesh, significantly reducing computational complexity. Through
computational assessment of different modelling strategies, including both single-layer
and double-layer models, we have examined their respective effects on RBC dynamics
and their potential implications in understanding the biomechanics of RBCs.

By analysing extensional flow, we have gained insight into the behaviour of the RBC
membrane and why single-layer models like the capsule model and double-layer models
like the capsule–capsule and vesicle–capsule models are not equivalent. The capsule
model fails to distinguish the tangential kinematics of the cytoskeleton and the lipid
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bilayer, while in reality the latter only drives the former through the action of frictional
forces of the lipids on the junction proteins. The cytoskeleton has a degree of freedom
of tangential sliding, allowing it to relax its elastic stresses to an imposed surface shape,
which is effective in double-layer modelling strategies but prohibited in the single-layer
capsule model. As a result, our findings show that the elastic strain energy of the
cytoskeleton and the RBC membrane as a whole increase more slowly in the double-layer
modelling strategies during extensional flow, resulting in a non-negligible increase in the
elongation of the RBC.

We aimed to investigate the influence of the interaction between the lipid bilayer and
cytoskeleton layers of the RBC membrane on its dynamics in simple shear flow. To achieve
this, we considered four points (λ, Ca(γ̇ , μs)) of the phase diagram that corresponded
to the dynamic regimes of tumbling, tank treading, transition to tank treading and
multilobe-shaped RBCs under very high shear. These points were chosen because they
represent the richness of RBC behaviour in shear flow while keeping the RBC symmetry
axis in the shear plane. For the tank-treading dynamics, we also considered the alternative
where the symmetry axis remains aligned with the vorticity axis. The modelling strategies
were compared using the usual indicators of inclination angle and the Taylor deformation
parameter, along with other indicators such as the shape of the RBC or the velocity field
on its surface.

Our results show that modelling the RBC membrane as a single material surface or
as two structures that can slide relative to each other is not equivalent. For all the study
points, this difference in behaviour is always present, although it may be more or less
marked depending on the nature of the dynamics considered. Our numerical methods
were accurate, and any criticism of our choices would affect all RBC modelling strategies
compared. The mechanical properties we considered were those recognised for a healthy
RBC, but their assignment to one of the modelled components may vary depending on the
strategy adopted. The sliding degree of freedom between the two layers in the double-layer
models induced a dissipative phenomenon not considered in simpler models where the
membrane is modelled as a block. However, we have shown that the sensitivity to the
value of the surface friction coefficient is negligible, while the existence of this sliding
degree of freedom is an important factor. Moreover, none of the cases we have considered
involves the relaxation dynamics.

Our study has yielded a surprising finding, emphasising the significance of the
membrane modelling strategy for RBCs compared with the choice of the cytoskeleton’s
reference shape. Our results suggest that the combination of mechanical properties alone
is insufficient, and careful consideration must be given to how these properties are
incorporated. While the numerical efficiency favours a single-layer capsule approach,
a double-layer model aligns more closely with biological reality. Fortunately, the
additional computational cost of the double-layer model is minimal when utilising a
single mesh, as demonstrated in our continuum-mechanical approach. Based on all the
aspects considered, we conclude that the optimal sequence of RBC modelling strategies
is as follows: double-layer vesicle–capsule and capsule–capsule models, followed by
single-layer capsule and vesicle models if a particular model would be preferred.

However, an open question remains: is it necessary, useful or avoidable to model the
lipid bilayer as a vesicle rather than a capsule? To date, no such model has been widely
adopted in the community. Our study identifies two mechanical properties contributed by
the lipid bilayer: its surface incompressibility and its fluid nature. We show that the former
consistently provides a marked stiffening effect compared with a quasi-incompressible
capsule model, reducing up to 50 % of swinging oscillations in the tank-treading dynamics.
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The importance of fluidity is less clear but becomes noticeable at very high shear rates,
where contra-rotating vortices appear that cannot be reproduced with a capsule model.
While the physiological significance of these complex flows within the plasma membrane
remains uncertain, our study suggests that considering the fluidity of the lipid bilayer is
still important. However, it is not the consideration of fluidity that is expensive in a vesicle
model, but rather the rigorous consideration of the incompressibility constraint through
a projection method in a space of surface divergence-free velocity fields. An alternative
approach that would represent a good strategy and is already widely adopted in the vesicle
community is to take into account the surface incompressibility constraint using a penalty
method.

Our initial motivation for conducting this study was rooted in numerical modelling
concerns. However, our research has unexpectedly yielded insights that could advance our
understanding of the biophysics of RBCs. One such insight is the unresolved question of
the reference shape of the cytoskeleton. Our study on tank-treading dynamics has revealed
a new phenomenon that could serve as an indicator in resolving this issue. Experimental
research by Minetti et al. (2019) suggests that, in this regime, the RBC symmetry axis can
be oriented in two ways – aligned with the vorticity axis or in the shear plane. We have
investigated both configurations, and our findings indicate that a reference shape close to
a sphere results in indistinguishable steady-state dynamics for both orientations. However,
with a discocyte reference shape, the effect is considerably different and accentuated in
a double-layer model compared with a simple capsule model. The oscillation amplitude
increases when the symmetry axis is in the shear plane and decreases when aligned with
the vorticity axis. Notably, the oscillation frequency is halved in the latter case for the
capsule model, whereas the capsule–capsule model eliminates the oscillations, leading to
a pure tank-treading dynamics. These observations suggest that the influence of reference
shape on oscillation frequency is significant enough to warrant experimental verification.

Another point of interest is the fluidity of the lipid bilayer, which justifies the notion of
a flow of its constituents and the associated friction on proteins linked to the cytoskeleton.
Recent research has called into question the Singer and Nicolson model, particularly
regarding the extent to which bilayer fluidity is constrained by the aggregation kinetics of
its constituents and the corralling phenomenon (Kusumi et al. 2005; Krapf 2015). Surface
viscosity and the possibility of vortices must be considered in this context. However, the
limitation on the degree of sliding freedom of the cytoskeleton may not be immediately
evident, since it involves the sliding of the corrals themselves, which warrants further
investigation.
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