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Abstract

We give three identities involving multiple zeta values of height one and of maximal height: an explicit
formula for the height-one multiple zeta values, a regularised sum formula and a sum formula for the
multiple zeta values of maximal height.
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1. Main results

The multiple zeta value (MZV) is a real number given by the nested series

ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1

mk1
1 · · ·m

kr
r

for each index set k = (k1, . . . , kr) of positive integers ki, with the last entry kr > 1
for convergence. We introduce the parameters w(k) := k1 + · · · + kr, d(k) := r and
h(k) := #{i | ki > 1, 1 ≤ i ≤ r}, called respectively the weight, the depth and the height
of the index set k (or of the multiple zeta value ζ(k) = ζ(k1, . . . , kr)).

In this paper, we present the following three identities which involve multiple zeta
values of extremal height, that is, the MZVs of height one or of maximal height (all
components of the index set are greater than one).

Theorem 1.1 (Explicit formula for the MZV of height one). For any integers r, k ≥ 1,

ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1) =

min(r,k)∑
j=1

(−1) j−1
∑

w(a)=k,w(b)=r
d(a)=d(b)= j

ζ(a + b), (1.1)

where, for two indices a = (a1, . . . , a j) and b = (b1, . . . , b j) of the same depth, ζ(a + b)
denotes ζ(a1 + b1, . . . , a j + b j).
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Note that the right-hand side of this formula is symmetric in r and k and thus the
formula makes the duality ζ(1, . . . , 1︸  ︷︷  ︸

r−1

, k + 1) = ζ(1, . . . , 1︸  ︷︷  ︸
k−1

, r + 1) visible. (Note that we

use the duality in our proof, so that we are not giving an alternative proof of the
duality.) To our knowledge, no such symmetric explicit formula for the MZV of height
one is known, except for the well-known symmetric generating function [1, 4]:

1 −
∑
r,k≥1

ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1)xryk =
Γ(1 − x)Γ(1 − y)

Γ(1 − x − y)
= exp

( ∞∑
n=2

ζ(n)
xn + yn − (x + y)n

n

)
.

Also, we should remark that the right-hand side of the theorem is symmetric with
respect to any permutations of the arguments, so that the theorem of Hoffman
[5, Theorem 2.2] ensures that the right-hand side is a polynomial in the Riemann zeta
values ζ(n). This fact can also be seen from the generating function above. Moreover,
we note that all the MZVs appearing on the right-hand side are of maximal height.

As a final remark, the case of r = 2 gives nothing but the ‘sum formula’ for
depth two (r = 1 gives the trivial identity ζ(k + 2) = ζ(k + 2)). It was Tsumura who
first remarked that we could obtain the depth two sum formula if we looked at the
behaviour at s = 0 of the identity (2.1) in the next section for r = 2.

Recall that the classical sum formula states that the sum of all MZVs of fixed
weight and depth is equal to the Riemann zeta value of that weight. If we extend
the sum to include nonconvergent MZVs with the shuffle regularisation, the result will
be the MZV of height one (up to sign). We do not know if there exists any nice stuffle
regularised sum formula.

Theorem 1.2 (Shuffle regularised sum formula). For any integers r, k ≥ 1,∑
w(k)=r+k

d(k)=r

ζX(k) = (−1)r−1ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1),

where ζX(k) is the shuffle regularised value, which will be recalled in Section 2.

Finally, we give a kind of sum formula for the MZVs of maximal height in the
form of a generating function. This is essentially known, but may be new in this form
of presentation. Let T (k) be the sum of all multiple zeta values of weight k and of
maximal height:

T (k) :=
∑

k1+···+kr=k
r≥1,∀ki≥2

ζ(k1, . . . , kr).

Recall that the multiple zeta-star value ζ?(k1, . . . , kr) is given by the nonstrict nested
sum

ζ?(k1, . . . , kr) =
∑

0<m1≤···≤mr

1

mk1
1 · · ·m

kr
r

.
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Theorem 1.3. We have the generating series identity

1 +

∞∑
k=2

T (k)xk =

(
1 +

∞∑
n=1

ζ?(2, . . . , 2︸  ︷︷  ︸
n

)x2n
)(

1 +

∞∑
n=1

ζ(3, . . . , 3︸  ︷︷  ︸
n

)x3n
)
.

After necessary preliminaries in the next section, we prove these results in
Section 3.

2. Preliminaries

Recall the function introduced in [2],

ξ(k1, . . . , kr; s) =
1

Γ(s)

∫ ∞

0
ts−1 Lik1,..., kr (1 − e−t)

et − 1
dt,

where Lik1,..., kr (z) is the multiple polylogarithm function defined by

Lik1,..., kr (z) =
∑

0<m1<···<mr

zmr

mk1
1 · · ·m

kr
r

.

When kr > 1, the value at z = 1 of Lik1,..., kr (z) is nothing but the multiple zeta value
ζ(k1, . . . , kr). The function ξ(k1, . . . , kr; s) is analytically continued to an entire function
in s. In the special case where (k1, . . . , kr) = (1, . . . , 1︸  ︷︷  ︸

r−1

, k), Arakawa and the first-named

author [2, Theorem 8] established the following identity (we interchange r and k and
shift s to s + 1), which is crucial in our proofs of Theorems 1.1 and 1.2:

ξ(1, . . . , 1︸  ︷︷  ︸
k−1

, r; s + 1) = (−1)r−1
∑

a1+···+ar=k
∀ap≥0

(
s + ar

ar

)
ζ(a1 + 1, . . . , ar−1 + 1, ar + 1 + s)

+

r−2∑
i=0

(−1)iζ(1, . . . , 1︸  ︷︷  ︸
k−1

, r − i) ζ(1, . . . , 1︸  ︷︷  ︸
i

, 1 + s) (2.1)

for any r, k ≥ 1. Here, we have introduced a complex variable s in the outer-most
exponent of the MZV by setting

ζ(k1, . . . , kr−1, kr + s) :=
∑

0<m1<···<mr

1

mk1
1 · · ·m

kr−1
r−1mkr+s

r

.

As remarked in [7, Remark 3.7], (2.1) is equivalent to the connection formula of
Euler’s type of the multi-polylogarithm Li1, . . . , 1︸  ︷︷  ︸

k−1

,r(z). It is shown in [2] that the function

ζ(k1, . . . , kr−1, kr + s) can be meromorphically continued to the whole s-plane and has
a pole at s = 0 if kr = 1. We need the description of the principal part at s = 0 in terms
of regularised polynomials, which we now explain.
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For an index k = (k1, . . . , kr), we denote by ZX
k (T ) and Z∗k(T ) respectively the shuffle

and the stuffle (harmonic) regularised polynomials associated to k. These are the
polynomials in R[T ] uniquely characterised by the asymptotics

Lik1,...,kr (z) = ZX
k (−log(1 − z)) + O((1 − z)ε) as z→ 1 for some ε > 0

and ∑
0<m1<···<mr<M

1

mk1
1 · · ·m

kr
r

= Z∗k(log M + γ) + O(M−ε) as M →∞ for some ε > 0,

where γ is Euler’s constant. We refer the reader to [6] for details about the
regularisations. We denote the constant term ZX

k (0) of the shuffle-regularised
polynomial ZX

k (T ) by ζX(k) and call it the shuffle-regularised value of (possibly
divergent) ζ(k). If k is of the form k = (k1, . . . , kn, 1, . . . , 1︸  ︷︷  ︸

m

) with kn > 1,m ≥ 0,

then both ZX
k (T ) and Z∗k(T ) are of degree m and each coefficient of T i is a linear

combination of multiple zeta values of weight m − i. If m = 0 (and so n = r), then
ZX

k (T ) = Z∗k(T ) = ZX
k (0) = Z∗k(0) = ζ(k1, . . . , kr). Now write

ZX
k (T ) =

m∑
i=0

ai(k)
T i

i!
and Z∗k(T ) =

m∑
i=0

bi(k)
(T − γ)i

i!
.

Then, as shown in [3], the principal parts at s = 0 of Γ(s + 1)ζ(k1, . . . , kr−1, kr + s) and
ζ(k1, . . . , kr−1, kr + s) are given respectively by

Γ(s + 1)ζ(k1, . . . , kr−1, kr + s) =

m∑
i=0

ai(k)
si + O(s) as s→ 0 (2.2)

and

ζ(k1, . . . , kr−1, kr + s) =

m∑
i=0

bi(k)
si + O(s) as s→ 0.

We take this opportunity to point out a flaw in the proof in [3]. The integral in the sum
on the right of the equation below (32) may not converge. But the argument can easily
be modified by splitting the integral

∫ ∞
0 on the left as

∫ 1
0 +

∫ ∞
1 and looking at the limits

when s→ 0 separately.

3. Proofs

Proof of Theorem 1.1. Since we have the duality ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1) = ζ(1, . . . , 1︸  ︷︷  ︸
k−1

, r + 1)

and the right-hand side of (1.1) is symmetric in r and k, it is enough to prove the
theorem under the assumption that k ≥ r. We proceed by induction on r. When r = 1,
both sides become ζ(k + 1) and the assertion is true for all k ≥ 1. Suppose that r ≥ 2
and the theorem is true when the depth on the left is less than r (and k is greater than
or equal to the depth).
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We look at the values at s = 0 of both sides of (2.1). The value on the left is
evaluated in [2, Theorem 9] as ξ(1, . . . , 1︸  ︷︷  ︸

k−1

, r; 1) = ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1). Since the functions

ζ(a1 + 1, . . . , ar−1 + 1, ar + 1 + s) with ar = 0 as well as ζ(1, . . . , 1︸  ︷︷  ︸
i

, 1 + s) on the right

have poles at s = 0, we need to look at the constant term of the Laurent expansion of
the right-hand side. (Because ξ(1, . . . , 1︸  ︷︷  ︸

k−1

, r; s + 1) is entire, all the poles on the right

actually cancel out.) In what follows within the proof of Theorem 1.1, we simply write
the constant term at s = 0 of ζ(k1, . . . , kr−1, kr + s) as ζ(k1, . . . , kr−1, kr) even when
kr = 1, which is equal to Z∗k1,...,kr

(γ) as recalled in the previous section. Note that these
values satisfy the stuffle (harmonic) product rule. With this convention,

ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1) = (−1)r−1
∑

a1+···+ar=k
∀ap≥0

ζ(a1 + 1, . . . , ar + 1)

+

r−2∑
i=0

(−1)iζ(1, . . . , 1︸  ︷︷  ︸
k−1

, r − i) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

).

We apply the duality ζ(1, . . . , 1︸  ︷︷  ︸
k−1

, r − i) = ζ(1, . . . , 1︸  ︷︷  ︸
r−i−2

, k + 1) in the second sum on the

right and use the induction hypothesis (since r − i − 1 < r) to obtain

ζ(1, . . . , 1︸  ︷︷  ︸
r−1

, k + 1) = (−1)r−1
∑

a1+···+ar=k
∀ap≥0

ζ(a1 + 1, . . . , ar + 1)

+

r−2∑
i=0

(−1)i
r−i−1∑

j=1

(−1) j−1
∑

w(a)=k,w(b)=r−i−1
d(a)=d(b)= j

ζ(a + b) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

)

= (−1)r−1
∑

a1+···+ar=k
∀ap≥0

ζ(a1 + 1, . . . , ar + 1)

+

r−1∑
j=1

(−1) j−1
∑

w(a)=k
d(a)= j

r− j−1∑
i=0

(−1)i
∑

w(b)=r−i−1
d(b)= j

ζ(a + b) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

).

Now we expand the product ζ(a + b) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

) by using the stuffle product and

rearrange the terms according to the number of ones to compute the inner sum

r− j−1∑
i=0

(−1)i
∑

w(b)=r−i−1
d(b)= j

ζ(a + b) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

).
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For that purpose, we introduce more notation. For a fixed index a = (a1, . . . , a j) of
depth j and integers l, n ≥ 0, we set

S (a, l, n) :=
∑

w(b)=r−l
d(b)= j, h(b)=n

ζ(a1 + b1, . . . , 1, . . . , as + bs, . . . , 1, . . . , a j + b j),

summing over all b = (b1, . . . , b j) of weight r − l, depth j and height n, and over all
possible positions of exactly l ones in the arguments. Then, by the stuffle product rule,

∑
w(b)=r−i−1

d(b)= j

ζ(a + b) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

) =

i+1∑
l=max(0,i+1− j)

j∑
n=i+1−l

(
n

i + 1 − l

)
S (a, l, n).

We note that, when we expand ζ(a + b)ζ(1, . . . , 1︸  ︷︷  ︸
i+1

) by the stuffle product, the number of

ones in each term should at least i + 1 − j when j < i + 1. And, if the number of ones is
l, then the height n on the right varies from i + 1 − l to j. A particular term in the sum
S (a, l,n) on the right comes in exactly

(
n

i+1−l

)
ways from the product ζ(a + b)ζ(1, . . . , 1︸  ︷︷  ︸

i+1

)

on the left, because there are i + 1 − l out of n positions of the index a + b on the left
which produce that particular term on the right by colliding with i + 1 − l ones at those
positions.

When we sum this up alternatingly for i = 0, . . . , r − j − 1 with signs, all coefficients
of S (a, l, n) with n, l ≥ 1 vanish, because of the binomial identity

∑n+l−1
i=l−1 (−1)i

(
n

i+1−l

)
= 0

if n, l ≥ 1. Hence, using the identity
∑n−1

i=0 (−1)i
(

n
i+1

)
= 1 if n ≥ 1 (the case l = 0),

r− j−1∑
i=0

(−1)i
∑

w(b)=r−i−1
d(b)= j

ζ(a + b) · ζ(1, . . . , 1︸  ︷︷  ︸
i+1

) =

j∑
n=1

S (a, 0, n) + (−1)r− j−1S (a, r − j, 0).

When j ≤ r − 1, we have
∑ j

n=1 S (a, 0, n) =
∑

w(b)=r,d(b)= j ζ(a + b) and this gives

r−1∑
j=1

(−1) j−1
∑

w(a)=k,w(b)=r
d(a)=d(b)= j

ζ(a + b). (3.1)

Finally,

r−1∑
j=1

(−1) j−1
∑

w(a)=k
d(a)= j

(−1)r− j−1S (a, r − j, 0) = (−1)r
r−1∑
j=1

∑
w(a)=k
d(a)= j

S (a, r − j, 0)

= (−1)r
∑

a1+···+ar=k
ap≥0, at least one ap=0

ζ(a1 + 1, . . . , ar + 1).
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Hence, this and the terms in

(−1)r−1
∑

a1+···+ar=k
∀ap≥0

ζ(a1 + 1, . . . , ar + 1)

with at least one ap = 0 cancel out, thereby leaving the term

(−1)r−1
∑

w(a)=k,w(b)=r
d(a)=d(b)=r

ζ(a + b). (3.2)

The sum of (3.1) and (3.2) gives the right-hand side of the theorem. �

Proof of Theorem 1.2. We multiply by Γ(s + 1) on both sides of the identity (2.1)
and look at the constant terms of the Laurent expansions at s = 0. The left-hand side
is holomorphic at s = 0 and gives the value ζ(1, . . . , 1︸  ︷︷  ︸

r−1

, k + 1), as we already saw

in the last subsection. The function
(

s+ar
ar

)
Γ(s + 1)ζ(a1 + 1, . . . , ar−1 + 1, ar + 1 + s)

on the right is holomorphic at s = 0 if ar > 1 and in that case gives the value
ζ(a1 + 1, . . . , ar−1 + 1, ar + 1). If ar = 0, then(
s + ar

ar

)
Γ(s + 1)ζ(a1 + 1, . . . , ar−1 + 1, ar + 1 + s) = Γ(s + 1)ζ(a1 + 1, . . . , ar−1 + 1, 1 + s)

has a pole at s = 0. The constant term of its Laurent expansion is ζX(a1 + 1, . . . ,ar + 1)
by (2.2). On the other hand, the function Γ(s + 1)ζ(1, . . . , 1︸  ︷︷  ︸

i

,1 + s) has no constant term

at s = 0 because ZX
1, . . . , 1︸  ︷︷  ︸

i+1

(T ) = T i+1/(i + 1)!. This concludes the proof. �

We remark that we can prove the theorem alternatively by computing the left-hand
side using the regularisation formula [6, (5.2)]. By Theorem 1.2 and [6, Corollary 5],
we easily obtain the following sum formula for the shuffle-regularised polynomials:∑

w(k)=r+k
d(k)=r

ζX(k; T ) =

r−1∑
i=0

(−1)r−1−iζ(1, . . . , 1︸  ︷︷  ︸
r−1−i

, k + 1)
T i

i!

for any r, k ≥ 1, where ζX(k; T ) = ZX
R (w) in the notation of [6] with w being a word

corresponding to k.

Proof of Theorem 1.3. This is almost obvious if we write ki (≥2) as ki = 2 + · · · + 2
(for ki even) or ki = 3 + 2 + · · · + 2 (for ki odd) and consider the stuffle product of
ζ?(2, . . . , 2)ζ(3, . . . , 3) after writing ζ?(2, . . . , 2) as sums of ordinary MZVs.

An alternative proof is given by using the main identity in [8]. As is already
remarked there, if we specialise y = 0 and z = x2 in [8, Equation 3],

1 +

∞∑
k=2

T (k)xk = exp
( ∞∑

n=1

ζ(2n)
n

x2n
)
· exp

( ∞∑
n=1

(−1)n−1 ζ(3n)
n

x3n
)
.
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It is standard that

exp
( ∞∑

n=1

ζ(2n)
n

x2n
)

= Γ(1 + x)Γ(1 − x) =

∞∏
m=1

(
1 −

x2

m2

)−1
= 1 +

∞∑
n=1

ζ?(2, . . . , 2︸  ︷︷  ︸
n

)x2n,

whereas the identity

exp
( ∞∑

n=1

(−1)n−1 ζ(3n)
n

x3n
)

= 1 +

∞∑
n=1

ζ(3, . . . , 3︸  ︷︷  ︸
n

)x3n

is a special case of [6, Corollary 2 of Proposition 4]. �
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