ALMOST p-STRUCTURES ON VECTOR-BUNDLES

I. DIBAG
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey e-mail: dibag@fen.bilkent.edu.tr

(Received 27 November, 2001; accepted 28 March, 2002)

Abstract

For $p \geq 2$ we introduce the notion of an almost p-structure on vectorbundles which generalizes the notion of an almost-complex structure and investigate the existence of almost p-structures on spheres and complex projective spaces.

2000 Mathematics Subject Classification. 55R10, 57R22.
0. Introduction. In this note we generalize the notion of an almost-complex structure on a real vector-bundle; i.e. a fibrewise linear map J on a vector-bundle ξ such that $J^{2}=-1$. For $p \geq 2$ we consider a fibrewise linear map J on ξ such that $J^{p}=(-1)^{p-1}$. For $p=2$ this gives an almost-complex structure, but for $p>2$ this does not suffice. Let $a_{p}=R[x] /\left(x^{p}-(-1)^{p-1}\right)$. This turns the fibre ξ_{x} into an a_{p}-module. Since a_{p} is not a field it does not automatically follow that $\xi_{x}=a_{p}^{k}$ for some $k \in \mathbb{Z}^{+}$. We insert one more condition which guarantees this. We call such maps J almost p-structures. We then study the structure of a_{p} as an algebra and prove that

$$
a_{p}=\left\{\begin{array}{lll}
\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C} & \left(\frac{p}{2}-\text { factors } \mathbb{C}\right) & \text { if } p \text { is even } \\
\mathbb{R} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C} & \left(\frac{p-1}{2}-\text { factors } \mathbb{C}\right) & \text { if } p \text { is odd. }
\end{array}\right.
$$

It follows from this that a vector-bundle of dimension n admits an almost p-structure iff $n=k p$ for some $k \in \mathbb{Z}^{+}$and splits into a direct-sum of $\frac{p}{2}$ complex vector-bundles of dimension k if p is even and into a direct-sum of a real vector-bundle and $\left(\frac{p-1}{2}\right)$ complex vector bundles of dimension k if p is odd. Using this criterion we solve completely the existence problem of almost p-structures on spheres and complex projective spaces. The only non-trivial almost p-structures on spheres (i.e. on nonparallelisable ones) is an almost 3-structure on S^{15} in addition to the almost-complex structures on S^{2} and S^{6}. The only almost p-structures that exist on complex projective spaces is an almost 3 -structure on $P_{3}(\mathbb{C})$ in addition to the almost-complex structures that exist on all complex projective spaces. For this we rely heavily on [1].

1. Almost \boldsymbol{p}-structures. For $p \geq 2$ let J be a fibrewise linear map on a vectorbundle ξ over a topological space X such that $J^{p}=(-1)^{p-1}$.

Definition 1.1. Let $a_{p}=R[x] /\left(x^{p}-(-1)^{p-1}\right)$. Then $a_{p}=\left\{1, x, \ldots, x^{p-1} / x^{p}=\right.$ $\left.(-1)^{p-1}\right\}$. The fibre ξ_{x} is an a_{p}-module, the module structure is given by $x^{i} v=J^{i}(v)$, $v \in \xi_{x}(0 \leq i \leq p-1)$.

Definition 1.2. For $v \in \xi_{x}$ define $E(v)$ to be the subspace generated by $v, J(v), \ldots$, $J^{p-1}(v)$.

Definition 1.3. We call $v \in \xi_{x}$ a cyclic vector iff $\operatorname{dim} E(v)=p$, i.e. iff v, $J(v), \ldots, J^{p-1}(v)$ are linearly-independent. For $v \in \xi_{x}$ a cyclic-vector, $E(v)=a_{p}$. For $p=2$ every non-zero vector is a cyclic vector.

Definition 1.4. A fibrewise linear map J on a vector-bundle ξ is called an almost p-structure on ξ iff
(i) $J^{p}=(-1)^{p-1}$ and (ii) For every J-invariant proper subspace U of ξ_{x} there exists a cyclic vector $v \notin U$.

We deduce from (ii) that there exist cyclic vectors v_{1}, \ldots, v_{k} such that $\xi_{x}=E\left(v_{1}\right) \oplus$ $E\left(v_{2}\right) \oplus \cdots \oplus E\left(v_{k}\right) n=k p$ i.e. $n \equiv 0(\bmod p)$ and $\xi_{x}=a_{p}^{k}$. For $p=2$ condition (ii) is vacuous and condition (i) suffices to define an almost 2-(i.e. almost-complex) structure.
2. Algebraic structure of \boldsymbol{a}_{p}. For p even let $\theta_{k}=\frac{(2 k-1)}{p} \pi$ and $x_{k}=\frac{2}{p}(1+$ $\left.\sum_{m=1}^{\frac{p}{2}-1} \cos \left(m \theta_{k}\right)\left(x^{m}-x^{p-m}\right)\right)\left(1 \leq k \leq \frac{p}{2}\right)$. Then $x_{k}^{2}=x_{k}, x_{k} x_{\ell}=0(k \neq \ell)$ and $\sum_{k=1}^{p / 2} x_{k}=$ 1. Thus $a_{p}=\oplus_{k=1}^{p / 2} I_{k}$ where I_{k} is the ideal generated by x_{k}. The homomorphism $R[x] \rightarrow$ I_{k} has kernel $\left(x-e^{i \theta_{k}}\right)\left(x-e^{-i \theta_{k}}\right)=x^{2}-2 x \cos \theta_{k}+1$ and this gives an isomorphism of algebras $\mathbb{C}=R[x] /\left(x^{2}-2 x \cos \theta_{k}+1\right) \xrightarrow{=} I_{k}$. Thus $a_{p}=\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}\left(\frac{p}{2}\right.$-factors $)$.

For p odd let $\psi_{k}=\frac{2 k \pi}{p}\left(0 \leq k \leq \frac{1}{2}(p-1)\right)$. $x_{0}=\frac{1}{p}\left(1+x+\cdots+x^{p-1}\right) x_{k}=\frac{2}{p}(1+$ $\sum_{m=1}^{\frac{1}{2}(p-1)} \cos \left(m \psi_{k}\right)\left(x^{m}+x^{p-m}\right)\left(1 \leq k \leq \frac{1}{2}(p-1)\right)$. Then $x_{k}^{2}=x_{k}, x_{k} x_{\ell}=0(k \neq \ell)$ and $\sum_{k=0}^{\frac{1}{2}(p-1)} x_{k}=1$. Thus $a_{p}=\oplus_{k=0}^{\frac{1}{2}(p-1)} I_{k}$ where I_{k} is the ideal generated by x_{k}. The homomorphism $R[x] \rightarrow I_{k}$ has kernel (i) $(1-x)$ for $k=0$ and (ii) $\left(x-e^{i \psi_{k}}\right)(x-$ $\left.e^{-i \psi_{k}}\right)=x^{2}-2 x \cos \psi_{k}+1\left(1 \leq k \leq \frac{1}{2}(p-1)\right)$. We obtain algebra isomorphisms (i) $R=R[x] /(1-x) \stackrel{\rightleftharpoons}{\rightarrow} I_{0}$ and (ii) $\mathbb{C}=R[x] /\left(x^{2}-2 x \cos \psi_{k}+1\right) \xrightarrow{=} I_{k}\left(1 \leq k \leq \frac{1}{2}(p-1)\right)$. Hence $a_{p}=\mathbb{R} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}\left(\frac{1}{2}(p-1)\right.$ factors $\left.\mathbb{C}\right)$.
3. Almost \boldsymbol{p}-structures on real vector-bundles. Let ξ be a real vector-bundle of dimension n over a topological space x with an almost p-structure J. We know from Section 1 that $n \equiv 0(\bmod p)$. Let $n=k p$. For $x \in X$, the fibre ξ_{x} is an a_{p}-module. Let $x_{i} \in a_{p}$ be the elements defined in Section 2 such that a_{p} is the direct-sum of the ideals generated by x_{i}. Define $\xi_{i}(x)=\left\{x_{i} \cdot v \mid v \in \xi_{x}\right\}$. Then $\xi_{x}=\oplus_{i} \xi_{i}(x)$ and if we define $\xi_{i}=\bigcup_{x \in X} \xi_{i}(x), \xi$ decomposes into $\xi=\oplus_{i} \xi_{i}$. If p is even E_{i} is a complex vector-bundle of dimension k for $1 \leq i \leq \frac{p}{2}$. If p is odd E_{0} is a real vector-bundle and E_{i} is a complex vector-bundle of dimension k for $1 \leq i \leq\left(\frac{p-1}{2}\right)$. The argument is reversible. Suppose p is even and $\xi=\oplus_{i=1}^{p / 2} \xi_{i}$ for complex vector-bundles ξ_{i}. Let J_{i} be the almost-complex structure on ξ_{i}. Define $x_{i} \cdot v=J_{i}(v)$ for $v \in \xi_{i}$. Then the $i^{\text {th }}$-factor \mathbb{C} in the direct-sum decomposition of a_{p} acts on ξ_{i} and this defines an action of a_{p} on ξ. An analogous argument holds in the case p odd. This leads to

Theorem 3.1. A vector-bundle ξ of dimension n over a topological space X admits an almost p-structure iff $n \equiv 0(\bmod p)$ i.e. $n=k p$ and
(i) if p is even $\xi=\oplus_{i=1}^{p / 2} \xi_{i}$ where ξ_{i} is a complex vector-bundle of dimension k.
(ii) if p is odd $\xi=\xi_{0} \oplus \oplus_{i=1}^{\frac{1}{2}(p-1)} \xi_{i}$ where ξ_{0} is a real vector-bundle and ξ_{i} is a complex vector bundle of dimension $k .\left(1 \leq i \leq \frac{1}{2}(p-1)\right)$.
4. Almost \boldsymbol{p} structures on spheres. It is well known that the even spheres which admit almost-complex structures are S^{2} and S^{6}. We search for almost p-structures on spheres for $p>2$. The only non-trivial almost p-structure that we can find is an almost 3structure on S^{15}. We rely heavily on [1] for machinery and details. Let $L_{k}=2^{v_{2}\left(M_{k}\right)}$ be the 2-primary component of the Atiyah-Todd number i.e. $v_{2}\left(M_{k}\right)=\sup _{1 \leq r \leq k-1}\left(r+v_{2}(r)\right)$. We note that almost p-structures on S^{k} exist for all p / k when S^{k} is parallelisable i.e. if $k=1,3,7$ and call such almost p-structures trivial. We call an almost p-structure non-trivial if the sphere in question is not parallelisable.

Proposition 4.1. Let p and k be odd. The only non-trivial almost p-structure on $S^{p k}$ is an almost 3 -structure on S^{15}.

Proof. By Theorem 3.1 (ii), $S^{p k}$ admits an almost p-structure iff the fibration

1. $S O(p k+1) / S O(k) \times U(k) \times \cdots \times U(k) \xrightarrow{S O(p k) / S O(k) \times U(k) \times \cdots \times U(k)} S^{p k}$ admits a cross-section. Let's fix one $U(k)$. Since $S O(k)$ and all the other $U(k)$'s can be imbedded in this fixed $U(k)$, by using the idea of proof of [2, Theorem 27.16] we deduce that fibration 1 admits a cross-section iff the fibration
2. $S O(p k+1) / U(k) \xrightarrow{S O(p k) / U(k)} S^{p k}$; admits a cross-section. If $\frac{p k+1}{2}$ is odd the existence of a cross-section to fibration 2 implies the existence of a cross-section to the Stiefel fibration
3. $V_{p k+1,(p-2) k+1}=S O(p k+1) / S O(2 k) \xrightarrow{V_{p k,(p-2) k}=S O(p k) / S O(2 k)} S^{p k} \quad$ i.e. $a(p-2) k-$ frame on $S^{p k}$. Since $p k+1 \equiv 2(\bmod 4), S^{p k}$ admits at most a 1 -frame and thus $(p-2) k=1$ or $p=3, k=1$. Since S^{3} is parallelisable this is the only case when fibration 2 admits a cross-section when $\frac{p k+1}{2}$ is odd.

For $\frac{p k+1}{2} \leq 4$ is even. $\frac{p k+1}{2}=2,4, S^{p k}$ is parallelisable and fibration 2 admits a cross-section. For $\frac{p k+1}{2}>4$ and is even we deduce from [1, Proposition 4.3] and the discussion following it that fibration 2 admits a cross-section iff $L_{\frac{1}{2}((p-2) k+1)} /\left(\frac{p k+1}{2}\right)$.

We observe that $L_{n}>4 n$ for $n>4$. To see this, note that $L_{5}=2^{6}>4.5$ and for $k \geq 6, L_{k} \geq 2^{k-1}>4 k$.

For $\frac{(\bar{p}-2) k+1}{2}>4, L_{\frac{(p-2 k+1}{2}}-\left(\frac{p k+1}{2}\right)>4\left(\frac{(p-2) k+1}{2}\right)-\left(\frac{p k+1}{2}\right)=\frac{1}{2}(k(3 p-8)+3)>0$ i.e. $L_{\frac{(p-2) k+1}{2}}>\left(\frac{p k+1}{2}\right)$ so $L_{\frac{(p-2) k+1}{2}} \nmid\left(\frac{p k+1}{2}\right)$ and thus fibration 2 does not admit a crosssection. For $\frac{(p-2) k+1}{2} \leq 4$, we disregard the cases $\frac{(p-2) k+1}{2}=2,4$ since $\frac{p k+1}{2}$ is odd in either case. Let $\frac{k(p-2)+1}{2}=1, k=1, p=3, S^{k k}=S^{3}$ is parallelisable. $\frac{k(p-2)+1}{2}=3$, $k(p-2)=5$. Either $k=1$ and $p=7$ and $S^{p k}=S^{7}$ is parallelisable or $p=3, k=5$, $\frac{p k+1}{2}=8$ and $L_{3}=8 / 8$ and we obtain an almost 3 -structure on S^{15}.

Lemma 4.2. Let p / q. Then the existence of an almost q-structure on a vector-bundle implies the existence of an almost p-structure.

Corollary 4.3. The only almost p-structures on spheres for p even are the almostcomplex structures on S^{2} and S^{6}.

Proof. By Lemma 4.2 if a sphere admits an almost p-structure for p even then it admits an almost-complex structure and hence the sphere in question is S^{2} or S^{6}. Apart from the almost-complex structures on these spheres, S^{6} may admit an almost 6 -structure. It follows from the proof of Proposition 4.1 it is equivalent to the
cross-sectioning of the fibration $V_{7,5}=S O(7) / U(1) \xrightarrow{\left.V_{6,4}=S O(6) / U(1)\right)} S^{6}$; i.e. the existence of a 4 -frame on S^{6} which is impossible.

Lemma 4.4. An almost p-structure does not exist on $S^{p k}$ for p odd and k even.
Proof. The existence of an almost p-structure implies the existence of a frame on the even dimensional sphere $S^{p k}$ which is impossible.

We gather Proposition 4.1. Corollary 4.3 and Lemma 4.4. in a single Theorem.
Theorem 4.5. The only non-trivial almost p-structures that exist on spheres are the almost 2-(i.e. almost-complex) structures on S^{2} and S^{6} and the almost 3-structure on S^{15}.

5. Almost \boldsymbol{p}-structures on complex projective spaces.

Proposition 5.1. For $p>2$ the only almost p-structure on complex projective spaces is an almost 3 -structure on $P_{3}(\mathbb{C})$.

Proof. Suppose $P_{n-1}(\mathbb{C})$ admits an almost p-structure for $p>2$. Then $2(n-1)=$ $k p$. Let $\pi: S^{2 n-1} \rightarrow P_{n-1}(\mathbb{C})$ be the projection. Since $T\left(S^{2 n-1}\right)=\pi^{!}\left(T\left(P_{n-1}(\mathbb{C})\right)\right) \oplus 1$ the fibration

$$
S O(2 n) / \underbrace{U(k) \times \cdots \times U(k)}_{p / 2} \rightarrow S^{2 n-1}
$$

or the fibration

$$
S O(2 n) / S O(k) \times \underbrace{U(k) \times \cdots \times U(k)}_{\left(\frac{p-1}{2}\right)} \rightarrow S^{2 n-1}
$$

admits a cross-section depending on whether p is even or odd. By the proof of $[\mathbf{2}$, Theorem 27.16], in either case the fibration $S O(2 n) / U(k) \rightarrow S^{2 n-1}$ admits a crosssection and L_{n-k} / n by [1, Proposition 4.3] and discussion following it. As in the proof of Proposition 4.1, $L_{n-k}>4(n-k)>n$ for $n>k+4$ and $n>4$. Hence $L_{n-k} \nmid n$ for $n=\frac{1}{2} k p+1>k+4$ i.e. for 1 . $\left(\frac{1}{2} p-1\right) k>3$. This is always satisfied for $p>8$. For $p=8,\left(\frac{1}{2} p-1\right) k>3$ unless $k=1$ in which case $n=5, n-k=4$ and $L_{4} \nmid 5$.

For $p=7,1$ is satisfied unless $k=1 . k p=7$ is a contradiction since $k p$ is even. For $p=6,1$ is satisfied unless $k=1$ in which case $n=4$. The existence of an almost 6structure on $P_{3}(\mathbb{C})$ means that $\left(T\left(P_{3}(\mathbb{C})\right)\right.$ is the direct-sum of three $U(1)$-bundles $\xi_{i} .(i=$ $1,2,3) . T\left(P_{3}(\mathbb{C})\right) \oplus 1=4 \eta_{3}$ where η_{3} is the complex Hopf bundle over $P_{3}(\mathbb{C})$. Taking Pontryagin classes, $p\left(P_{3}(\mathbb{C})\right)=\left(1+y^{2}\right)^{4}$ where $y \in H^{2}\left(P_{3} ; \mathbb{Z}\right)$ is the generator. Suppose ξ_{i} has Pontryagin class $1+m_{i}^{2} y^{2}, m_{i} \in \mathbb{Z}$. Equating $\left(1+y^{2}\right)^{4}=\prod_{i=1}^{3}\left(1+m_{i}^{2} y^{2}\right)$. Hence $m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=4$ which has solution $m_{1}=2$ and $m_{2}=m_{3}=0$. i.e. ξ_{2} and ξ_{3} are trivial. This implies the existence of a frame on $P_{3}(\mathbb{C})$ which is impossible.

For $p=5$ again we consider $k=1$ (otherwise 1 is satisfied). We disregard this case since $k p$ should be even.

For $p=4$ and $k=1,2$. Let $k=2, n=5, L_{3}=8 \nmid 5$. Let $k=1, n=3 L_{2}=2 \nmid 3$. For $p=3$ since $p k$ is even $k=2$, 4 . Let $k=4, n=7, L_{3} \nmid 7 k=2, n=4$. Let $\tau: P_{3}(\mathbb{C}) \rightarrow P_{1}(Q)$ be the projection onto the one dimensional quaternionic projective space. Let J be the quaternionic structure on \mathbb{C}^{4} which anti-commutes with the complex structure. The assignment $x \mapsto J(x)\left(x \in S^{7}\right)$ defines a unit vector-field on $\pi^{!}\left(T\left(P_{3}(\mathbb{C})\right)\right)$ and passes
to the quotient and generates a line sub-bundle ξ of $T\left(P_{3}(\mathbb{C})\right.$) whose orthogonal complement is $\tau!\left(T\left(P_{1}(\mathbb{Q})\right)\right)$. Hence $\tau!\left(T\left(P_{1}(\mathbb{Q})\right)\right)$ admits an almost-complex structure and $T\left(P_{3}(\mathbb{C})\right)=\xi \oplus \tau^{!}\left(T\left(P_{1}(\mathbb{Q})\right)\right)$ an almost 3-structure.

REFERENCES

1. I. Dibag, Almost complex substructures on the sphere, Proc. Amer. Math. Soc. 61 (2) (1976), 361-366.
2. N. E. Steenrod, The topology of fibre bundles (Princeton University Press, N.J., 1951).
