ON THE MEASURE OF THE ONE-SKELETON OF THE SUM OF CONVEX COMPACT SETS

LEONI DALLA

(Received 17 June 1985; revised 17 January 1986)

Communicated by H. Lausch

Abstract

For any two compact convex sets in a Euclidean space, the relation between the volume of the sum of the two sets and the volume of each of them is given by the Brünn-Minkowski inequality. In this note we prove an analogous relation for the one-dimensional Hausdorff measure of the one-skeleton of the above sets. Also, some counterexamples are given which show that the above results are the best possible in some special cases.

1980 Mathematics subject classification (Amer. Math. Soc.): 52 A 20.

1. Introduction

When K is a convex compact subset of a Euclidean space E^d , then for $\nu = 0, 1, ..., d$, the ν -skeleton skel, K of K consists of those points of K which are not centres of $(\nu + 1)$ -dimensional balls contained in K.

It is well known (see Larman and Rogers [4]) that the ν -skeleton of a compact convex set in E^d is a measurable set with respect to the ν -dimensional Hausdorff measure, denoted by $\mathscr{H}^{\nu}(\cdot)$. We define $n_{\nu}(K) = \mathscr{H}^{\nu}(\operatorname{skel}_{\nu}K)$. If K_0 and K_1 are compact convex subsets of E^d , then it is known that the dth root of $n_d(\cdot)$ is a concave function, i.e. for any $0 \le t \le 1$, if $K_t = (1-t)K_0 + tK_1$, then

$$(n_d(K_t))^{1/d} \ge (1-t)(n_d(K_0))^{1/d} + t(n_d(K_1))^{1/d}$$

for any K_0 , K_1 . This inequality is known as the Brünn-Minkowski inequality.

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

In this note we prove that $n_1(\cdot)$ is a concave function, i.e.

$$n_1(K_t) \geqslant (1-t)n_1(K_0) + tn_1(K_1)$$

for any compact convex sets K_0 , K_1 of E^d .

In the course of the proof of the above property, we establish an inequality between $\mathcal{H}^s(\text{ext }K_t)$ and $\mathcal{H}^s(\text{ext }K_i)$, i=0,1, for any $s \ge 0$, where ext K denotes the set of extreme points of K.

We also prove, constructing appropriate counterexamples in E^3 , that the two inequalities cannot be reversed.

2. The results

We quote first a lemma which is to be used in the proofs that follow.

LEMMA 2.1. Let K_1 , K_2 be convex, compact subsets of E^d and let $K = \lambda K_1 + \mu K_2$, $\lambda, \mu \geq 0$, be a Minkowski linear combination of K_1 and K_2 , where λ, μ are fixed but arbitrary. Then the following hold.

- (i) For any point e belonging to the set ext K of the extreme points of K, there exist uniquely defined points e_1 , e_2 , where $e_i \in \text{ext } K_i$, i = 1, 2, such that $e = \lambda e_1 + \mu e_2$.
- (ii) For any point $e_1 \in \text{ext } K_1$, there exists a point $e_2 \in \text{ext } K_2$ such that $(\lambda e_1 + \mu e_2) \in \text{ext } K$. A similar property holds for the extreme points of K_2 .

PROOF. If either $\lambda = 0$ or $\mu = 0$, the results are obvious. Suppose now that λ , $\mu \neq 0$. We consider part (i). Let $e \in \text{ext } K$, with $e = \lambda e_1 + \mu e_2$ for some $e_i \in K_i$, i = 1, 2. If $e_1 \notin \text{ext } K_1$, then $e_1 = (x_1 + y_1)/2$ for some $x_1, y_1 \in K_1$ with $x_1 \neq y_1$, and so $e = (\lambda x_1 + \mu e_2)/2 + (\lambda y_1 + \mu e_2)/2$. But $\lambda x_1 + \mu e_2$ and $\lambda y_1 + \mu e_2$ are distinct points of K, which is a contradiction, as $e \in \text{ext } K$. Hence $e_1 \in \text{ext } K_1$. In a similar way $e_2 \in \text{ext } K_2$.

Suppose now that there exist another pair e_1', e_2' , where $e_i' \in \text{ext } K_i$, = 1,2, such that $e = \lambda e_1 + \mu e_2 = \lambda e_1' + \mu e_2'$. Then $e = \lambda (e_1 + e_1')/2 + \mu (e_2 + e_2')/2$, which implies that $(e_i + e_i')/2 \in \text{ext } K_i$, i = 1, 2. This, in turn, implies that $e_i = e_i'$, i = 1, 2, which proves part (i).

For part (ii), consider $e_1 \in \text{ext } K_1$. If u is a unit vector, let $K_u^{(1)}$ denote the intersection of K_1 with its support hyperplane with outer normal u. If $U = (u_1, \ldots, u_k)$ is a k-frame of orthogonal unit vectors, then $K_U^{(1)}$ is defined recursively by $K_{(u_1, \ldots, u_k)}^{(1)} = (K_{(u_1, \ldots, u_{k-1})})_{u_k}$.

Now for the point e_1 there exists a k-frame $U = (u_1, \dots, u_k)$, $1 \le k \le d$, such that $\{e_1\} = K_U^{(1)}$. If $K_U^{(2)}$, K_U are the corresponding sets for K_2 and K, then $K_U = \lambda K_U^{(1)} + \mu K_U^{(2)}$ (see Eggleston [3, Theorem 38]). Hence $K_U = \lambda \{e_1\} + \mu K_U^{(2)}$, and from part (i) we have

$$\operatorname{ext} K_U \subseteq \lambda \{e_1\} + \mu \operatorname{ext} K_U^{(2)}.$$

Consider $z \in \text{ext } K_U \subseteq \text{ext } K$. Then $z = \lambda e_1 + \mu e_2$ for some $e_2 \in \text{ext } K_U^{(2)} \subseteq \text{ext } K_2$. Therefore, for $e_1 \in \text{ext } K_1$, there exists $e_2 \in \text{ext } K_2$ with $\lambda e_1 + \mu e_2 \in \text{ext } K$. This concludes the proof of (ii).

Now we quote and prove the following propositions

PROPOSITION 2.1. Let K_1 , K_2 and K be defined as in Lemma 2.1. Then $\mathcal{H}^s(\text{ext }K) \geqslant \max\{\lambda^s \mathcal{H}^s(\text{ext }K_1), \mu^s \mathcal{H}^s(\text{ext }K_2)\}$ for any non-negative number s.

PROOF. As $\mathscr{H}^s(\operatorname{ext}(\lambda K_1)) = \lambda^s \mathscr{H}^s(\operatorname{ext} K_1)$, to prove the inequality, it is sufficient to prove it for $\lambda = \mu = 1$. If $e \in \operatorname{ext} K$, then the cap-neighbourhoods of e form a basis for the neighborhoods of e (see G. Choquet [2], page 107). Therefore $\mathscr{H}^s(\operatorname{ext} K) = \sup_{e>0} \inf\{\sum_{n=1}^{\infty} d^s(C_n) : C_n, \quad n=1,2,\ldots, \quad \text{are caps; ext } K \subseteq \bigcup_{n=1}^{\infty} C_n; \ d(C_n) < \varepsilon\}.$

Let C_n , $n=1,2,\ldots$, be a sequence of caps of K covering ext K, where $C_n=\{x\in K: a_n-t_n\leqslant x\cdot u_n\leqslant a_n\}$, where $a_n=\sup_{x\in K}x\cdot u_n$, and where $x\cdot u_n$ denotes the inner-product of x with a unit vector u_n . We define $C_n^{(i)}=\{x\in K_i:b_n^{(i)}-t_n\leqslant x\cdot u_n\leqslant b_n^{(i)}\}$, i=1,2, where $b_n^{(i)}=\sup_{x\in K_i}x\cdot u_n$, i=1,2. Then $a_n=b_n^{(1)}+b_n^{(2)}$. We shall prove that ext $K_i\subseteq \bigcup_{n=1}^\infty C_n^{(i)}$, i=1,2. Let $e_1\in \operatorname{ext} K_1$. Then by part (ii) of Lemma 2.1 there exists $e_2\in \operatorname{ext} K_2$ such that $(e_1+e_2)\in \operatorname{ext} K$. Let $e_1+e_2\in C_n$ for some $n\in N$. Then $e_i\in C_n^{(i)}$, i=1,2. For, if not, then $e_1\notin C_n^{(1)}$, say. Then $e_1\cdot u_n< b_n^{(1)}-t_n$, so $(e_1+e_2)\cdot u_n<(b_n^{(1)}-t_n)+b_n^{(2)}=a_n-t_n$. This is impossible since $e_1+e_2\in C_n$. Hence, for any $e_1\in \operatorname{ext} K_1$, there exists a cap $C_n^{(1)}$ such that $e_1\in C_n^{(1)}$, and so ext $K_1\subseteq \bigcup_{n=1}^\infty C_n$. We also have $d(C_n^{(i)})\leqslant d(C_n)$, i=1,2, $n\in \mathbb{N}$. Indeed, for $g_2\in K_2$ with $g_2\cdot u_n=b_n^{(2)}$, we have $C_n^{(1)}+g_2\subseteq C_n$, and so $d(C_n^{(1)})=d(C_n^{(1)}+g_2)\leqslant d(C_n)$. Then $\inf\{\sum_{n=1}^\infty d(S_n): \operatorname{ext} K_i\subseteq \bigcup_{n=1}^\infty S_n,\ d(S_n)\leqslant \varepsilon\}\leqslant \inf\{\sum_{n=1}^\infty d^s(C_n): \operatorname{ext} K\subseteq \bigcup_{n=1}^\infty C_n,\ d(C_n)<\varepsilon,\ C_n \operatorname{cap},\ n\in \mathbb{N}\}$ for any $\varepsilon>0$. Therefore $\mathscr{H}^s(\operatorname{ext} K_i)\leqslant \mathscr{H}^s(\operatorname{ext} K)$, i=1,2. This concludes the proof of the proposition.

We note that in general no kind of reverse inequality holds.

More precisely, we show, by constructing a counterexample, that there does not exist a positive constant M such that the inequality

$$\mathscr{H}^1(\operatorname{ext} K) \leq M(\max\{\mathscr{H}^1(\operatorname{ext} K_1), \mathscr{H}^1(\operatorname{ext} K_2)\})$$

holds for any compact convex sets K_1 , K_2 in E^3 . Indeed, take $K_1 = \{(x,0,z) \in \mathbb{R}^3 : x \ge 0, \ z \ge 0, \ (x^2 + z^2)^{1/2} \le 1\}$ and $K_2 = \{(0,y,z) \in \mathbb{R}^3 : y \ge 0, \ z \ge 0, \ (y^2 + z^2)^{1/2} \le 1\}$. Then $\mathcal{H}^1(\text{ext } K_1) = \mathcal{H}^1(\text{ext } K_2) = \pi/2 < +\infty$. The sum of K_1 and K_2 is the set $K = \{(x,y,z) \in \mathbb{R}^3 : 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le (1-x^2)^{1/2} + (1-y^2)^{1/2}\}$, and ext $K = \{(x,y,z) \in \mathbb{R}^3 : 0 \le x \le 1, \ 0 \le y \le 1, \ z = (1-x^2)^{1/2} + (1-y^2)^{1/2}\} \cup \{(0,0,0)\} \cup \{(1,0,0)\} \cup \{(0,1,0)\}$. Therefore $\mathcal{H}^2(\text{ext } K) > 0$. But then $\mathcal{H}^1(\text{ext } K) = +\infty$, and in fact ext K is not σ -finite with respect to \mathcal{H}^1 .

PROPOSITION 2.2. Let K_1 , K_2 and K be as in Lemma 2.1. Then $\mathcal{H}^1(\operatorname{skel}_1 K) \ge \lambda \mathcal{H}^1(\operatorname{skel}_1 K_1) + \mu \mathcal{H}^1(\operatorname{skel}_1 K_2)$.

PROOF. As in Proposition 2.1, it is sufficient to prove the inequality for $\lambda = \mu = 1$. Then $K = K_1 + K_2$. If $\mathscr{H}^1(\operatorname{skel}_1 K) = +\infty$, we have nothing to prove.

Assume now that $\mathcal{H}^1(\operatorname{skel}_1 K) < \infty$. It is known, (see Burton [4, Theorems 1 and 3]), that $\operatorname{skel}_1 K$ is the union of ext K with countably many exposed edges F_n $(n = 1, 2, \ldots)$, and that $\mathcal{H}^1(\operatorname{ext} K) = 0$. Hence $\mathcal{H}^1(\operatorname{skel}_1 K) = \sum_{n=1}^{\infty} \mathcal{H}^1(F_n)$ and, by Proposition 2.1, $\mathcal{H}^1(\operatorname{ext} K_i) = 0$, i = 1, 2.

Now $F_n = K \cap H = K_1 \cap H_1 + K_2 \cap H_2$, where H is the support hyperplane of K at F_n , and where H_1 , H_2 are the corresponding suport hyperplanes of K_1 , K_2 . As dim $(F_n) = 1$, we conclude that $F_n = l_1 + l_2$, where l_1 and l_2 are parallel line segments which are edges of K_1 and K_2 ; or $F_n = l_1 + \{e_2\}$, where l_1 is an edge of K_1 and e_2 an exposed point of K_2 ; or $F_n = \{e_1\} + l_2$, where l_2 is an edge of K_2 and e_1 an exposed point of K_1 . The above expression is uniquely determined. Suppose, for example, that $F_n = l_1 + l_2 = l'_1 + \{e'_2\}$, where l_1 , l'_1 are edges of K_1 , where l_2 is an edge of K_2 , and where e'_2 is an exposed point of K_2 . Then $F_n = (l_1 + l'_1)/2 + (l_2 + \{e'_2\})/2$, which implies that $\frac{1}{2}(l_1 + l'_1)$ is an edge of K_1 ; but since $(l_1 + l'_1)/2 \subset \text{conv}(l_1, l'_1)$, we have $l_1 = l'_1$. Therefore, $F_n = l_1 + l_2 = l_1 + \{e'_2\}$, and hence $\{e'_2\} = l_2$. Similar arguments apply to the other possible expressions for F_n .

Let l_1 be an edge of K_1 . We denote by $\operatorname{pr}(\cdot)$ the projection onto E^{d-1} which maps in the direction of l_1 . Then $\operatorname{pr}(K) = \operatorname{pr}(K_1) + \operatorname{pr}(K_2)$, and $\operatorname{pr}(l_1)$ is an extreme point of $\operatorname{pr}(K_1)$. Then, from Proposition 2.1, there exists an extreme point, say, e_2 , of $\operatorname{pr}(K_2)$ such that $\operatorname{pr}(l_1) + e_2 = e$, where $e \in \operatorname{ext}\operatorname{pr}(K)$. Then $\operatorname{pr}^{-1}(e) \cap K = l_1 + \operatorname{pr}^{-1}(e_2) \cap K_2$. From the last relation and from the fact that e is an extreme point of $\operatorname{pr}(K)$, we conclude that $\operatorname{pr}^{-1}(e) \cap K$ must be an edge of K, and that $\operatorname{pr}^{-1}(e_2) \cap K_2$ must be an extreme point or an edge of K_2 . Hence, for each edge l_1 of l_1 , there exists an extreme point l_2 or an edge l_2 of l_2 such that either $l_1 + l_2$ or $l_1 + l_2$ is an edge of l_2 . From the above we conclude that a given edge l_2 of l_2 or l_2 is an edge of l_3 . So the edges of l_4 and l_4 are countable, and skel l_4 is l_4 in l_4 or l_4 in l_4 in l_4 or l_4 in l_4 in l_4 or l_4 in l_4

$$\mathcal{H}^{1}(\operatorname{skel}_{1} K) \geq \sum_{n=1}^{\infty} \mathcal{H}^{1}(l_{n}^{1}) + \sum_{n=1}^{\infty} \mathcal{H}^{1}(l_{n}^{2}) = \mathcal{H}^{1}(\operatorname{skel}_{1} K_{1}) + \mathcal{H}^{1}(\operatorname{skel}_{1} K_{2}),$$

as $\mathcal{H}^1(\text{ext } K_i) = 0$, i = 1, 2. This concludes the proof of the proposition.

An immediate consequence of Proposition 2.2 is the following corollary, whose proof is obvious.

COROLLARY 2.1. The function $n_1(\cdot)$ is a concave function.

In the same way as in Proposition 2.1, we assert that there does not exist a positive number M such that $\mathcal{H}^1(\operatorname{skel}_1 K) \leq M[\lambda \mathcal{H}^1(\operatorname{skel}_1 K_1) + \mu \mathcal{H}^1(\operatorname{skel}_1 K_2)]$ for any compact convex sets K_1 , K_2 in E^3 . To show this, we construct two convex compact sets A_1 and A_2 in E^3 such that $\mathcal{H}^1(\operatorname{skel}_1 A_i) < + \infty$, i = 1, 2, while $\mathcal{H}^1(\operatorname{skel}_1(A_1 + A_2)) = + \infty$. Let $u_1(0, 2, 0)$, $u_2 = (0, -2, 0)$, $\beta_0 = (2, 2, 0)$, $\gamma_0 = (2, -2, 0)$, $\alpha_0 = (2, 0, 1)$ and $\delta_0 = (0, 0, 1)$. Define K_0 to be convex hull of these points and let $l = [\alpha_0, \delta_0]$. We consider a plane H_1 such that $(0, 0, 0) \in H_1^+$, $\alpha_0 \in H_1^-$, and $K_0 \cap H_1$ is an isosceles triangle $T_1 = \operatorname{conv}(\alpha_1, \beta_1, \gamma_1)$ with $|\alpha_1 - \beta_1| = |\alpha_1 - \gamma_1|$, with diameter $(T_1) = 2^{-1}$, with $\alpha_1 \in l$, and with the line segment $[\beta_1, \gamma_1]$ parallel to $[\beta_0, \gamma_0]$. Define $K_1 = H_1^+ \cap K_0$. We now proceed inductively. Assuming that we have constructed K_n $(n \ge 1)$, we choose the plane H_{n+1} in such a way that $(0, 0, 0) \in H_{n+1}^+$, that $\alpha_n \in H_{n+1}^-$, and that $K_n \cap H_{n+1}$ is an isosceles triangle $T_{n+1} = \operatorname{conv}(\alpha_{n+1}, \beta_{n+1}, \gamma_{n+1})$ with $|\alpha_{n+1} - \beta_{n+1}| = |\alpha_{n+1} - \gamma_{n+1}|$, with diameter $(T_{n+1}) = 2^{-(n+1)}$, with $\alpha_{n+1} \in l$, and with the line segment $[\beta_{n+1}, \gamma_{n+1}]$ parallel to $[\beta_0, \gamma_0]$. Then $K_{n+1} = H_{n+1}^+ \cap K_n$.

Now let $A_1 = \lim_{n \to \infty} K_n = \bigcap_{n=0}^{\infty} K_n = K_0 \cap \bigcap_{n=1}^{\infty} H_n^+$. Then $A_1 = \operatorname{clconv}\{\{u_1\} \cup \{u_2\} \cup \{\delta_0\} \cup \bigcup_{n=0}^{\infty} \{\beta_n\} \cup \bigcup_{n=0}^{\infty} \{\gamma_n\}\}$, and $\operatorname{skel}_1 A_1 = [u_1, u_2] \cup [u_1, \delta_0] \cup [u_2, \delta_0] \cup [u_1, \beta_0] \cup [u_2, \gamma_0] \cup \bigcup_{n=0}^{\infty} [\beta_n, \gamma_n] \cup \bigcup_{n=0}^{\infty} [\beta_n, \beta_{n+1}] \cup \bigcup_{n=0}^{\infty} [\gamma_n, \gamma_{n+1}] \cup [\delta_0, \delta_1]$, where $\delta_1 = \lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \gamma_n$. Then $\mathcal{H}^1(\operatorname{skel}_1 A_1) \leq \mathcal{H}^1(\operatorname{skel}_1 K_0) + \sum_{n=1}^{\infty} \mathcal{H}^1([\beta_n, \gamma_n]) \leq \mathcal{H}^1(\operatorname{skel}_1 K_0) + \sum_{n=1}^{\infty} 2^{-n} < +\infty$. On the other hand, we define A_2 to be the orthogonal parallelogram with vertices $u_1, u_2, \beta_0, \gamma_0, u_1 + \delta_0, u_1 + \beta_0, \beta_0 + \delta_0$ and $\gamma_0 + \delta_0$. Obviously $\mathcal{H}^1(\operatorname{skel}_1 A_2) < +\infty$. But the sum $A_1 + A_2$ has in its 1-skeleton countably many edges with length greater than 4. Hence $\mathcal{H}^1(\operatorname{skel}_1(A_1 + A_2)) = +\infty$. From this the assertion follows.

References

- [1] G. R. Burton, The measure of the s-skeleton of a convex body, *Mathematica* 26 (1979), 290-301.
- [2] G. Choquet, Lectures in Analysis, Vol. II (W. A. Benjamin, New York, Amsterdam, 1969).
- [3] H. G. Eggleston, Convexity (Cambridge Univ. Press, 1958).
- [4] D. G. Larman and C. A. Rogers, The finite dimensional skeleton of a compact convex set, Bull. London Math. Soc. 5 (1973), 145-153.

Department of Mathematics University of Athens Panepistemiopolis 157 81 Athens Greece