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SUMMARY
Genetic variation contained in a multigene family was theoretically

investigated from the standpoint of population genetics. Unequal cross-
over is assumed to be responsible for the coincidental evolution of mutant
genes in a chromosome. When the allowed latitude of the duplicated or
deleted number of gene units at unequal crossover is 10 ~ 15% of the
total gene number in a chromosome, the arrangement of gene lineage in
a chromosome is shown to be roughly random. The equilibrium properties
of genetic variation or the probability of identity of two genes within a
family (clonality) were studied under mutation, unequal crossover, inter-
chromosomal crossover and sampling of gametes. The clonality of a multi-
gene family within a chromosome is shown to be approximately

c a

in which a = 2&/TI2 with k = effective number of cycles of unequal
crossover and with n = number of gene units in a family, v is the mutation
rate per gene unit, fi is the rate of interchromosomal crossover per
family and Ne is the effective size of the population, all measured by the
rate per generation. The clonality of a gene family between two different
chromosomes becomes approximately Gx = C0/{l + 4Jfev). Some models
of natural selection which lowers the clonality or increases genetic varia-
tion in a multigene family were investigated. It was shown that natural
selection may be quite effective in increasing genetic variation in a gene
family.

1. INTRODUCTION

The neo-Darwinism is mostly based on the theory of adaptive gene substitution
in the population. Recent advances on multigene families such as immunoglobulin
gene family (Hood, Campbell & Elgin, 1975, for review) suggest that the theory
of individual gene substitution is not enough for understanding the mechanism
of progressive evolution at the molecular level. The two remarkable characteris-
tics, i.e. the contraction-expansion of the gene number in a family and the coinci-
dental evolution should now be seriously considered for the theoretical study
of the evolution of higher organisms.

I have attempted to clarify the nature of genetic variation contained in the
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14 TOMOKO OHTA

gene family by using the model of unequal crossing-over for the coincidental
evolution (Ohta, 1977). I assumed that the gene number in a chromosome is
constant and examined the effects of mutation, crossing-over and selection. I have
further investigated the case where the gene number in a chromosome is a random
variable by introducing a model of directional selection to increase the genetic
information in a gene family (Ohta, 1978). In this report I shall present the more
general and detailed analyses of the evolution and variation of multigene families,
although concentrating on the situation where the number of gene units in a
family is more or less constant.

2. CROSSOVER FIXATION TIME
The process of coincidental evolution is considered to be analogous to the

mutant dynamics in population genetics, i.e. the number of a gene lineage con-
tracts or expands within a chromosome just like the frequency of a mutant fluc-
tuates in finite populations by random drift (Smith, 1974; Hood et al. 1975;
Tartof, 1975). In particular, the model of unequal crossover of the coincidental
evolution may be treated by the diffusion model of Kimura (1964) (Ohta, 1976).
In this model, the time until fixation of a gene lineage in a family of a chromosome
is called the crossover fixation time (Smith, 1974). As a first step for analysing
the complex process of coincidental evolution, the single chromosomal family is
considered. Even under this simplified situation, the additional assumption is
necessary for an analytical treatment; I assumed that the duplication or deletion
by unequal crossover occurs by one gene unit and that the duplication and deletion
occurs alternately so that the number of units in a chromosome is kept constant,
7i. Two successive crossovers (duplication and deletion of one unit) is called one
cycle of the process. Then it has been shown that one cycle of unequal crossover
corresponds to <LNJn2 generations of random sampling drift in population genetics
in which Ne is the effective population size (Ohta, 1976; Perelson and Bell, 1977).

In this section, I shall present some analyses for the cases in which the number
of units of duplication or deletion is not restricted to one but is a random variable,
by introducing the results of extensive Monte Carlo experiments.

Let n be the number of gene units in a chromosome but it now expands or
contracts following a certain probability function by unequal crossover. Let us
consider a following particular case due to Smith (1974). In this model we assign
the allowed latitude {p) so that n changes within the interval (n0—pn0, no+pno)
in which n0 is the initial number of units. The number of units after an unequal
crossover is determined completely randomly in this interval by using a uniform
random number but if it happens to be the same as the previous value it is dis-
carded and the process is repeated. Then the mean change of n is zero but the mean
of the absolute value of the change of n is average distance between two randomly
chosen units from linearly arranged (2pnQ+l) units, therefore the mean of the
absolute value of the change of n is

m=f (np + l). (1)
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The symbol n now represents average value which is equal to n0. As I have argued
in my previous report (Ohta, 1976), if the arrangement of the gene lineages is
random in the chromosome, one crossover should correspond to ra/2 cycles of the
previous model. In such a case, the crossover fixation time (<x) can be approxi-
mately expressed by the following formula in terms of the number of crossovers:

TO np + 1 p

since tx is about n2 cycles in my previous model (Ohta, 1976). If the gene lineages
are more clustered than random arrangement, one would expect that the coin-
cidental evolution is more rapid than the above estimate suggests due to the
correlated change of gene frequencies. On the other hand, if the gene lineages are
more dispersed than random arrangement, the coincidental evolution is expected
to be slower than the prediction by the negative correlation.

I have carried out an extensive Monte Carlo experiment to examine the above
relationship. Generally it is expected that if the allowed latitude is small, the
gene lineages are more clustered and vice versa. This prediction is verified in the
simulation studies as given below.

The experiment was done with a starting chromosome made up of linearly
arranged 1 ~ nQ numbers, each number representing the gene unit. At the unequal
crossover a uniform random number determines the number of units of the new
chromosome in the allowed interval (no—pno, no+pno). If the resulting number
of units is the same as the previous value, it is discarded and the process is re-
peated. The two sister chromatids are arranged so that the new chromosome has
a specified number of units. Another random number determines the point of
crossover within the overlapping region of the chromatids. The unequal crossover
was repeated until the entire chromosome was made up of a single gene lineage
(number in this case).

Three levels of n and four levels of the allowed latitude (p) (total of 12 cases)
have been done, with 15 ~ 48 repetitions. Fig. 1 shows the result. The abscissa is
the allowed latitude in percentage of the number of units and the ordinate is the
number of crossovers until fixation of a single gene unit in the chromosome, both
in logarithmic scale. In the figure the expected crossover fixation time by the
formula (2) is given by the curve as functions of the allowed latitude and the
observed values, by the white circles for the case of n = 160, by the crosses for
the case of n = 80 and by the black dots for the case of n = 40. It can be predicted
from the figure that the random arrangement of gene lineages may be obtained
when the allowed latitude is 10 ~ 15%. This result is consistent with that of
Smith (1974), who obtained empirically by Monte Carlo experiments that the
crossover fixation time is roughly 20 times of the number of units, since tx is 20n
when p is roughly 0-15 from formula (2).

In order to strengthen further the analogy between the unequal crossover and
random genetic drift, the variance of the crossover fixation time has been studied.
From the theory of Kimura & Ohta (1969a, 6), the coefficient of variation of
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the time until fixation of a neutral mutant in a finite population is a constant,
0-538. The same theory should apply in the present case (Ohta, 1976). Table 1
shows the observed coefficient of variation of the crossover fixation time in
simulations. The figures in parentheses show the number of repetitions in each
case. Prom the table it can be seen that the observed coefficient agrees with the
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i

2-5 10 20
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Fig. 1. The crossover fixation time in terms of the number of crossovers as functions
of the allowed latitude. The curves show the theoretical fixation time (formula 2)
and the observed values are shown by the white circles (n = 160), by the crosses
(n = 80) and by the black dots (n = 40).

Table 1. The observed coefficient of variation of the crossover
fixation time by Monte Carlo experiments

(The figures in parentheses are the number of repetitions of the experiments.)

Allowed latitude (%)

n

40

80

160

2-5

0-50
(22)
0-47
(20)
0-35
(17)

5

0-57
(29)
0-54
(34)
0-53
(15)

10

0-54
(48)
0-51
(28)
0-67
(16)

20

0-38
(20)
0-47
(17)
0-51
(24)

predicted value irrespective of the magnitude of the allowed latitude. This result
implies that although the significant correlation may appear in the arrangement of
gene lineages in the chromosome, the theory of random gene frequency drift
roughly applies to the contraction-expansion of gene lineages in the chromosome
by unequal crossover. This is a very convenient analogy since one can use the
established theories in population genetics for analysing the process of unequal
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crossover. For example, the genetic variation contained in a gene family may be
treated as that in finite Mendelian populations (Ohta, 1977). Here the difficulty
arises when many chromosomal lines are considered and the ordinary inter-
chromosomal crossing-over becomes significant. In the next section, I shall
present an analysis which takes interchromosomal exchanges into account.

3. GENETIC VARIATION IN MULTIGENE FAMILIES AT EQUILIBRIUM
(i) Basic theory

Let us consider a Mendelian population with the effective size Ne. In each
generation, mutation and sister chromatids unequal crossover occur in the multi-
gene family of each chromosome and the ordinary interchromosomal crossover and
sampling of gametes follow. Mutation is the factor which increases genetic varia-
tion in the gene family whereas unequal crossover decreases it. The interchromo-
somal exchange and random sampling control the genetic variation among the
chromosomes as well as that within the chromosome. We shall ask the question
'what is the nature of genetic variation when all these factors balance each
other?'

Let n be the number of gene units of a family in a chromosome as before and let
n be constant throughout. Let v be the mutation rate per gene unit per generation
and we assume that all mutations are unique and detectable. Let k be the effective
number of cycles of unequal crossover per family and let /? be the rate of inter-
chromosomal crossover per family per generation.

We measure the genetic variation by the clonality (C) defined by Smith (1974),
which is equivalent to the homozygosity in population genetics. The clonality
of a family within a chromosome is expressed as

Ci = S A.u (3)

in which the subscript i indicates the ith chromosome, xitl is the frequency of the
Ith. gene lineage in the ith chromosome and summation is over all lineages. By
the similar way, the clonality of a family between the two chromosomes may be
defined

Oii = 1Lxitlxul, (4)

in which the subscript ij indicates the clonality of a family between the ith and the
jth chromosomes. Note G^ is equivalent to the gene identity between the two
populations in population genetics (cf. Nei, 1975).

Let us denote the expectation of Ct by Co and that of Ci} by Cv We shall for-

mulate the rate of change of the vector C = L ° by mutation, sampling and
crossover. First, the mutation decreases the value of Co and C1 by the fraction,
2v, each generation, therefore we have

C = MC = (l-2v)C. (5)
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By sampling, Co does not change whereas Cx changes by inbreeding due to finite
population size.

C = SC, (6)
where

S =

Next, by intrachromosomal crossover, C± does not change but Co increases by
the amount 2fc(l-C0)/»2 (Ohta, 1976). Thus, we have

C = KC + A, (7)
where

0"

and

_ri-a

" L o

- c o -
with a = 2k{n*.

Finally, the change of C by interchromosomal crossover is evaluated. For
the analysis I assume that the gene lineages are arranged randomly along the
chromosome, so that the clonality does not depend on the distance between the
units on the chromosome. This condition is satisfied when the allowed latitude is
about 10-15 % of the total number of the gene family as shown in the previous
section and may not be generally met. However, this assumption greatly facilitates
the analysis. Now consider that one crossover takes place between the ith and the
j th chromosome within the region of the family and that the crossover point

1-p

X
p 1-p

Fig. 2. Diagram illustrating the interchromosomal crossover.

divides the gene family into two parts, p and 1 — p as in the Fig. 2. Then after the
crossover, Ct and Cy change following the formulas:

G- = p*Oi + (1 -pf C} + 2p{l -p) Ci},
O'n = &2 + (l-p)2}Cij+p(l-p)Ci+p(l-p)cA (8)

C,' = (1 -P? Ct +p*Cj + 2p(l -p) Ciy

In order to take expectation of the formula (8), I assume the uniform distribution
for p. One must further consider in taking the expectation that, by one crossover,
Ci and Cj change according to the formula (8) (two chromosomes out of 2Ne),
whereas for Cip only one combination, ij, out of 2Ne(2Ne-1)/2 possible combina-
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tions follows this formula. In other words, the amount of change of Gx should be
multiplied by l/(2Ne—l) as compared with that of CQ in the formula (8) in taking
the expectation.

Actually the rate of interchromosomal exchange per generation within the
region of a multigene family is very small. Let fi be this rate and we take the
expectation of the formula (8). We have

C = RC, (9)
where

R = P

P
3

P
l3{2Ne-l)

The total change of C in one generation may be obtained by multiplying the
matrices, M, S, K and R and, in general, the following equation holds:

C = GC + T (10)

where G is the product of M, S, K and R and T is the product of A and some of
M, S and R, depending on the model. If the sequence of these four events differs,
the resulting equation is slightly different. For example, assume the sequence
of events: sampling -> mutation ->• sister-chromatids crossover -»• interchromo-
somal crossover (case 1). Then the equation becomes

C = (11)
where

= RKMS = ( l -

(l_0 (!_«, + .£

and

x = RA =
«P

L3(2ivr-i)J
On the other hand, if the sequence is sister-chromatids crossover -»• interchromo-
somal crossover -» mutation -»• sampling (case 2), the equation becomes

C = G2C + T2, (12)

where

G2 = SMRK = (l-2t>)
(1- ( • - 9 P

3
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and

T2 = SMRA= ( l - 2

At equilibrium, C = C and one can readily get the equilibrium value of clonality.
If we assume that all parameters, /?/3, a, 2v and l/2Ne < 1, the solution is simpli-
fied. It becomes both in cases 1 and 2

/ ( i r 3 b )
and

It is interesting to note that 6X is obtained by multiplying 00 by a factor 1/(1 +
4Nev), which is the expected homozygosity if one gene unit of the present model
exists as a single and independent locus in the population (Kimura & Crow, 1964).
Also, the equilibrium value of Co is reduced by the interchromosomal crossover
by the product of its rate divided by three (/?/3) and 4J^evj(\ + ANev), the latter
being the expected heterozygosity at the single locus.

(ii) Some models of natural selection

In this section, two models of natural selection which lowers the clonality are
presented. The first one has been briefly considered in my previous report (Ohta,
1977).

(a) Model I

Let s be the selective disadvantage at Ct — 1 such that the fitness of the family
in the ith. chromosome (P )̂ is equal to

Wi=l-aCt. (14)

For simplicity's sake, the additive effect based on clonality is assumed. We shall
investigate how the equilibrium property of the mean clonality, Co, is influenced
by this kind of selection. We first determine the amount of change of O0 by selec-
tion. CQ may be expressed as

Co = S Ct xit (15)
i

in which x{ is the frequency of chromosomes with Ci in the population. After
selection, xt changes by the amount

where W is the mean fitness of the population and is equal to 1 — sC0 (cf. Wright,
1969; Crow & Kimura, 1970). Therefore the amount of change of Go becomes

AC0 = S CKA*,) = ^ S , (17)

https://doi.org/10.1017/S0016672300017778 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300017778


Genetic variation in multigene families 21

where o%f is the variance of clonality among the chromosomes in the population.
Note here that the above formulation is analogous to that of the fundamental
theorem of natural selection due to Fisher (1930). Also note that the mean
clonality decreases by an amount SCTQJW each generation by this type of selection.

Thus, the variance of clonality among the chromosomes determines the effective-
ness of natural selection. However, its evaluation seems to be difficult. Only under
the very simple situations where the interchromosomal exchange is negligible,
population size is large and no selection is involved, Stewart's (1976) formula
for the variance of heterozygosity is applicable

29

in which 6 = nh)\k = 2v/<%. The more general solution for o%i awaits future
investigation. By comparing the formula (17) with the formulas (6) ~ (9) for the
selectively neutral cases in the previous section, it can be seen that the clonality
may be greatly influenced by natural selection. The results of the simulation
studies will be shown later.

(b) Model II

I shall next introduce a slightly modified model of natural selection. Let us
suppose that the fitness of the family in a chromosome is expressed by the following
formula,

W=l-8(Gt-C0) for C4>C0

= 1 for Ct < Co

In other words, the family in the ith chromosome has selective disadvantage
only when Gi is above the average value (Co). This is analogous to the previous
model of directional selection to increase genetic information with multigene
family (Ohta, 1978). Let us again formulate the change of clonality due to selec-
tion. Let f(Gt) be the distribution function of Ct in the population. Then it can be
shown, based on the argument analogous to the fundamental theorem of natural
selection as before that AC0 becomes

AC0 = -=\_}o {Ct-C0)*M) dGi-l | (Cl-C0)/(Cl) (K74} |, (20)

where

W = 1-i [
c.

This formula is difficult to evaluate, however the very rough approximation
procedure is to assume normal distribution for /(C4), even if it has no probability
beyond G = 1. If /(Q) is normally distributed with mean Go and variance o%t,
the above formula becomes

-«*(•-;) -
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By comparing this result with the formula (17) it can be seen that the effectiveness
of natural selection in this model is £(1 — l/n) as compared with that of the
previous model I. However, the genetic load (L, denned as the amount of selective
death) becomes much smaller in model II than that in model I as long as Go >
(TCi, as the following comparison shows:

Lz = 1 — W = sO0 in model I,
Ln = 8crcJ^{2n) in model II. (22)

In general, the assumption of normal distribution for Ct may not be satisfied.
However, such deviation from the normal distribution would not greatly affect
the above conclusion that the genetic load is more dependent on the models than
the selection response.

(iii) Simulation studies
I have carried out the Monte Carlo experiments to check the above theory.

Each experiment started from a homogeneous population of chromosomes with
Co = 1. The population size was either 12-5 or 25 (2Ne = 25 or 50). Each generation
consisted of intrachromosomal crossover, interchromosomal crossover, mutation
and sampling in this sequence (case 2). At the intrachromosomal crossover, a
chromosome is randomly chosen from the population and another random number
determines the point of crossover and a unit is duplicated. Next, another random
number determines a unit deleted and a cycle of crossover is completed. As for
the ordinary interchromosomal crossover, a pair of chromosomes was chosen
from the population, they are exactly paired and the point of crossover is
determined by another random number. Both intra- and interchromosomal cross-
overs are repeated for a specified number of times per one generation. Mutation
occurs at the randomly chosen unit in the randomly chosen chromosome
following a specified probability. Sampling was done by randomly choosing
chromosomes 2Ne times. In each generation, the necessary quantities such as
the mean and variance of clonality are calculated and printed out.

Table 2 shows the results of the simulations together with their predicted
values. The figures are the averages of 101 ~ 350th generations. It can be seen
from the table that the agreement is satisfactory for the case of n = 5 but not
so for the case of n = 10. This is because the correlation of gene lineages becomes
significant as functions of the distance between the two units in the chromosome.
In other words, the condition of random arrangements of genes in the chromosome
is not satisfied in the Monte Carlo experiment in which duplication and deletion
always occurs by one unit when n = 10. It is expected here that the genes are
more clustered than random arrangement. In such cases, the effect of inter-
chromosomal crossover is smaller than the theory predicts, since the more clus-
tered gene lineages are more resistant to the interchromosomal crossing-over than
randomly arranged ones. It is also possible that the equilibrium with respect to
mutation, crossover and sampling has not yet been reached when n = 10 and
Ne = 50.
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In the last two columns of the table the variance of 0^0%^ is given. The expected
values are given only for the case of fi = 0 (no interchromosomal crossover),
since the approximate solution (formula 18) does not apply for the others. However,
it can be seen from the table that the observed variance is not much smaller
in magnitude than the above formula suggests relative to the mean clonality.

In the next set of the Monte Carlo experiments natural selection was incor-
porated. The model I in the previous section has been used. The selection and
sampling were simultaneously carried out; a random number determines if a
sampled chromosome survives or not such that its survival probability is T̂  =
1— Ct. However, selection was incorporated from the 51st generation, since
there was not much genetic variation for selection to work before that. The sam-
pling was repeated until the total of 2Ne chromosomes were sampled for the next
generation. All other parameters except selection coefficient were the same as
before. The results of the simulation are given in Table 3. The figures are again
the averages of 101 ~ 350th generations. Both the mean clonality (Co) and the
ratio of the two measures of clonality (between and within chromosomes, CJ/CQ)

significantly decrease by selection. In the table, the proportionate reduction of Co

due to selection is also given. Its observed value is calculated by dividing the
observed Co in Table 3 with the corresponding observed value in selectively
neutral case (Table 2) and by subtracting this ratio from 1. On the other hand,
from the analyses in the previous section, the expected decrease in Co per generation
is roughly

for selectively neutral case (the formula 13) and the decrease due to selection is
sa%ijW (the formula 17). Therefore the expected value of the proportionate
reduction of Co due to selection becomes very roughly

expected proportionate reduction =

Note here that the analytical solution for a%i cannot be obtained at the moment
and the observed values were used for so%JC0 W. Thus the estimation is circular
and the agreement between the expected and the observed reduction in Co only
shows that the selection is working just as expected. Close comparison indicates
that the observed reduction in Co is slightly larger than the expected value par-
ticularly when the rate of interchromosomal exchange (ft) is high. This is because
the clonality of the family between the different chromosomes (Cj) is considerably
reduced by selection and the interchromosomal crossover becomes more effective
here in reducing Co than in the selectively neutral case.
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4. DISCUSSION

In the present study two limitations of my previous model (Ohta, 1976, 1977),
i.e. the duplication or deletion of one unit at unequal crossover and the neglection
of the ordinary interchromosomal crossover have been taken into account. From
the simulation studies with several levels of the allowed latitude, I have con-
cluded that the allowed latitude of about 10-15 % of the total number of units
may result in the random arrangements of gene lineages. According to Wellauer
et al. (1976) the ribosomal genes are more or less randomly arranged along
the chromosome. Thus, it appears that the above range of the allowed latitude is
an appropriate one.

The present model of assigning the number of units of the gene family at unequal
crossover may be too simple, and actually the number of units should drift over
a long period rather than staying within the fixed interval, unless natural selection
works to keep it unchanged. The relationship between this kind of generation
of random variation in gene number and natural selection to work upon it may
be an interesting area of research in the future.

As to the problem of the interchromosomal crossover, the genetic variation
contained in a gene family of a chromosome depends on the rate of interchromo-
somal exchange per chromosome per generation, fi. Formula (13) tells that the
interchromosomal crossover works through the product, (/?/3) (4ZVei>/(l + 4Zyev)),
which corresponds to the effect of producing new mutations in increasing genetic
variation (2v). If the rate of interchromosomal crossover per nucleotide site is of
the comparable magnitude to that of mutation in higher organisms (cf. Nei,
1968), /? may be at least n times larger than v since v is the mutation rate per
gene unit. Then the term, (filZ)(bNevl(l + 4tNev)) may be much larger than 2v.
Here, if the population size is very small such that 4Nevftl + 4Nev) is much less
than one, the term becomes small even if ft is large.

Formula (13) further shows that CJCQ = l/(l + 4#ei;). This implies that the
probability of identity of a randomly chosen pair of gene units in the family in the
different chromosomes is lower than that in the same chromosome by this fraction.
Such a relationship could be experimentally examined. In fact, the results of
Wellauer et al. (1976) suggest that the heterogeneity in repeat length is greater
among individuals than within an individual in ribosomal gene family.

In the informational multigene families such as that of immunoglobuUns,
the genetic variation contained in the family is the crucial factor which determines
the functional diversity. Although the possible importance of somatic mutation
for antibody diversity complicates the interpretation, it is likely that natural
selection may be very important here. In fact, the antibody combining sites of
the variable part of immunoglobulins are shown to have more variations than the
other part of the molecule (Capra & Edmundson, 1977, for review). This obser-
vation seems to fit well to the model of natural selection investigated in the pre-
vious section. Natural selection works through variation in fitness among chromo-
somes and, it is shown that the clonality is decreased or the genetic variation is
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increased roughly by an amount sa%t each generation in model I. As compared
with the effect of mutation, 2vG0, and that of interchromosomal crossover,
(^fi)(4JVev/(l + 'LNev))C0, the selection term, so%v may have larger effect in in-
creasing genetic variation of a family in a chromosome. Analytical treatment to
determine a%. is an important future problem.

By comparing the models I and II of selection in the previous section, it can be
seen that the genetic load is model dependent whereas the selection response is not
so much influenced by the model. In other words, the optimum clonality chosen
has a big effect on the amount of genetic load whereas it has a relatively minor
effect on selection response. This is one aspect of the difference between the present
model and the traditional one. Essentially the difference is caused by the interaction
effects of mutant genes (such as that the fitness is determined by the clonality)
and by the coincidental evolution in the chromosome.

As for the mutational load of multigene families, it may also be reduced com-
pared to that based on the traditional formulation. In particular for the multi-
plicational multigene families such as genes for histone, rRNA or tRNA (Hood
et al. 1975), the mutational load is considered to be much reduced. For example,
consider the following simple case where the deleterious mutations are detected
by natural selection only after they spread to a certain frequency, y, in the family
by coincidental evolution. Since the coincidental evolution is controlled purely
by chance, most of the deleterious mutations disappear by chance without
selection. In fact the probability of a deleterious mutant to spread to the frequency,
y, in the family is l/iny) and therefore the mutational load should also be reduced
to l/{ny) of the conventional prediction.

I thank Dr Motoo Kimura for his stimulating discussions and many helpful
suggestions. Thanks are also due to a referee for many useful comments on the
manuscript.
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