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1. Introduction

Mrowka and Engleking [1] have recently introduced a notion more general
than that of compactness. Perhaps the most convenient direction at departure is
the following: for spaces X and E, X is said to be iT-compact if X is topologically
embeddable as a closed subset of a product £™ for some cardinal m, in which case
we write X <=cl E™. More generally, X is said to be ^-completely regular if X
is topologically embeddable in a product Em for some m. For example, if we take
E to be the unit interval /, we obtain the class of compact spaces and completely

regular spaces, respectively, as is well-known. The question then arises, of course,
given a space E, what spaces are compact with respect to it? A related question,
to which we address ourselves in this note, is the following. Denote by K[E] all
those topological spaces which are ^-compact. Then we ask: are there very many
distinct J?-compact classes? It will develop that there are indeed quite a large num-
ber of such classes.

There are several results, some of which are almost obvious, which we will
need and can be found discussed in [2].

a) For any .^-completely regular space there exists an extension J?£ X, con-
taining X densely, which has the following properties:

(i) pEX\s is-compact
(ii) Each continuous/: X-*• E admits a continuous extension/* : f}EX-*• E

(iii) If Fis an is-compact space, then any continuous/: X-> Y admits a continuous
extension/* : PEX -> Y

(iv) The extension fSEX\s unique in the sense that if J i s any extension of X satis-
fying (i)-(ii) there is a homeomorphism <j> of f$EX onto T such that <$> is the
identity on X.

b) Let /, R, D and TV denote the closed unit interval, the reals, the two-point
discrete space, and the natural numbers, respectively; we then have
(i) X is /-compact iff X is compact

(ii) X is .R-compact iff X is realcompact
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(iii) Z i s D-compact iff A'is O-dimensional (in the sense that there exists a base of
open-closed sets) and compact

(iv) if X is JV-compact, then X is O-dimensional and realcompact

c) An arbitrary product of ^-compact spaces is incompact

d) A closed subset of an iT-compact space is .E-compact

e) If Et e K[E2] then K[Ei] <= K[E2]

f) K[Et] = K[E2] iSEy is ^-compact and E2 is is^-compact

g) Let E be ^-completely regular and vice versa, and let a space X be E-
completely regular. Then PEX can be characterized as the set of all points in
PEl X— Xo where Xo is the set of all points p0 of fiEi X such that there is a con-
tinuous / : fiEl X -»• Y, Y any ^-compact space containing E, with /(/?) e E for
p eZand f(po)eY-E.

We will call this last stated result Mrowka's Theorem ([2], Theorem 4.18);
it will find frequent use in this paper.

Our remarks will deal mostly with subspaces of the ordinals (with the order
topology) and spaces derived from them; they provide a particularly fertile area
for examples in this connection. By S(a) we mean all ordinals less than a; cox will
be used for the smallest ordinal of cardinality K«; a limit ordinal is one with no
immediate predecessor. We also introduce some spaces related to segments of the
ordinals. Let a be any non-limit ordinal greater than 1 and consider the space
.S(coa). We will denote by Ea the 'generalized leng line', i.e., the space obtained
by using S(coa) instead of »S(coi) in the construction of the 'long line' (See [3],
p. 55). The following facts about Ex (and respectively, S(coa)) hold:

1. Of any two disjoint closed sets in Ex (resp., S{OJX)), one is bounded by
some element of Ea (resp., S(coa)).

2. Every continuous/ : Ea^> R ( resp . , / : S(coa) -* R) is constant on a tail.

3. Any subset of Ex (resp., S((oa)) of cardinality less than Ka is bounded.

4. Ea (resp. S(cox)) is countably compact and hence also pseudocompact.

We now proceed to the main results.

Let a. be any limit ordinal less than to^. Then neither ofS(<x), S((ot) is compact
with respect to the other.

PROOF. We first need to show that [Sfai)]1" is countably compact for any
cardinal m. To show this, let A be any countable subset contained in [Sico^]1".
Then in each coordinate space 5'(co1){) n^A] is countable and hence it must be
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bounded by, say, ^ ; that is, x ^ >/4 for each x in 7t4[/4]. But then A is contained
as a subset of the product JT^ S(rii + l) which is compact since each of the factor
spaces is compact. Thus, A has a limit in this subspace of [5(a)1)]m and hence
in the whole product also. It follows that [£(<»! )]"• is sequentially compact and
therefore countably compact.

(i) To show S(a) is not S(a>1 )-compact, we first note that there exists a
countable sequence {/>„} of ordinals less than a that has no limit in S(a). So, if
S(<x) were embeddable in [S(a>1 )]m for some m a s a closed copy, then, since
[S(co1)]

m is countably compact, the sequence {pn} in the copy of S(a) would have
a limit and this limit would be in S(cc), being closed; this is a contradiction.

(ii) ^cOi) is not S(a)-compact: first, recall that Siwx) is pseudocompact
but S(a) is not. Now, if Sfa^ were contained as a closed copy in [S(a)]m =
Y[$ £(<*),; (S(<*){ = S(a) for each t, eS) then ni[S((o1)] must be unbounded in
some S(a)j for if not, then S^a^) would be contained as a closed copy of compact
spaces and hence would be compact. Let this coordinate space by S(tx)io. Consider
any sequence 1 = x1, x2, • • • of isolated points in S{a) such that xn -» a. Then the
sets

{Un = {pe S(a) :xn^p<xn+1}:neN}

partition S(a)|o into open-closed sets from which we see that the collection
{Vn = n^l[Un]} is a countably infinite partition of n$ 'S ' ( a V Define

/ : Y\z 5(a)^ -»• N, the set of natural numbers, b y / [ F J = n. Then/ i s continuous
and the restriction to the copy of £(<»!) is continuous and unbounded, which can-
not be, since unbounded continuous real-valued functions on Sfa^) do not exist.
[Alternately, cf. [4], p. 20].

If a, /? are distinct non-limit ordinals and cox, a>p are the smallest ordinals of
cardinality N a , Kp respectively, then neither ofS(cox), S(a>fi) is compact with respect
to the other.

PROOF. For definiteness let cox < mfi.
(i) S(eox) is not S(<u^)-compact: for suppose that for some cardinal m,

% j c cl [S{(ofi)]
m. Let {p J be a net in S((oa) such that/^ -* ax. Then | {p(} | g X«.

Now the projections of {p$} on each of the coordinate spaces S(a>p)x are of cardin-
ality ^ Ka < Up so there exists a sup in S((ofi)x for each of these projections; say
nx{Pi) ~* *x in the A-th coordinate space S(a>p)x. But then {p^} has as limit the
point (xx) e Y\x S(wp)x and this limit must be in the copy of S(a)x) since it is closed.
This is contrary to the assumption.

(ii) To show that S(a)p) is not S^coJ-compact, first observe that fiS((Op) =
S(a>p) u {a>p} and likewise for the space f}S(a)x). (Cf. [4] p. 137). We intend to
show that there exist no continuous/: [SS(cop) -* S(cox) such that/(co^) = «« and
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f(p) < cox for all p e S(cjfi) and then use Mrowka's Theorem with X = S(cop),
E = S((ox), Ex = I, Y = BS(cox), and fiEi X = BS(cop). Assume there is such a
function. There are two cases to check.

a) Suppose for every a e S(cox), f~
1(a) is bounded in S(a>fi). Then for every

ae S(a>x) there exists an ordinal r\a — s u p / " 1 ^ ) . Then the set {r\a : ( ! 6 % ) } ,
being of cardinality ^ N a , has a sup in S(cop), say it is x0 < (Op. But t hen / is not
denned forp > x0 which makes no sense.

b) Thus, there must be an aoeS(cox) such that f~i(a0) is unbounded in
S(a>p) and there can be only one such since S(oop) cannot have two disjoint closed
unbounded subsets. Now if the set of points in S((Op) with image values different
from a0 under / i s cofinal in S((op), let {xa} be this set of images. Then for each
xaJ~l(xa) has a sup, say r\a, less than cop and sup {»;„}< cop since \{r]a}\ ^ Ka.
Hence, on a tail of S(<Op), f(p) = a0 so that f((op) = a0 and not coa which is a
contradiction.

We now consider ordinals which are not of the form a>x where a is non-limit.
At this point we pause to introduce some terminology which is mostly that of
Sierpinski [5]. We divide all ordinals into classes, putting two ordinals in the same
class if they are of the same cardinality. The least number in such a class is called
an initial ordinal. In our previous notation, e.g., cox, the least ordinal of cardinality
Ka, is an initial ordinal. Initial ordinals cox which are limits of transfinite sequences
of type < (ox are named singular; all other initial numbers, i.e., ordinals cox which
are not the limits of transfinite sequences of type < a>a are called regular. We
emphasize that the terms singular and regular apply only to initial numbers. We
say a is cofinal (some authors say confinal) with B ^ a if there exists a strictly
increasing sequence of order type /? with a as a limit. In order that an initial ordinal
cox be singular it is necessary and sufficient that it be cofinal with a certain number
of the second kind (i.e., a limit ordinal) smaller than cox [5]. We then define two
ordinals a and B to be of the same degree of cofinality, in symbols, cf (a) = cf(B),
if there exists an ordinal n such that a and /? are cofinal with r\ and n is the smallest
such ordinal for a and /? both. It perhaps should be mentioned that there always
is, for any ordinal a, a smallest ordinal y such that a is cofinal with y. This follows
from the facts that the ordinals are well-ordered and that if a is cofinal with /?
and p is cofinal with y then a is cofinal with y. In addition, we note that this
smallest ordinal must be regular. (See [6], p. 27.)

EXAMPLES. cf(coo) = cf(coao) = cf(a) where coa is the smallest ordinal which
satisfies the equation coa = a. (See [5], p. 407 or [7].) We can now state the

THEOREM. For initial ordinals a, ft, K[S(<x)] = K[S(B)] if and only z/cf(a) =
cf()8).
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PROOF. (Sufficiency) Let r\ be the smallest ordinal with which both a and p
are cofinal. We will show that K[S(oc)] = K[S(rj)]. That K[S(p)]) = K[S(n)]
follows in the same way.

We assume that n < a of course, so that there is something to prove. Now
there exists a sequence {/^}|<, which is strictly increasing and has a for a limit.
The function/: S(n) -* S(a) given by / (£ ) = p^ may not be continuous but we
can alter it to a function <j> which is continuous as follows: if p is isolated then
4>(p) = f(l>)l if i> is n o t isolated than <j>(jp) = sup{/(x) : x < p}. Then <j> is con-
tinuous, strictly increasing, and its range is still unbounded in S(a) since the set
of image values of isolated points under/is unbounded in 5(a). The function $ can
be continuously extended to (j>* : ps(n) -+ jS5(a) by setting </)*(ri) = a. We then
use Mrowka's Theorem again to show that S(n) is S(a)-compact.

Next, we want a continuous function \j/ of the right kind from pS(<x) to
pS(tj); that is, \j/ should be such that ij/(p) e S(rj) for p e S(cc) and i/^(a) = rj. If
p e S(a) is an image of the function <f) above, we define \ji{p) = <f>~l(p). Ifp e 5(a)
is not an image, then the set of all images of <j> which are greater than p has a least
element p2 • Also, the set of all images of <j> which are less than p has a greatest
element p1. This follows from the fact that 0 is continuous and strictly increasing.
Then for all/> e S(oc) such that7^ < p < p2, define ij/(p) = <t>~1(p2)- In addition,
define \j/(<x) = r\. Then \j/ is of the required sort.

From the foregoing, we see that K[S(<x)] = K[S(tj)] = K[S(P)]. (Cf. In-
troduction, i tem/).)

(Necessity). Let cf(a) i= cf(/?). We want to conclude that neither of S(a),
S(P) is compact with respect to the other.

Let a' and /?' be the smallest ordinals with which a and jS, resp., are cofinal.
Then as in the immediately preceding discussion, ^[^(a)] = K[S(tx')] and also
K[S(P)] = K[S(P')]. We will show that neither of S(a'), S(/S') is compact with
respect to the other. Suppose for definiteness that a' < /?'.

(i) First note that the ordinals a' and /?' are regular. Then S(a') is not £(/?')-
compact for the reason that there can exist no continuous function/from ps(a') =
S(oc') u {a'} to pS(P') = S(P') u {P'}, using the regularity of the oridinal P'.

(ii) That S{p') is not ^(a^-compact is shown by an argument which is en-
tirely analogous to the proof given in (ii) of Section C.

5.

For arbitrary limit ordinals oc, P both S(a.) and S(P) may be compact with
respect to each other.

EXAMPLE. Consider the ordinals coo and co0 + a>0. Clearly S(co0) is S(co0 + coo)-
compact since it is homeomorphic to the closed set {p :p > co0} in S(a>0 + co0).
Next, consider the function/: ps(a>0 + co0) -* ps(a>o) given by
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f(p) =1 for p ^ too +1

/(co0 + n) = n for n ^ 2

= coo.

We now utilize Mrowka's Theorem again, letting E = S(coo), Ey = [0,1],
Y = S(co0) u {«<,} = £S(a>0), and X = S(coo + coo). Then it is seen that j6£lZ =
/?S(co0 + co0). Now the quoted result states that (IEX = /?s(o)o)S(a>o + a>0) is the set
of all points of fSElX—X0 where A"o is the set of all points p such that there is
an / : pS(co0 + co0) -*• ps(co0) such that f(p) e S(co0) for p e S(co0 + co0) and

f(co0 + a>0) = (o0. The function defined above is of the right kind, and thus, since
X c ^ J T always, Xmust bs )3£Jif. That is,

S((O0

which means that S(co0 + co0) is S(a>0)-compact.

REMARK. Even if the cardinality of a and ft are not equal we may still have
5(a) and S(/?) of the same degree of compactness. For, consider the ordinals co0

and co1 + co0. Then by an analogous procedure to the above, we may show that
K[S(wo)] = K[S(co1+co0)].

We now consider the "generalized long lines" Ex mentioned in the Introduc-
tion. Then for any non-limit ordinals a and /?, neither of Ea, Ep is compact with
respect to the other. The proof is analogous to a former proof. In fact, if a < /?,
to show Ex is not ^-compact, we proceed as in (i) of Section 3. To show Ef is not
^-compact, we argue is in (ii) of Section 3. Note that none of the classes K[EX]
is equal to any of the classes ^[^(a) ] . This follows from the fact that for any a,
S(a) is 0-dimensional (in the sense that there exists a base of open-closed sets)
whereas none of the Ex is.

In the discussion of the long lines there is one additional question to settle:
if Eo is taken to be the reals, which is natural, how do K[E0] and K[Ea] compare?
Again, neither is compact with respect to the other as we now show.

(i) Eo is not ^-compact: first recall that Ex is countably compact as is
(Ex)

m for any cardinal m. Thus, if Eo were embeddable as a closed subset of (Ex)
m

for some m then Eo, being a closed subset of countably compact space, would be
countably compact which is not true.

(ii) Ex is not £0-compact (that is, realcompact). This follows from the fact
that Ex contains a closed copy of «S'((«a) which is not realcompact. Then if Ex c c )

(E0)
m for some m, S(a>a) would be contained as a closed copy also in (Eoy which

cannot be.
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Lastly, we construct a space Z which is interesting just to look at and whose
inclusion here will settle certain questions which arose in connection with the
previous material. First, it will lead the way towards many more classes of com-
pactness and also, it will answer the question in the negative whether the classes
KlSfax)], for a > 0 and non-limit, are atoms in the lattice of classes of is-compact
spaces (as was suspected originally). The reason for this suspicion is as follows:
for the two-point discrete space £> and the space N of natural numbers, there is
no class between the 'bottom' AT(D) and K[N] = K[S(co0)], as Mrowka has shown
[2]. Thus the possibility existed that the classes K[S(cox)] for a > 0 were also
atoms, which would have been a pleasant situation. The space Z to be constructed
will be in a class between K[D] and K[S(a>t)].

The space Z. The underlying space is Sfa^. For any ordinal a < coo we let
Tx = S(a) and T* = S(oe+1). We also let Tao = \Jx<mo T* with the following
topology: Uis open in Tmo iff U n T* is open in T* for all a < co0. We then define
K = PTao. [Note that T^ is simply N so that pTmo = l £

Now suppose that T* has been defined for all ordinals < some f, that for
a < y < i, T* <= T*. On the union Tf = \Jx<i T* is put the following topology:
U is open in T^ iff U n T* is open for all a < \. We then define T* = PTf.

Note that 7̂ * contains a copy of the set of all isolated ordinals ^ £ and that
this copy, which is countable, is dense in T$. We conclude that T* = PTf = fiN.

We then define Z = [jx<tOl T* with the following topology: U is open in Z
iff U n T* is open in T* for every a < a>i.

Z is completely regular: Let p $ F, closed in A. Then for some a, p e T*.
Now F n Ta* is closed in T* which is completely regular so there exists a
g :T* -> [0, 1 ] such that g(j>) = 0 and g[F n Ta*] = 1. We extend g to g* : Z->
[0, 1] by setting g*[Z-T*] = 1. Since T* and Z-Ta* are disjoint open-closed
sets, g* is continuous.

We now define a canonical map <j> : Z—>-£(ct)i) as follows: <j>[T* — Ty] = y.
(Note that for isolated ordinals y, this means that <j)(y) = y, if we retain the nota-
tion in Z for isolated points.) To show <f> is continuous, let U be open in Sito^).
We will show that <f>~l[U] n T* is open in T* for every a. Now, for a fixed
a < coi, <t>~l[U] n Ta* = <j>~^[Uc\ S*{OL)]. Let x be any element of Un S*(a).
If x is isolated <£ ~J (x) is isolated and hence open in T*. If x ^ a is a limit ordinal,
there is an isolated ordinal y < x such that [y, JC+1] c (7nS*(a). Then
^"^(V.x+l)] = Tx-Tf-i which is open in rx*. But rx* is open in ra* so
<P "11(7, x +1)] is open in T*. We conclude that <f> ~1 fC/] n 7;* = <̂  ~' [f/ n ^*(a)]
is a union of open sets in Tx and hence is open in T*. Since Z is the topological
sum of all the T*, (j> is continuous.

Z is 5r(co1)-compact. To show this we use Mrowka's Theorem. Let X = Z,
Ey = D,E = SXcox) and T = Sicoy) u {c^}. Then ps(a>i)Z is the set of all points
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in poZ—X0 where Xo is the set of all points p0 of /?OZ such that there is a
g : PDZ -* i?S(co1) with g(p) e 5(0^) for pe Z and g(p0) = tox. To obtain such
a g we take the previously defined </> : Z -»• £(«!) and extend it to </>* : /?OZ -*
pS(o)i) by setting <f>*\J3oZ—Z] = <oY. Then <j>* is such a function #.

•Ŝ cDi) is not Z-compact. For suppose it is; then Sico^) <=cl Z
m for some cardinal

m. Now at least one of the projections must bz infinite for otherwise S ^ ) would
bs a closed subspace of a compact space. Thus we have a continuous
/ : S((Oi) -> Z with infinitely many values. We assert that for some <̂ 0 < coj,
/ [ 0 . £o] is infinite. This follows from the following property from set theory:
if {A^ : £, < coj} is a non-decreasing sequence of finite sets, then u {A$ : £ < coj}
is finite. Therefore we have/[0, £o] compact and countably infinite in Z which
cannot be.

REMARK. By the same procedures used in constructing the space Z, we can
obtain spaces Z 2 , Z 3 , • • • such that

K(D) = K(Zn) c K(S(a>m)),

where the containments are proper.
The space Z in the preceding was constructed to show that the class K(S(co1))

is not an atom in the lattice of all classes of ^-compactness. The natural question
then is whether K{Z) is an atom. We conclude this paper by constructing a space
X which will show that this is not true. The fact that there is nothing very special
about this space X leads the author to conjecture that there is no atom between
AT(D) and

The space X. Consider the space Z and from T*o(= jiN) delete one point
x0 from T*0-Tm. Set X = Z-{x0}. We assert that K(D) <= K{X) c K(Z),
where again the containments are proper.

(i) We first show that X'\% not Z-compact by showing that X'\s not contained
as a closed copy of any power of Z. Suppose this is false and that for some cardinal
m we have X ccl Zm. Now the subset 7^0— {x0} is a closed subset of the space
Zand hence it is closed in Zm also. However, since the subset Tao of JTis countable,
for each coordinate space Z { (= Z) , the projection ^ [ T ^ J upon Z? is contained
in T*( for some limit ordinal â  < col. Since projections are continuous, we con-
clude that for each £,, n^[T*0— {x}] = K{[clj7T

(Oo] is also contained in T*( since
this set is closed in Z? . Therefore we have JTis contained as a closed subset of the
compact space Yites T*f and hence is compact. This cannot be since for any
p e fiN—N, fiN— {p} is not compact.

(ii) We show that Z is X-compact by embedding Z in a power of X. First
note that T*o <= Z is open-closed and hemeomorphic to fiN. Since fiN is N-
compact, T*o <=c/JV

m = (7^)"" for some cardinal m. For convenience let the subset
T*o — {x0} of X be denoted by A. We can then assume that T*a has been embedded
in Am a Xm by some homeomorphism, say h. But then h[T*0] is a compact subset
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of the Hausdorff space Xm and so is closed in Xm. It is a trivial matter to see that
Z-T*o is embsddable as a closed subset of Xm which is disjoint from h[T*0].
Thus Z c ( l Xm.
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