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IMPRIMITIVE, IRREDUCIBLE COMPLEX CHARACTERS 
OF THE ALTERNATING GROUP 

DRAGOMIR Z. DJOKOVIC AND JERRY MALZAN 

The purpose of this paper is to list all of the characters of An, the al ternat ing 
group, mentioned in the title. The same problem for the symmetric group, 
Sn, was dealt with by the authors in [1]. We showr here that , apar t from a few 
exceptions, the imprimitive, irreducible complex characters of An fall natural ly 
into two infinite families. (Throughout this paper characters are taken over 
the complex numbers.) 

We recall t ha t a character of a group G is said to be imprimitive if it is 
induced from a character of a proper subgroup of G, and monomial if it is 
induced from a character of degree 1 of any subgroup of G. We denote by Tn 

the set of all triples (An, G, a), where G is a proper subgroup of An, a an 
irreducible character of G such tha t the induced character a | An is also 
irreducible. We will determine all such triples in this paper. For a subgroup 
G C Sn we shall denote by G° the group G Pi An, and point out tha t G = G° 
or else [G : G°] = 2. We shall refer to G° as the even subgroup of G. 

A major tool we employ is Mackey's criterion for irreducibility, [9, p. 11-11], 
which is as follows: 

M A C K E Y ' S C R I T E R I O N . Let G be a finite group, H a subgroup of G, and a an 

irreducible character of H. Then the induced character a f G is irreducible if, and 
only if, for each t £ G — H the restrictions a [ H C\ Hl and a1 [ H C\ Hl are 
disjoint. 

Here and throughout the paper, Hl = tHt~l, and a1 is the character of Hl 

defined by al(x) = o-(/_1x/). 
We say tha t two triples (An, G, a) and (An, G', a') of Tn are equivalent if 

there exists / Ç An such tha t G' = Gl and a' = a1. If they are equivalent then 
a | An = a | An. I t suffices to determine the triples of Tn up to equivalence. 

For each Young diagram Y we shall denote by Y' the conjugate of Y, and 
by [ Y] the associated irreducible character of Sn. I t is well known [3] tha t the 
restriction [ Y] j An = ( Y) is irreducible if Y ^ Y', and splits into two 
components ( Y) = ( Y)+ + ( Y)~ if Y = Y' and n > 1. In the lat ter case we 
have also (( F)+) ' = ( Y)~ where / is any odd permutat ion, and ( Y)+ 9^ ( Y)~. 
All irreducible characters of An are obtained in this way. 

For every divisor m of n such tha t 1 < m < n we denote by Hnt7n a maximal 
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imprimitive subgroup of Sn which has blocks of size m. T h u s Hn>m = Sm I Sk 

(the wreath product of Sm and Sk) where n = mk and the order of Hn,m is 
k\(m\)k. We note t h a t as a permuta t ion group, H2m,m has a unique subgroup 

We are now in a position to describe the two infinite families of imprimit ive 
irreducible characters of the al ternat ing groups mentioned above. 

Family 1. (An, An-i, a) where n = m2 + 1, m ^ 2, and or = (F )+ or ( F ) ~ , 

with F the square diagram (ww) . We have v ] An = (W7) where W is the 

diagram (m + 1, mm~l). 

Family 2. 04 2m, H2rnJtl
Q, 0") where, according to our notat ion, H2m,m° = 

H2m,m r\ A2m. Here o- is either of the two characters of Him,mQ of degree 1 in 
which o-(x) = 1 for x £ Am X Am and o-(x) = — 1 for x Ç (5m X Sm)° — 
Am X Am. In this case c ] A2m = ( F ) where Y is the diagram (m + 1, lm _ 1) 
(or its conjugate) . 

In the s ta tement of the theorem below we shall refer to the triples in these 

two families as standard triples, and shall refer to all others as exceptional. 

T H E O R E M . For the alternating groups An the triples (An, G, a) G Tn are the 
standard triples described above or else are equivalent to one of the following 
exceptional triples: 

(i) (Ag, G, <r) where G is the holomorph of C2 X C2 X C2, and a is either of 
the two complex conjugate, irreducible characters of degree 3 of G. Here a | AB = 
(F )+ or ( F ) ~ where Y = (4, 2, I 2 ) . 

(ii) (A8, G, a) where G C ^8,4°, is the semidirect product C2 • (A± X 4̂ 0 = 
Ai I S2 with a generator for C2 of the form (15) (26) (37) (48), acting on blocks 
{1, 2, 3, 4} and {5, 6, 7, 8) . Here a is any of the two characters of degree I of G 
which when considered as characters of G/G' = G6 are faithful. We have a | A8 = 
( F ) where Y = (4, 3, 1). 

(iii) (^48, HstA°, y) where y = a ] HS,A° is the character induced from the 
characters a in (ii). Again y | A8 = ( F ) where Y = (4, 3, 1). 

(iv) (A9, G, d) where G is the primitive group of order 1512, and a is one of 
the 2 complex conjugate non-real characters of degree 1 of G. Here a | A9 = ( F ) 
where Y = (5, 22). 

In the course of the proof we shall need the following results concerning 
some special types of primitive permuta t ion groups. In the lemmas below we 
use some old terminology and say t h a t a permuta t ion group has class k if k 
is the minimal number of letters moved by a non-ident i ty permuta t ion in 
this group. 

L E M M A 1. There exist precisely 6 primitive permutation groups of class 4. 
These are: 

(i) The subgroup of S5 of order 20 generated by (1, 2, 3, 4, 5) and (2, 3, 5, 4) , 
or its subgroup of order 10. 
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(ii) PGL2(5), of order 120, and PSL2(5), of order 60, as subgroups of Se. 
(iii) PSL2(7), of order 168, as a subgroup of ST. 
(iv) The holomorph of C2 X C2 X C2 as a subgroup of S8, of order 1344. 

This lemma was proved by G. A. Miller in [7]. 

LEMMA 2. There is only one primitive permutation group of class 5. This is the 
cyclic group C5 in 5 5 . 

LEMMA 3. There are eight primitive permutation groups of class 6 containing 
a permutation of type (123) {Ab§), five of them with even permutations only. 
These are: 

(i) The holomorph of Ci of order 42 in ST, and its even subgroup of order 21. 
(ii) PGL2(7) and PSL2(7) as subgroups of S8. These have orders 336 and 

168, respectively. 
(iii) The group of all permutations of the G F (8) of the form x —» axa + b 

where a, b ^ GF(8), a 9^ 0, and a is an automorphism of the G F'(8). This group 
has order 168. 

(iv) The holomorph of C3 X C3, of order 432, and its even subgroup of order 
216. 

(v) The group of all permutations of G F (8) W {00 } of the form 

axa + h 
X^cxa +d 

with ad — be ^ 0, and with a as in (iii). This group has order 1512. 

This was proved in [6]. We may now proceed with the proof of the theorem. 

Proof of theorem. Let (An, G, a) Ç Tn. We have to show tha t (An, G, a) is 
either s tandard or equivalent to one of the exceptional triples listed in the 
theorem. We consider three cases: 

Case 1. G is intransitive. There exists a subgroup G\ of An containing G such 
t ha t Gi has two orbits, and is maximal subject to these conditions. We let 
(Ti = o- Î G\. We have again (An, Gi, ai) G Tn. 

Suppose first t ha t each of the orbits of G\ has a t least 2 letters. We may 
assume tha t 1, 2 are in the first orbit, and 3, 4 in the second. Let / = (13) (24), 
and take H = G\C\ G\. We claim tha t H is the subgroup of G\ which stabilizes 
the sets {1, 2} and {3, 4}. For ii s £ H, then (s-Hs)t £ Gi, and s~Hs has the 
form {i,j)(r, k) where i, r are in the first orbit, j , k are in the second. Since 
( i , i ) ( r , jfe)(13)(24) G Gi we must have {i, r) = {1,2} and [j, k) = {3 ,4} , 
and this implies tha t 5 stabilizes {1,2} and {3 ,4} . I t is clear tha t z = 
(12) (34) G Z(H), the centre of H. Let r be an irreducible component of 
o"i I H. Because z G Z(H), and r is irreducible, it follows tha t z must be 
represented by ± 7 in the representation p corresponding to r. We claim tha t 
this must , in fact, be —I. Assume not. Since s~ltst = 1 or z for every s £ H 
we would have p(s~1tst) = I and p{tsi) = p(s) for all s Ç H. But then, how­
ever, Tl — r, and u\ j H and ai1 [ H have components in common, contrary 
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to Mackey 's criterion. We conclude tha t p{z) = —I in each irreducible 
component of ci j H and hence tha t z is represented by — / i n the represen­
tat ion corresponding to the character G\. But these remarks hold for any 
permuta t ion (i, r)(j, s) with i and r in the first orbit, j and s in the second. 
Since these generate Gi, and are all represented by —/, ai, to be irreducible, 
must have degree 1. ai(x) = 1 whenever the restriction of x to an orbit is 
even, and equals —1 otherwise. 

Now let t\ = (134). By a computat ion similar to t ha t above we see t ha t 
Hi = G\ C\ G\tl is the subgroup of G\ which fixes the letters 1 and 3 since, for 
s (z Hi, the commuta tor s~lti~lsti is either the identi ty or a three-cycle in the 
second orbit. T o see this, observe t ha t s~1ti~ls must be of the form (1, i, 3) , 
where i is in the second orbit. But now <j\ [ Hi = ain [ Hi because 
0"i(s_1/i-15/i) = 1 for all s £ Hi and so o"i(/i_1^i) = ai(s) for all s (z Hi. This 
again contradicts Mackey 's criterion, and it remains to consider the case 
when, say, the second orbit has only one letter. In this event Gi = An-i. 

Consider the diagram 

An-i > An 

The Lit t lewood-Richardson rule [8, p. 61] enables one to compute the 
irreducible components of any X f Sn where X is an irreducible character of 
Sk X Sn-k. In part icular, X f Sn is never irreducible. Hence, if a character X of 
5n_i is not irreducible, X | Sn has at least four irreducible components . Now 
since <n | An is irreducible, ai | 5„_i is irreducible, and ai corresponds to a 
symmetr ic Young diagram, Y. We have ai | Sn-i = [Y] and [Y] | Sn has one 
or two irreducible components . I t cannot have one, and so has exactly two. 
Using, again, the Lit t lewood-Richardson rule, we see tha t Y must be rec­
tangular . The requirement Y = Y' forces Y square, and we see t ha t our first 
family of s tandard triples is the only possibility in this case. I t is easy to check 
tha t the induced representations (Y)+^ An and (Y)~ "[ An are, in fact, 
irreducible. 

Suppose now tha t (An, G, a) t T„, with G C An^. By a previous paper [1], 
the character ( Y) of An_\ is not imprimitive, and G = An-\. This completes 
this case. 

Case 2. G is t ransi t ive, bu t imprimitive. Let G\ be a maximal imprimit ive 
subgroup of An containing G, and let <JI = a Î G\. Again, (Arn Gi, ai) t Tn. 
Using our previous notat ion G\ = HntVl, where m\n. We assume first tha t 
n ^ 3m; i.e. there are at least three blocks. Assume, too, tha t m ^ 3. Take 
1, 2, 3 to be in different blocks and let / = (123). In this case, using arguments 
similar to those used before, we see tha t / centralizes II = d C\ GY, and so 
cri | II = ai1 I H, contradict ing A lackey's criterion. 
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Suppose now tha t m = 2, and suppose further tha t {1, 2}, {3, 4}, }5, 6} are 
three of the blocks. Let t = (135)(264). As before we have s^H^st 6 Gi for 
each 5 Ç H = G\ C\ Gil. Now tY = s~H~ls is of the form (i,j,k){u,v,w) 
where {i, u], {j, w}, {k, v} are blocks. Then t\t £ G\ implies t ha t these blocks 
are, in fact, {1,2}, {3 ,4} , {5,6} in some order. Moreover, we must have 
ht = 1; i.e. t commutes with 5 and consequently t centralizes H. We reach a 
contradiction as before. 

Suppose, finally, t ha t n — 2m; i.e. there are only two blocks. Let, first, 
m ^ 5. Let 1, 2 be in the first block, 3, 4 in the second, and let t = (13) (24). 
In this case H = G i H G / is the subgroup of G\ stabilizing { 1 , 2 , 3 , 4 } . 
Indeed, iî s £ H then s^tst £ G\ and s~lts = (ij)(uv) with i, u in the first 
and j , v in the second block. This implies tha t {i,j, u, v} = {1, 2, 3, 4} because 
m ^ 5. Hence, 5 stabilizes {1, 2, 3, 4}. Conversely, if s £ Gi stabilizes {1 ,2 ,3 ,4} 
then it is immediate that s £ H. 

Moreover we see tha t for s £ H we have s~ltst = 1 or z where z = (12) (34). 
Again z is in the centre of H and in the same way as in Case 1 we infer t ha t 
deg ci = 1 and <J\(X) = 1 for x £ Am X Am, ai(x) = — 1 for % £ (Sm X Sm)° — 

(Am X Am). Note tha t Am X Am < Gi - #2m,m° and Gi / ( ,4 m X ,4 J is the 
four-group. Therefore there are precisely two characters v\ of G\ of degree 1 
having the properties established above. Since deg a\ = 1 we must have 
G = Gi and cr = o-i. In other words, (An, G, a) is a s tandard triple from the 
second family. I t remains to verify t ha t a f An is indeed irreducible. For this 
we do not need the hypothesis t ha t m ^ 5. 

We must show tha t ai] An'\s irreducible. Consider the diagram 

A 2m > ^ 2 m 

-El 2m,m 

Wra X àm) * Om X <->m 

L e t r = ai (Sm XSm)°. We find 

r | ^ X 5 m = a 0 l + l 0 « 

where a; is the al ternating character of Sm. By applying the Littlewood-
Richardson rule we get 

T î S2m = 2(p + p') 

where p = [ F ] , p' = [F / ] and Y = (m + 1, l*-*). Since ( T Î 4 2 W ) î 52ro = 
2(p + p) we must have 

r\A2m = 2 ( F ) 

and consequently o- | 4̂2m = ( F ) is irreducible. 

https://doi.org/10.4153/CJM-1976-119-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-119-x


1204 D. Z. DJOKOVIC AND J. MALZAN 

Now we have to look a t the cases m = 2, 3, 4. One can easily verify, by 
using published character tables of H2m,m and S2m [3 ,4 ] , t ha t the only ex­
ceptional triples t ha t arise are (ii) and (iii) in the theorem. 

Case 3. G is primitive. If the class of G is ^ 7 then taking t = (123) we get 
s~1t~1st £ G for every 5 Ç H = G C\ G1 and hence st = ts. This contradicts 
Mackey 's criterion. Hence the class of G mus t be 4, 0 or 6 and if it is 6 then G 
contains a permuta t ion of the type (123) (456). T h u s G is one of the groups 
listed in Lemmas 1, 2, 3. I t is a mat te r of straightforward computa t ion to 
check t ha t again the triples t ha t arise from these groups are the exceptional 
triples (i) and (iv) in the theorem. T h e character table for the group of order 
1512 is given in [5]. 

T h e following corollaries are immediate. 

COROLLARY 1. The only imprimitive irreducible characters of the alternating 

groups are those associated with the Young diagrams (m + l,mm~l), m ^ 2; 
(m + 1, I™-1), m ^ 2; (4, 3, 1), (4, 2, l2) and (5, 22) . 

COROLLARY 2. The monomial irreducible characters of the alternating groups 

are those associated with the diagrams (m + 1, l m _ 1 ) , m ^ 2; (m), m ^ 2; 
(2, 1)±; (22)±; ( 4 , 3 , 1 ) and (5, 22). 
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