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I recently discovered that the proof of Proposition 3.1 in my 2012 paper 1[1] (stated on
page 522) is not correct. The proof can be corrected but this introduces a factor on the
left-hand side of Equation (3.2). This factor is not important for Proposition 3.1 itself
but it is important for its applications. Unfortunately, it invalidates the end of the proof
of Theorem 1.1. I could not find a complete correction for it, and I present a slightly
weaker statement below. On the other hand, the statements of Theorems 1.2 and 1.3 are
not modified because their proofs are not affected in a crucial way by this factor.

I use the notation and labels of the paper. These labels are of the form (a.b) with a ≥ 1.
There will be no confusion with the labels of this corrigendum which are the form (a.b)
with a = 0. For the properties of continued fractions, I refer to §1.1 of the paper.

Correction to the proof of Proposition 3.1
In Equation (3.2) of Proposition 3.1, the implicit constant in the symbol � does not

depend on m but it depends on α, f, s and more importantly on k. The dependence on k
was not noticed in the paper because of the error in the proof of Equation (3.2). Moreover,
the independence of Equation (3.2) on k was explicitly used many times in the proofs of
the main results of the paper, so that many arguments now have to be corrected.

We are given f(x) defined on R \ (πZ) and such that |f(x)| ≤ c/| sin(x)|r. The state-
ment of Proposition 3.1 remains the same except that, for applications, Equation (3.2)
must be made more precise. This is done as follows:

For every α ∈ (0, 1) \ Q, s > r ≥ 1, m ≥ 0, k ≥ 0 and N ≥ 1 such that qm ≤ N <
qm+1, we have

N∑
n=1

|f(πnT k(α))|
ns

≤ C(f, s, r, α)qk(α)s−r
k+m∑
j=k

qj+1(α)r

qj(α)s
, (0.1)

where C(f, s, r, α) > 0 need not be explicited. Since s > r, the factor qk(α)s−r is
unfortunately unbounded as k → +∞.

I now give a proof of Equation (0.1), which at the same time corrects the proof of
Proposition 3.1. The domination condition |f(x)| ≤ c/| sin(x)|r (ie, Equation (3.1) on
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page 522) shows it is enough to find a bound for

N∑
n=1

1
ns| sin (

πnT k(α)
)|r .

We have | sin(πnT k(α))| = sin(π||nT k(α)||) � ||nT k(α)||, where both implicit constants
are absolute. Hence it is enough to find an upper bound for

∑N
n=1(1/ns||nT k(α)||r). By

Lemma 3.2, for every integer N ≥ 1,

N∑
n=1

1
ns||nT k(α)||r �

m∑
j=0

q̂r
j+1

q̂s
j

, (0.2)

where q̂j := qj(T k(α)) is the denominator of the jth convergent to T k(α). The implicit
constant in Equation (0.2) depends at most on r, s, α and not on m ≥ 0, k ≥ 0. Now,
the sequence (q̂j)j≥−1 satisfies the recurrence relation q̂j+1 = ak+j+1q̂j + q̂j−1. Since the
sequences (pj+k)j≥0 and (qj+k)j≥−1 are linearly independent solutions over C of the
same recurrence, there exist two sequences of rational numbers (uk)k≥0 and (vk)k≥0

(independent of j) such that q̂j = ukqj+k + vkpj+k for any integers j ≥ −1, k ≥ 0. For
j = 0, this yields 1 = ukqk + vkpk while for j = −1, this yields 0 = ukqk−1 + vkpk−1. Since
pk−1qk − pkqk−1 = (−1)k, it follows that uk = (−1)kpk−1 and vk = (−1)k+1qk−1. Hence,
for all j ≥ −1, k ≥ 0, we have

q̂j = (−1)k
(
pk−1qj+k − qk−1pj+k

)
. (0.3)

Equation (0.3) corrects the erroneous statement on pages 516 and 525 that q̂j = qj+k.
If k = 0, then q̂j = qj and Equation (0.2) proves Equation (0.1) in this case because
q0(α) = 1. We now assume that k ≥ 1, so that qk−1 	= 0 and qj+k 	= 0. We now rewrite
Equation (0.3) as

q̂j = (−1)kqj+kqk−1

(
pk−1

qk−1
− α

)
+ (−1)k+1qj+kqk−1

(
pj+k

qj+k
− α

)
.

Since 1/2qnqn+1 < (−1)n (pn/qn − α) < 1/qnqn+1 for all n ≥ 0, there exist two absolute
constants c1 > 0 and c2 > 0 such that for all j ≥ 0, k ≥ 1, we have

c1
qj+k

qk
≤ q̂j ≤ c2

qj+k

qk
.

It follows that for any integers m ≥ 0, k ≥ 1,

m∑
j=0

q̂r
j+1

q̂s
j

≤ cr
2c

−s
1 qs−r

k

m∑
j=0

qr
j+k+1

qs
j+k

.

This proves Equation (0.1) in this case as well, and the proof of Proposition 3.1 is
complete.
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About Theorem 1.1
The dependence on k in Equation (0.1) unfortunately invalidates the method used to

prove that (for s > 2) Φs(α) :=
∑∞

k=1 cot(πnα)/ns converges if and only

∞∑
j=0

(−1)j qj+1(α)
qj(α)s

converges, (0.4)

and it invalidates as well the proof of Identity (1.11). I prove here the following weaker
version of Theorem 1.1 (the veracity of which remains unknown).

Theorem. We fix an irrational number α ∈ (0, 1). If s > 1 and if

∞∑
j=0

qj+1(α)
qj(α)s

< +∞, (0.5)

then the series Φs(α) converges absolutely. Moreover, if s > 2 and if (0.5) holds, we have
the identity

Φs(α) =
∞∑

j=0

(−1)j |qj−1α − pj−1|s−1Gs(T j(α)), (0.6)

where the series on both sides converge absolutely.

Identity (0.6) is formally the same as Identity (1.11), except that it is proved to hold
on a smaller set of irrational numbers.

I now present the proof of this theorem. Equation (0.5) is indeed a sufficient condition
for the convergence of Φs(α) when s > 1, as a direct application of Proposition 3.1 shows
with k = 0, f(x) = cot(x) and r = 1. We first correct a misprint: in §4.2 on page 527, the
function Fs(z, α) has (among others) poles at the points k/α where the positive integers
k are such that k ≤ Nα + α/2, and not just k ≤ Nα as written. Consequently, on the
right-hand side of Equations (4.1) and (4.5), [Nα] must be replaced by [Nα + α/2]. We
thus have

N∑
n=1

cot(πnα)
ns

= −αs−1

[Nα+α/2]∑
n=1

cot(πnT (α))
ns

+ Gs(α) + O(
EN (α)

)
. (0.7)

The error term EN (α) is still bounded as in (4.6) on page 528, the computations leading
to (4.6) being unchanged. In particular, EN (α) → 0 when s > 2. Observe now that by
Equation (0.1), Assumption (0.5) implies the absolute convergence of all the series

Φs

(
T k(α)

)
:=

∞∑
n=1

cot(πnT k(α))
ns

, k ≥ 0,

when s > 1, hence a fortiori for s > 2. Hence, under (0.5) and for s > 2, we can in
particular let N → +∞ in (0.7) and we get

Φs(α) = −αs−1Φs(T (α)) + Gs(α).
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We now iterate this equation: for all integer � ≥ 0, we have

Φs(α) = (−1)�+1
(
αT (α) · · ·T �(α)

)s−1Φs

(
T �+1(α)

)
+

�∑
j=0

(−1)j
(
αT (α) · · ·T j−1(α)

)s−1
Gs

(
T j(α)

)
. (0.8)

Letting N → +∞ in Equation (0.1), we obtain

|Φs

(
T �+1(α)

)| � qs−1
�+1

∞∑
j=�+1

qj+1

qs
j

,

where the implicit constant is independent of �. Since αT (α) · · ·T �(α) = |q�α − p�| <
1/q�+1, we deduce that

∣∣∣(αT (α) · · ·T �(α)
)s−1Φs

(
T �+1(α)

)∣∣∣ � ∞∑
j=�+1

qj+1

qs
j

→ 0

when � → +∞ because of Assumption (0.5). From (0.8), we thus immediately deduce
that the series

∞∑
j=0

(−1)j
(
αT (α) · · ·T j−1(α)

)s−1
Gs

(
T j(α)

)
(0.9)

also converges under (0.5) and that it is equal to Φs(α). In fact, since |Gs(α)| � 1/α, it
is proved directly that the series (0.9) converges absolutely under (0.5). This completes
the proof of the above theorem.

About Theorem 1.2
The statement of Theorem 1.2 remains valid but a few modifications have to be made

to its proof. Given s > 2, we consider the hypothesis

∞∑
j=0

qj+1(α)2

qj(α)s
< +∞, (0.10)

which corresponds to the convergence of the series (1.14) on page 518. Given s > 2,
Equation (0.10) is a necessary and sufficient condition for the convergence of Φ̂s(α): this
is still an immediate consequence of Lemma 3.2. From now on, s is assumed to be fixed
and > 2; this fact will no longer be mentioned.

For latter use, we first prove a technical property: the series
∑∞

j=0 qjqj+1

∑∞
n=j(qn+1/

qs+1
n converges under (0.10). For this, it is enough to prove that

∑∞
n=0(qn+1/qs+1

n )
∑n

j=0

qjqj+1 converges under (0.10), and then to invoke Tonelli’s theorem to justify
that

∑∞
j=0 qjqj+1

∑∞
n=j(qn+1/qs+1

n ) =
∑∞

n=0(qn+1/qs+1
n )

∑n
j=0 qjqj+1 < +∞. Now, it is

proved that
∑n

j=0 qj ≤ 3qn on page 199 of B. Martin & M. Balazard, Comportement local
moyen de la fonction de Brjuno, Fundamenta Mathematicae 218 (2012), 193–224. Hence∑n

j=0 qjqj+1 ≤ 3qnqn+1 and qn+1/qs+1
n

∑n
j=0 qjqj+1 ≤ 3(q2

n+1/qs
n). The result follows.
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We first correct a misprint: [Nα] must be [Nα + α/2] in Equation (5.2), but this is
harmless. Indeed, we can still let N → +∞ in the corrected Equation (5.2) because the
convergence of the involved series holds under (0.10), by Proposition 3.1. Hence, the
identity

∞∑
k=1

1
ks sin2(πkα)

= αs−2
∞∑

k=1

1
ks sin2(πkT (α))

+
s

π
αs−1

∞∑
k=1

cot(πkT (α))
ks+1

+ Ĝs(α)

remains valid. The convergence of
∑∞

k=1(cot(πkT (α))/ks+1) holds (at least) when∑∞
j=0 qj+1/qs+1

j < +∞ and s > 0, hence at least when (0.10) holds. On page 535, it
is said that Equation (5.5) is bounded independently of j by Proposition 3.1, but this is
no longer true with the above correction. Hence, a certain number of modifications must
then be made on pages 535 and 536. We start with some general considerations. It is
true that Φs+1(T j(α)) converges absolutely for any fixed j ≥ 0 when (0.10) holds, and
the corrected Proposition 3.1 now implies that

∣∣Φs+1(T j(α))
∣∣ � qs

j

∞∑
k=j

qk+1

qs+1
k

(0.11)

where the implicit constant does not depend on j. We then have

Φs+1(T j(α)) =
∞∑

n=0

(−1)n
(
T j(α)T j+1(α) · · ·T j+n(α)

)s
Gs+1(T j+n(α)),

where both series converge absolutely under (0.10). Since |Gs(α)| � 1/α, where the
implicit constant depends on s only, we have as well

∞∑
n=0

∣∣(T j(α)T j+1(α) · · ·T j+n(α))sGs+1(T j+n(α))
∣∣ � qs

j

∞∑
k=j

qk+1

qs+1
k

(0.12)

where the implicit constant does not depend on j. We can now explain what must be
changed to correct the proof of Theorem 1.2 starting from page 535. It is still true that
we can let N → +∞ in (5.2) because the series Φs+1(T (α)) in (5.5) converges by (0.11)
with j = 1. For the same convergence reasons, Equation (5.6) holds as well and the next
task is to justify that we can let J → +∞ in (5.6). On page 536, the convergence of∑∞

j=0(αT (α) · · ·T j(α))s−2Ĝs(α) holds under the convergence of the series (1.14) because
|Ĝs(α)| � 1/α2. We still have

lim
J→+∞

(αT (α) · · ·T J(α))s−2Φ̂s(T J+1(α)) = 0

because, by (0.1), we have

∣∣Φ̂s(T J+1(α))
∣∣ � qJ+1(α)s−2

∞∑
j=J+1

q2
j+1

qs
j
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where the implicit constant is independent of J . Since αT (α) · · ·T J(α) = |qJα − pJ | <
1/qJ+1, we deduce that

∣∣∣(αT (α) · · ·T J(α)
)s−2Φ̂s

(
T J+1(α)

)∣∣∣ � ∞∑
j=J+1

q2
j+1

qs
j

→ 0

when J → +∞ because of the convergence of the series (1.14). Finally, the series

∞∑
j=0

(
αT (α) · · ·T j−1(α)

)s−2(T j(α))s−1Φs+1

(
T j+1(α)

)

also converges because by (0.11) (with j changed to j + 1), we have

∣∣∣(αT (α) · · ·T j−1(α)
)s−2(T j(α))s−1Φs+1

(
T j+1(α)

)∣∣∣ � qjqj+1

∞∑
n=j+1

qn+1

qs+1
n

and, as shown above, the series
∑∞

j=0 qjqj+1

∑∞
n=j+1 qn+1/qs+1

n converges under (0.10).
This corrects the argument given on the first seven lines of page 536, and consequently
Equation (5.7) remains true. The rest of the argument on pages 536–537 consists in
justifying that we can exchange the summations in a double series. Again the given
argument does not hold because on lines −7 and −6, it is in fact not true that the series
is bounded independently of j. But as mentioned above, Equation (0.1) leads to the upper
bound (0.12) which is enough to prove that the series

∞∑
j=0

∣∣(αT (α) · · ·T j−1(α))s−2(T j(α))s−1
∣∣ ∞∑

m=0

∣∣(T j+1(α) · · ·Tm+j(α))sGs+1(Tm+j+1(α))
∣∣

converges, and the exchange of summations is still justified by Fubini’s theorem. After
that point, the rest of the argument is not changed. This corrects the proof of Theorem 1.2.

About Theorem 1.3
The statement of Theorem 1.3 remains valid but a few modifications have to be made

to its proof. In Equations (6.1)–(6.3), [Nα] must be changed to [Nα + α/2], but again
this is harmless because we can still let N → +∞ to obtain (6.4)–(6.6). The proof of
Theorem 1.3 then goes unchanged till the final sentence ‘We conclude this proof with the
remark that it is important that not only are the three series on the left-hand sides of
(6.4)–(6.6) convergent but their sums are bounded independently of k (this is ensured by
Proposition 3.1)’. As shown above, the bounds deduced from (0.1) do depend on k and
the conclusion can not be obtained as quickly. However, these bounds are of the same
form as those used to correct Theorem 1.1 and the same method proves Theorem 1.3.
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