HIGH-RESOLUTION 3µm SPECTROSCOPY OF EXTREME CARBON STARS

J.-P. Maillard¹, S.C. Foster², T. Amano³, P.A. Feldman³

ABSTRACT. We have used the Cassegrain-focus Fourier Transform Spectrometer of the Canada-France-Hawaii Telescope to record highresolution (0.03 cm⁻¹), high signal-to-noise ratio spectra of the extreme carbon stars IRC+10°216 and CIT6 in the 2850-3100 cm⁻¹ region. Upper limits were obtained for the column densities of silicon nitride (2-0 band of the A-X system), ethylene (v_{11} fundamental band at $v_0 =$ 2988.7 cm⁻¹), and ethane (v_7 fundamental band at $v_0 =$ 2985.4 cm⁻¹).

RESULTS

1. Silicon Nitride (SiN)

In IRC+10°216, for a linewidth of 0.09 cm⁻¹ and an assumed temperature of 175K [cf. SiH₄, Goldhaber and Betz (1984)], the absence of 0.5 percent absorption (S/N~300) corresponds to a 30 upper limit for the column density of SiN that is 7×10^{-13} cm⁻². We have calculated the Franck-Condon factor to be 0.110 for the 2-0 band of the A-X system (Foster <u>et al.</u>, 1985) and have used the r-centroid approximation to estimate the transition dipole matrix element = 0.768 D at \vec{r} = 1.515 Å from <u>ab-initio</u> MRD-CI calculations by P. Bruna (private comm. 1985). The maximum populated level at T=175K is J=8.5 (for which the Honl-London factor was calculated to be 2.5). Recently, the possibility has been raised by Hirota (private comm. 1986) that the 3.3 µm band measured by Foster <u>et al.</u> is, in fact, the 1-0 band. This is not expected to alter our conclusions in any substantial way.

- Département de physique, Université de Montréal, Montréal, Qué.
 H3C 3J7, Canada; Current Address: Institut d'astrophysique, 98
 Bis Blvd Arago, 75614 Paris, France
- 2 Herzberg Institute of Astrophysics, NRC of Canada, Ottawa, Canada KlA OR6; Current Address: Chemistry Dept., Ohio State Univ., Columbus, Ohio.
- 3 Herzberg Institute of Astrophysics, NRC of Canada, Ottawa, Canada K1A OR6

387

M. S. Vardya and S. P. Tarafdar (eds.), Astrochemistry, 387–390. © 1987 by the IAU.

2. Ethylene (C₂H₄)

In the 3.3 μ m ν_{11} fundamental band the strongest single unobscured line is $P_0(14)$ or $13_{0,13}$ -14_{0,14} at 2964.14 cm⁻¹, for which the line absorption coefficient is 3.54×10^{-2} torr⁻¹ cm⁻¹ at 295K (Pine 1980). Adopting 0.5 percent absorption as the minimum detectability and correcting for the linewidth of IRC+10°216 (0.09 cm⁻¹), N(C₂H₄) $\leq 6 \times 10^{-6}$ cm⁻².

We have measured the absorption spectrum of the v_{11} band of C₂H₄ at 300K and 0.09 cm⁻¹ resolution using a BOMEM FTS in our lab to facilitate comparison with the CFHT spectra of IRC+10°216 and CIT6. This had enabled us to estimate the absorption coefficient of a strong blended feature at 2962.5 cm⁻¹ (the strongest non-obscured feature in the v_{11} band) to be 8.91×10^{-2} torr⁻¹ cm⁻¹ at 300K. This leads to a slightly more stringent upper limit for N(C₂H₄), namely \leq 3x10⁻¹⁶ cm⁻².

C₂H₄ was reported to be present in the envelope of IRC+10°216 by Betz (1981) who used heterodyne spectroscopy with an $N_{2}O$ laser to observe the 5_{15} - 5_{05} and 1_{10} - 0_{00} transitions of the v_7 band (10.5 µm). At this wavelength the effective path length for absorption-line observations through the stellar envelope is longer than at 3.3 μ m. A column density N(C₂H₄) ~ 10¹⁶ cm⁻² was reported. We have measured the absorption coefficients for the individual lines of C2H4 reported by Betz in our lab with a diode laser apparatus and with a BOMEM FTS rather than rely on the absorption coefficient of the entire band (Golike et al., 1956). This is necessary since the V7 band is Coriolis coupled to v_{10} . The 515-505 line at 951.7 cm⁻¹ has $\alpha_{max} = 0.28$ torr⁻¹ cm⁻¹ and the $l_{10}-0_{00}$ line at 954.8 cm⁻¹ has $\alpha_{max} = 0.18$ torr⁻¹ cm⁻¹ at 300K. Our revised column densities for the lines reported by Betz are thus ≈ 4 and 2x10 cm⁻², respectively. Hence cm⁻², respectively. our non-detection of C2H4 in IRC+10°216 seemed somewhat surprising since our 3µm upper limits are comparable to the (corrected) column densities of Betz (1981). However, at this meeting Betz (1987) reported the likely detection of as many as 6 transitions of C2H4 (V7 band) consistent with a column density of $\approx 5 \times 10^{15}$ cm⁻²

3. Ethane (C_2H_6)

In the 3.3 μ m ν_7 band of C₂H₆ the strongest unobscured rotationally assigned line is ^rQ₂(10) or 10₃-10₂ at 2993.460 cm⁻¹, for which the line absorption coefficient is 0.58 torr⁻¹ cm⁻¹ (Pine and Lafferty 1982). Again, the non-detection of a 0.5 percent absorption line in IRC+10°216 leads to N(C₂H₆) $\leq 2x10^{-16}$ cm⁻² at 300K, where we have adopted a linewidth of 0.09 cm⁻¹ and corrected for the temperature used in Pine and Lafferty's experiment.

We have measured the absorption spectrum of the v_7 band of C_{2H_6} at 300K and 0.09 cm⁻¹ resolution with a BOMEM FTS in our lab, to facilitate comparison with the CFHT spectra of IRC+10°216 and CIT6. This has enabled us to estimate the absorption coefficient of a strong blended feature at 2990.1 cm⁻¹ (the strongest non-obscured feature in the v_7 band) to be 1.09 torr⁻¹ cm⁻¹ at 300K. This enables us to quote a much more stringent upper limit for N(C₂H₆) in IRC+10°216, namely $\leq 4 \times 10^{-10}$ cm⁻².

TABLE 1

UPPER LIMITS TO COLUMN DENSITIES OF MOLECULES IN CIRCUMSTELLAR ENVELOPES OF EXTREME CARBON STARS AT 3.3 MICRONS

				3-σ UPPER LIMITS	
			Т	TO COLUMN	
STAR	MOLECULE	BAND	(ASSUMED)	DENSITY N	NOTES
IRC+10°216	Sin	$A^{2-0}, A^{2}\Pi_{i} - X^{2}\Sigma^{+}$	175К	$7 \times 10^{13} \text{ cm}^{-2}$	1
	C2H4	v11	300	3x10 ¹⁶ for blend 6x10 ¹⁶ for ^q P ₀ (14)	2
	C2H6	v ₇	300	4×10^{15} for blend 2×10^{16} for ${}^{r}Q_{2}(10)$	
CIT6	SIN	2-0, A ² Π _i -x ² Σ+	175	$4 \times 10^{14} \text{ cm}^{-2}$	
	C2H4	v ₁₁	300	2x10 ¹⁷ for blend	
	C2H6	ν ₇	300	2x10 ¹⁶ for blend	

NOTES:

1 < 2.7x10¹² cm⁻² (Ziurys et al., 1984), radio, N=2→1, 2'3 arc beam. 2 ≈ 2-4x10¹⁶ cm⁻² (Betz 1981), 10.5 µm absorption (ν₇); ≈ 5x10¹⁵ cm⁻² (Betz 1987), 10.5 µm absorption (ν₇).

REFERENCES

Betz, A.L. (1981), Astrophys. J. (Letts) <u>244</u>, L103.
Betz, A.L. (1987), These Proceedings.
Foster, S.C., Lubic, K.G., and Amano, T. (1985), J. Chem. Phys. <u>82</u>, 709.
Goldhaber, D.M., and Betz, A.L. (1984), Astrophys. J. <u>279</u>, L55.

389

- Golike, R.C. Mills, I.M., Person, W.B., and Crawford, B., Jr. (1956), J. Chem. Phys. 25, 1266.
- Pine, A. (1980), MIT Lincoln Laboratory Report No. NSF/ASRA/DAR-78-24562.
- Pine, A.S., and Lafferty, W.J. (1982), J. Res. Nat. Bureau Standards (US) <u>87</u>(3), 237.
- Ziurys, L.M., Clemens, D.P., Saykally, R.J., Colvin, M., and Schaefer, H.F. (1984), Astrophys. J. 281, 219.