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REGULAR AND STRONGLY FINITARY STRUCTURES
OVER STRONGLY ALGEBROIDAL CATEGORIES

GUNTER MATTHIESSEN

Introduction. Most properties an algebraist needs in categories are re-
flected by regular functors, introduced in [6]. If G : 2 — % is a regular and
strongly finitary functor and . has some nice properties, it can be shown that
the left adjoint functor of G helps to characterize finitary and strongly finitary
objects of /. The property of being algebroidal can be lifted from % to 4 if a
certain condition holds in 2#". As an application, the implicational hull of sub-
categories can be constructed with the help of reduced products.

1. Regular categories and regular functors. In the following we often
need regular categories with direct limits. . is a regular category with direct
limits, if and only if the following two conditions hold in .%:

(A) & is regular (cf. [6]), i.e. every source (f; : X — X,|¢ € I) has a factoriza-
tion
X-f—’>Xi = x5y 2 x,
where e is a regular epimorphism and (m;: ¥ — X,|i € I) is a mono-
source. (I may be a proper class; also, I may be empty).
(B) . has direct limits, i.e. for any direct family (fi : 4, — At S k €1)
there exists a colimit (f;: 4, — Al|i € I), which is called a direct limat.

1.1 Definitions (cf. [6, Def. 2.1]). Let.% be a regular category and G : # —.%
be a functor. G is called a regular functor, if and only if the following two condi-
tions hold:

(A) G has a left adjoint functor.
(B) G creates regular factorizations.

1.2 Convention. In the following context we will suppose that % is a regular
category, G : 4 — % is a regular functor with left adjoint F, front adjunctions
nx : X — GFX and back adjunctions e4 : FGA — 4.

1.3 Definition. (cf. [7, p. 184]) Let g : X — GA be an .¥’-morphism. We say
that g extremely G-generates A, if and only if

(AYforall , s: A — = Gr-g=Gs-g=r =s, and
(B) for every monomorphism m : B — A with g = Gm - f, m is an isomor-
phism.
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It is clear that g: X — GA extremely G-generates 4 if and only if ¢, - Fg:
FX — A is extremal epi. In the following we shall always omit the reference to
the functor and simply say ‘‘g generates 4"’ instead of “‘gextremely G-generates
A7,

Since ¢ is a regular category [6, Prop. 2.3] and since for regular categories
extremal epimorphisms are regular epimorphisms, it is a simple task to prove
the following proposition.

14 If G : A — S is a regular funclor, for a morphism g : X — GA the follow-
ing conditions are equivalent:

(1) g extremely G-generates A.

(ii) FX eA_E A 1is a regular epimorphism.

For an object 4 ¢ Ob.3# we will call a diagram
r
RT3 FX -S54
s

a presentation (of A), if and only if (¢, 4) is a coequalizer of {r, s).

By Proposition 1.4 and since lgq : GA — GA extremely G-generates A4,
we have the following.

1.5 THEOREM. Every object A ¢ Ob 2 has a presentation.

2. Finitary and strongly finitary functors.
2.1 Definitions. Let G be a functor.

1) G is finitary if and only if it for any direct limit {f;: 4, — A ) the sink
(Gf;: GA,— GA) is an epi-sink.

2) G is sirongly finitary if and only if it preserves direct limits.

3) An object 4 of a category.¥ is (strongly) finitary if and only if the functor
hom (4, +) : ¥ — Set is (strongly) finitary.

4) A category.? is (strongly) algebroidal, if and only if for any object 4 there
is a direct limit {f, : 4; — A4 ) where all the objects 4, are (strongly) finitary.

In [2] finitary objects are called NXo-small; algebroidal categories are called
No-algebroidal.

The proofs of the following lemmas are straightforward:

2.2 LEMMA.

1) An object A 1s finitary if and only if for every direct limit {f;: By — B)
and every morphism f: A — B there exists an index k and a morphism g :
A — By suchthalf = f; - g.

2) An object A is strongly finitary if and only if it is finitary and for every pair
of morphisms g1, g2 : A — B, with f,- g1 = f;+ g there exists an index k£ = ¢
andfy - g1 = fu - o
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2.3 LEMMA. Let A be (strongly) finitary and v : A — B be a retraction. Then B
is (strongly) finttary.

2.4 COROLLARY. Let.¥ be any category. The following conditions are equivalent:
(i) & is algebroidal and every finilary object is strongly finitary.
(ii) & is strongly algebroidal.

Proof. (i) = (ii) is obviously true. (ii) = (i): Let B be finitary and
(fi: B;— B) be a direct limit of strongly finitary objects. There exists an
index 7 and g : B — B, such that f;- ¢ = 1. f; is a retraction and thus B is
strongly finitary.

Convention. For the rest of this section the convention 1.2 holds. Moreover
we assume that .% has direct limits and G : ¥ —.% is strongly finitary.

2.5 LEmMA. If X € Ob.% is (strongly) finitary, then FX ¢ Ob.A s (strongly)
Sfinitary.

Proof. The functors hom (FX, ¢) and hom (X, G+) are naturally equivalent
and G preserves direct limits.

For objects of K we need the following definition.

2.6 Definition. An object 4 € Obf is

1) (strongly) finitarily generated, if and only if there exists a finitary (resp.
strongly finitary) object X € Ob . and a morphism g : X — GA extremely
G-generating A4;

2) (strongly) finitarily presented, if and only if there exists a presentation

14 >
R/ FX <54,
S

where R is (strongly) finitarily generated and X is (strongly) finitary.

For the following theorem and for later use we need the following lemma
whose proof is straightforward.

2.7 LEMMA. Let ¥ be a category, let H be a class of £ -objects such that for every
L -object A there exists an epi-sink (f;: A;— Al|t € I) with A, € H for 1 € I.
For a source {g;: B — By|i € I) the following conditions are equivalent:

(i) {gi: B — By|i € I)is amono-source; and

(i) for every pair of morphisms

y
C _+’ B with C ¢ H,
s

Vigi-r =g 5)=r=s.
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As a consequence in (strongly) algebroidal categories when testing whether
a source is a mono-source you need only consider pairs of morphisms with a
(strongly) finitary domain.

The next lemma is due to I. Németi (personal correspondence) and is crucial
for some theorems which follow.

2.8 LEMMA.

1) If £ 4s strongly algebroidal, direcl limits of monomorphisms are mono-
morphisms, which means the following: If (fu:A,— Ai S k€ I) and
(g : Bi— Byt S k € I) are direct families and (m,: A, — Bi|i € I) is a
famaily of monomorphisms such that for every 1 < k, my - fu = gu - my, and if
(fi: Ai— Ali € I) and {g,: B, — B|i € I) are direct limats of the families,
then the morphism m : A — B for which m -f; = g;-my for all 1 € I, is a
morphism.

2) If & is algebroidal, direct unions of subobjects are subobjects, 1.e. we consider
only the case that for 1 € I, B; = B and for1 < k, gy = 1p (Then the morphisms
fu are automatically monomorphisms).

A
;

—-»BA

Proof.1) Letm -r = m - s.

P

By Lemma 2.7 we can assume that C is strongly finitary. Thus there exists an
mdexzand morphisms 7, §such thatr = f;-?,s = f;,- §=2m- -f, - ? =m-f,-§

= g,- P o= gy omy s:>forsomek§1, g M P = gg-m;-§ =
mk'fik';:mk'fil"‘f:}fik'?=f1'k'§=>7’=fi'7¢=flf'f1k';=fk'fik'§=
fi'§=3.

2) In a similar way, we get by diagram chasing that m -7 = m - s =r = s,
assuming that C is a finitary object.

fa S

A——>4——>

My
¢ \

= §&‘<—»,,—°“
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2.9 THEOREM. If ¥ is (strongly) algebroidal, every object A of A is a direct

union of (strongly) finitarily generated objects.

Proof. Let (fi: B;— GAli € I)beadirectlimitof (fy: B;— Byt < k € I),
where the objects B; € Ob ¥ are (strongly) finitary. For every 7 € I let
(44, m;) be the subobject of 4 generated by B, i.e. there exists a morphism
g,: B;— GA, generating A such that f; = Gm; - g; (cf. [6, Prop. 2.13]).

For 71 < k we define m ., in the following way:

B, —* GA,
Moo

B, C)“,\:\:/ Gm;
S

ol Gm ¢y

¢, generates A, m; is a monomorphism and the square commutes. By Prop.
2.15 of [6] there exists a unique morphism m; such that 1 and 2 commute.
We show that (m;: 4;— Ali € I) is a direct limit of

M:=(my:A;—>Ai <k cI) Let(n;: A;—>Cli € I)

be a direct limit of M. There exists m : C — 4 such that for all 7 € I,
m:-n; = my.

S

131-——>Bk~—f‘—'+GA

é’fl gkl %Tlg
Gmik G’I’L;\-

GA,—>GA4,—>GC

Since the left squares commute (they are 1 in the first diagram of this proof)
there exists a morphism ¢ : GA — GC such that forallt € I, Gn;- g, = ¢ - fu
Since (f;: B;— GA|i € I) is an epi-sink and for all 7 € I,

Gm g -fi=Gm-Gni-gi=Gmy g =fi=lga-fu

we get Gm - g = lgyu, 1.e. Gm is a retraction. By Lemma 2.8 we see that Gm is
a monomorphism. So Gm is an isomorphism and since G reflects isomorphisms
m is an isomorphism, too. Thus {(m,: A, — A|7 € I)is a direct limit.

In [5] “No-erzeugbare Objekte’” are objects for which the functor hom (4, «)
preserves direct unions. In the next theorem we show that under the assump-
tion that % is (strongly) algebroidal the NRo-erzeugbaren Objekte are just the
(strongly) finitarily generated objects.

2.10 THEOREM. Let the category & be (strongly) algebroidal. For A € Ob.A
the following conditions are equivalent:
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(i) A s (strongly) finitarily generated.
(i) For every direct union (m;: B; — B) and every morphism f : A — B there
exists an index © and a morphism g : A — B, such that m, - ¢ = f.

Proof. (i) = (ii): Let (m,: B;— B) be any direct union and f : 4 — B be
any morphism and

v
RT3 FX—>4
N

be a presentation of 4 where FX is finitary which exists by 1.4. There exists
an index ¢ and & : FX — B, such thatf-e = m,- h.

B,— B
X

~
N
~
~

h N f

~
~
~

r 24 \\
R rx——5— 54
S

We have m;-h-r =f-e-r=f-e-s =m;-h-s and since m; is a mono-
morphism, & -7 = k - 5. Since ¢ is a coequalizer of (r, s), there exists g : 4 — B,
with g-e = h. Thus we have m;-g-e =m;-h = f-e, and since e is an
epimorphism, m ;- g = f.

(i1) = (i): By Theorem 2.9 there exists a direct union m,: 4;— A where
the objects 4 ; are (strongly) finitarily generated. By assumption there exists
an index ¢ and a morphism g : 4 — A, such that m,-g = 1, - m, is a retrac-
tion and a monomorphism, thus an isomorphism. Therefore 4 is (strongly)
finitarily generated.

2.11 THEOREM. Let A € Ob.¥ be any object. If S is strongly algebroidal the
conditions are equivalent:
(1) A is finttarily presented.
(1) A 1s strongly finitarily presented.
(iii) A4 is strongly finitary.
(iv) A 1s finitary.

Proof. (ii) = (i) and (iii) = (iv) are trivial and (i) = (ii) and (iv) = (iii)
are consequences of Corollary 2.4.

(i) = (iv) : Let

7/ 2]
RT3 rx—45>4
S
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be a presentation where FX is strongly finitary and let R be strongly finitarily
generated. Let ¢/ : FZ — R be a regular epimorphism where Z € Ob ¥ is
strongly finitary. Let (f;: B; — B) be a direct limit of (fy : B; — By) and let
g : A — B be any morphism.

By ——-——)B

e 2
i e

A N : FX ——————4

Since FX is finitary there exists an index ¢ and # : FX — B, such thatg-e =
fi-h. Thuswehavef,-h-r-¢ =g-e-r-e =g-e-s-¢ =f;-h-s-¢ and
since FZ is strongly finitary there exists an index k with fy - h-7-¢ =
fu-h-s-e. ¢ is an epimorphism and therefore fy - h -7 = fu-h-s. (e, 4)
is a coequalizer of (r, s), thus there exists d : 4 — By, with d-e = fy - h
Summarizing the equalities we get g-e =f;-h =fi - fuy-h = fi-d-e and
since ¢ is an epimorphism g = f; - d

(iv) = (ii): Let 4 be finitary. 4 satisfies the condition (ii) of 2.10 and is
therefore strongly finitarily generated. Let
7’ el
RTZFX-—» 4.
be a presentation where X is strongly finitary. Let (f;: R; — R) be a direct
limit with strongly finitarily generated objects R ;. For every index 7 let {(e;, 4 ;)

be a coequalizer of (r - f;, s - f;), i.e. 4, is strongly finitarily presented. Since
colimits commute, A4 is a direct limit of the objects 4 ,.

[ fr
Ry—— R, ———> R
r fl S fz 4 fA S fA ¥ l\\'
1 Y
FX —> X > ['X
e e ¢
A, £ ik > A, Lk > A

Since 4 is finitary there exists an indexzand 2 : 4 — 4 ;such thatg, - h = 1,.
Sowehaveg; - h-g;-e; = g;-¢; and since FX is strongly finitary there exists
an index B and gy - h-g; e = gy - €i gu - b is an epimorphism, being a left
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factor of g4 - ¢; = e, and a section because of g - gy - h = g, h = 1,; thus
g4 b 1s an isomorphism. Since 4 is strongly finitarily presented the same holds
for 4.

2.12 THEOREM. If .Y is strongly algebroidal and in A every free object is a
direct union of finitary free objects, then A is strongly algebroidal.

Proof. Because of Corollary 2.4 we need not distinguish between finitary and
strongly finitary objects. Let 4 be any object of 2 with a presentation

14
R rx—4>4a.
N

By Theorem 2.9 R is a direct union of finitarily generated subobjects of R;
let (¢; : Ry — R|1 € I)beacolimitof ({4 : R;— Rii < k € I) where all the
morphisms /; are monomorphisms. Furthermore, let (f, : FX, — FX|u € M)
be a colimit of {f,, : FX, — FX,|p £» € M) where the morphisms f, are
monomorphisms and FX, are finitary objects. By Theorem 2.10 there exists
for every ¢ € I a p € M and a morphism 7, : R; = FX, such that r-¢; =
fu* 7. By the same reason there exists g € M and s : R; — FX; such that
s+ t; = fa+ sp These morphisms 74, and s; are unique because f, and f; are
monomorphisms.

LetA: = {{{, M) FraTsar-ti=H-ra As-t;=f-sa}. Let (4, \) =
Gyk)y: ©1 =jJANZ=S«k Let P;: A— I and Py : A— M be the projec-
tions. P ; is surjective and Py maps A on a cofinal subset of M because fu, * 54 =
sy and fyuy - 74 = 74, P and Py are monotone mappings. By the following
lemma (¢;: R;— R|(3, \) € A) and (fy: FX), — FX|{i, \) € A) are direct
limits. For (7, \) € A let {ea, 4a) be a coequalizer of {ry, si). Since colimits
commute, 4 is a direct limit of the objects 4 j.

jgi———->t'“' Re —2 5

Yiul |Siu iy Sk s

Sur /

FX, 2> FX,———FX

€iu Cry 14

Ay > Ay, > A
2.13 LEMMA. Let I and J be direct partially ordered sets and ¢ : I — J be a
monotone and surjective mapping. Let D : = (fy : A;—> At S k € T) be a
direct family and let (f;: A;— Alt € J) a colimit of D. Then (fow : Aoy —
AlL E I) ’iS a colimit Of D(p L= <f‘p(L),¢(,() . A‘o(t) —>A¢(K)'L é K € I>

Remark. In the proof of this lemma you need only that I isa direct category
(i.e. for objects ¢, k there exists an object A and morphisms « — X\, x = \) and
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that J is a partially ordered category and that ¢ : I — J is a functor which is
surjective on the objects.

3. Reduced products and ultraproducts.

3.1 Definition (cf. [4]). Let & be any category with products and direct
limits and let (4, € I) be a family of .#-objects; let # be a filter basis on
the power set ZI. For J € # let 11,4 : = 11(4,}i € J) and for K C J,
KeF, JeF let px: 11,4 - 1Ixd be the induced projection. Let
(ps: ;4 5 TIA/F|T € F) be a direct limit of

{pisx HJA - HKAl.] 2K 637>

The object 114 /F is called a reduced product. If # generates an ultrafilter,
114/ is called an ultraproduct.

Remark 1) We admit that the empty set is an element of the filter basis—
in which case we yield terminal objects.

2) If the filter basis consists solely of I, a reduced product is a product.

3) If we substitute the filter basis by the filter generated by it, the reduced
product does not change. Thus we might assume that.% is a filter.

In the set theoretic model theory it is well known that the closedness under

the following constructions is equivalent:
(i) subobjects, products, direct limits

(ii) subobjects, reduced products

(iii) subobjects, products, ultraproducts.
Before we show that these conditions are equivalent in regular, strongly
algebroidal categories with direct limits we need a lemma which holds in any
category and whose proof is straightforward.

3.2 LEMMA (cf. Def. 3.1). Let (A,|t € I) be a family of objects and G < PI
be any family of subsets of I, let G: = \U 9. For a pair of morphisms

4
C—",II,A
N

the following conditions are equivalent:
(l) er g,pn{ﬂ’ = pIK'S'
(i) pre 7 =pre-s.
3.3 THEOREM. Let A be a regular, strongly algebroidal category with direct
limits and products. For a subcategory L the following condilions are equivalent:
(i) & is closed under subobjects, products and direct limits.

(ii) & 1s closed under subobjects and reduced products.
(iii) & is closed under subobjects, products and ultraproducts.

Proof. (i) = (ii) = (iii) is obvious.
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(ii) = (i) We must show that ¥ is closed under direct limits. Let
(fi: A;— A1 € T) be a colimit of (fy:4;— At S k€ I)whered, € Ob¥
for i€ I. For i€ let I,: ={k€Ilk=1i} and P,: = II,,4 with the
projections p7 4 : P, — A, for © < k. The set {I,|7 € I} is a filter basis and let

P € .¥ be the reduced product. For ¢ € I, let m,: A, — P, be the morphism
which factors (fulk € I,) through (prulk € 1.), ie. fu = pro - m.
X Je 44
m

A A
" IJ J prkk J
P, P

— P, — — —
i Pk

Especially 1 = f;; = pry - m, for every ¢ € I, i.e. m, is a section and thus a
monomorphism. For 7 < k and every [ = k we have pry, - py - m; = pry - my
=fu=fufu = pri-my- fu and therefore py - my = my - fy. Thus there
exists a unique morphism m : A — P for which m - f; = m,- p, for all 7 € I.
As a direct limit of monomorphisms 7 is a monomorphism and thus 4 € Ob.%.

(iii) = (ii): Let (4,i € I) be a family of #-objects and & be a filter on
PI. Let {E,lu € M} be the set of all ultrafilters on ZI for which &, D% .
For each u € M let (p#,: I1,4 - I14/&,|J € &,) be a direct limit. Since
&, D %, we have exactly one homomorphism ¢ : [14/# —114/&, with
pry = g* - psforall J € #. We claim that {¢* : [14/F — 114/&,|u € M)is
a mono-source, which completes the proof.

3
II, AT 314 /&,
i

Let

7
B 114/#
s
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be a pair of K-morphisms and ¢* -7 = ¢# - s for all p € M. By Lemma 2.7 we
assume that B is strongly finitary. There exists J € # and #,§: B — 11,4
such that p; - # = r and p; - § = 5. Thus we have forall p € M,

Gry P =g pyt=grer=gtrs = ... = ¢S

Since B is strongly finitary there exists for every up € M, L, € &, such that
Prra-? = pru- 8 Let L: = U (L,Ju € M). L is an element of %, because
LeN(EuueM)=F.

For a subcategory £ C X letS & be the class of subobjects of £ and P %
be the class of reduced products of & . S is trivially a closure operator while in
(1] it is shown that P is a closure operator if %" is strongly algebroidal. The next
proposition shows that PS.¥ C SP.Z.

3.4 PROPOSITION. Let & be a subcategory of the regularly finitary category A~
which has products, and let (A3 € I) be a family of £ -objects, for i € I, let
my: By — A, be a monomorphism and let F be a filter basis on & I. The object
11B/F is a subobject of 114 /F .

Proof. Since products preserve monomorphisms, for any J € % II,B is a
subobject of II;4. The proposition follows because direct limits of mono-
morphisms are monomorphisms (Lemma 2.8.1).

4. Applications. In [2], X¢-implicational subcategories are defined. A sub-
category L of K is called NRo-tmplicalional if and only if there exists a class H
of regular epimorphisms with finitary domains such that the objects of & are
exactly the H-injective objects of 9. If 4 is strongly algebroidal the No-
implicational classes can be described by closure properties.

The following theorem is well known in the case of algebras (cf. for example

(8D).

4.1 THEOREM. Let A be a regular, strongly algebroidal category with products
and direct limits. For a subcategory.¥ of A the following conditions are equivalent:
(i) & is Ro-implicational.
(ii) & is closed under subobjects, products and direct limits.
(iii) & s closed under subobjects and reduced products.
(iv) & 1s closed under subobjects, products and ultraproducts.

Proof. (i) & (ii) is proved in [2] and (ii) < (iii) < (iv) is Theorem 3.3.
With help of Proposition 3.4 we immediately get the following result.

4.2 THEOREM. Let # be a regular, strongly algebroidal category with products
and direct limits. Let £ be a subcategory of . The Ro-implicational hull of £
isSPYZ.

4.3 Let Q be an operator domain (cf. [3]) and ¢ ¢ be the category of Q-
algebras and Q-homomorphisms, let U : 2 ¢ — Set be the forgetful functor.
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U is regular and strongly finitary and Set is regular and strongly algebroidal
and has direct limits. Moreover the left adjoint of U preserves monomorphisms
and thus every free object (in 2 o) is a direct union of finitarily generated free
objects. Therefore the finitary objects of J# o are exactly the finitarily U-
presented algebras and J# ¢ is algebroidal and regularly finitary.

The same holds for categories of heterogeneous algebras (cf. [9]). By the propo-
sitions in Section 2 one needs only show that the forgetful functor is regular and
strongly finitary and that the category Set¥ is strongly algebroidal, regular and
has direct limits. The left adjoint of the forgetful functor U : ¢ 4 — Set¥ pre-
serves monomorphisms—but there exist equational classes where not every
free object is a direct union of finitary free objects.
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