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Abstract. The continuum has been one of the most controversial topics in mathematics since
the time of the Greeks. Some mathematicians, such as Euclid and Cantor, held the position that
a line is composed of points, while others, like Aristotle, Weyl, and Brouwer, argued that a line
is not composed of points but rather a matrix of a continued insertion of points. In spite of this
disagreement on the structure of the continuum, they did distinguish the temporal line from the
spatial line. In this paper, we argue that there is indeed a difference between the intuition of the
spatial continuum and the intuition of the temporal continuum. The main primary aspect of
the temporal continuum, in contrast with the spatial continuum, is the notion of orientation.

The continuum has usually been mathematically modeled by Cauchy sequences and the
Dedekind cuts. While in the first model, each point can be approximated by rational numbers,
in the second one, that is not possible constructively. We argue that points on the temporal
continuum cannot be approximated by rationals as a temporal point is a flow that sinks to the
past. In our model, the continuum is a collection of constructive Dedekind cuts, and we define
two topologies for temporal continuum: 1. oriented topology and 2. the ordinary topology.
We prove that every total function from the oriented topological space to the ordinary one is
continuous.

§1. Introduction. Mathematicians have long been divided into two philosophical
camps regarding the structure of the continuum. Some, like Euclid [12] and Cantor
[7, 11], view the continuum as a composition of points. On the other hand, others,
including Aristotle [2], Weyl [4, 19], and Brouwer [5, 6], consider it as a whole, not
composed of points.

In this paper, we aim to highlight another distinction, namely, between what we refer
to as the spatial continuum and the temporal continuum. We will model the temporal
continuum using a specific type of Dedekind cuts that illustrate this difference.

The main distinction between the spatial continuum and the temporal continuum
lies in the notion of orientation: the temporal continuum is oriented, moving exclusively
from the past to the future, and it is impossible to move in the opposite direction1. Our
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1 In this paper, we assume that ‘time is directed’ without delving into detailed arguments.
Numerous works have explored the direction of time from both physical and philosophical
perspectives; for further reading, refer to [15, 16].
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2 MOHAMMAD ARDESHIR AND RASOUL RAMEZANIAN

subjective experience reinforces this clear differentiation between the future and the
past. We can vividly remember the past, whereas the future remains uncertain. Our
ignorance of future events, including our own choices and actions, contributes to the
concept of free will. Conversely, we lack the ability to alter the past due to the absence
of free will in that direction.

We can affect the future by our actions: so why can we not by our
actions affect the past? The answer that springs to mind is this: you
cannot change the past; if a thing has happened, it has happened, and
you cannot make it not to have happened [10].

The primary objective of this paper is to propose a model for the continuum
that incorporates the concept of orientation. To achieve this, we will introduce a
formalization of orientation through a specific type of Dedekind cuts, which we will
refer to as oriented Dedekind cuts.

Brouwer and Weyl emphasized two essential aspects of the intuitive continuum,
which are inexhaustibility and non-discreteness (also referred to as non-atomicity) (see
[3, p. 86]). The concept of choice sequences is motivated by these characteristics. Non-
lawlike sequences signify the continuum’s inexhaustibility, and identifying points with
unfinished sequences of nested intervals reflects its non-discreteness (see [3, p. 87]).
Defining points as choice sequences of nested intervals captures the notion that a point
on the continuum is not a dimension-less atom but rather a halo.

As choice sequences are non-predetermined and unfinished entities, the value of
every total function from choice sequences to natural numbers relies on an initial
segment of sequences. Brouwer leverages this property to demonstrate that every total
function over the continuum is continuous.

Both the spatial continuum and the temporal continuum share the aforementioned
aspects. However, a defining characteristic of the temporal continuum is the concept of
orientation. “Duration” is a continuous becoming, always moving towards the future. In
the spatial continuum, movement is possible in both directions. To introduce witnesses
for points on the spatial line, one may proceed by introducing witnesses for all points
in the segment [– 1, 0], then for points in the segment [1, 2], and subsequently for
points in the segment [0, 1], and so on. There is no requirement to adhere to any
specific direction. However, for the temporal line, this approach is not feasible. Let
the locations of a moving ball in space serve as witnesses for moments. If we are at
the moment t0, and t1 is a future moment, we cannot determine the location of the
ball at time t1 at the present moment. We must wait until we reach that moment, and
only then will the locations of the ball in all moments before t1 be determined. We
are constantly moving towards the future. The following assertion may provide further
clarity regarding our understanding of the notion of orientation. We leverage notion
of orientation to demonstrate that every total function over the temporal continuum
is continuous.

In considering how we experience a point on the temporal continuum, we can
conceptualize a point t as the moment of occurrence of an event E:

t := “The moment of the occurrence of the event E.”

For instance, assume it is currently 8:00 am, and I am aware that the event E will occur
sometime after 8:00 am but before 12:00 pm. To express this more formally, we treat
rational numbers as states and utilize modal operators:
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THE TEMPORAL CONTINUUM 3

♦ for ‘sometimes in the future’, and
♦–1 for ‘sometimes in the past’,

in LTL, linear temporal logic. Also let

Kφ means ‘the subject has evidence that φ is true’.

In this context:

s8:00 |= K♦E ∧K(s12:00 |= ♦–1E),

the statement says that at 8:00 am, the event E is expected to occur at some point in the
future, and at 8:00 am, the subject is aware that by 12:00 pm, the event E has already
taken place.

As time passes, I (the subject) experience the point t in the following manner: I
examine the occurrence of E at several consecutive times. To do this, I plan a strategy
and choose specific moments to observe the event. The choice of these moments is up
to me. Note that, given our assumption of using rational numbers as states, and since
rational numbers do not have successors, consequently, there are no ‘next states’ within
our model.

Suppose I (the subject) am in state s. Since s is a rational number, it has no successors
within the rational numbers. However, I must choose a next state s ′ to examine the
occurrence of E. As soon as I choose the state s ′, I forego all the states in the interval
(s, s ′) because time is oriented, and I cannot revert.

For example, I may decide to examine the occurrence of E at times like 10:15 am,
10:20 am, 10:40 am, 11:30 am, and so on. Suppose it is now 11:30 am, and the last
time I checked the occurrence of E was at 10:40 am, where I found no evidence of its
happening yet, so,

s10:40 |= K♦E.

Also, suppose it is 11:30 am, and I observe the event and find evidence of its occurrence,

s11:30 |= K♦–1E.

At this point, I cannot move to the past to examine occurrence of E at any previous
moments.

All the information I have about t is that it lies sometime within the interval (10 :
40, 11 : 30]. I cannot distinguish the moment t from other moments within this interval.
In other words, the point t has “sunk back” to the past, and I cannot experience it any
further. It is absolutely undecidable whether t is before 11:00 am or after it. The moment
t cannot be estimated more accurately, and consequently, I cannot approximate t using
rational moments.

Furthermore, if I have a constructive method to introduce witnesses for all moments
on the temporal line, then the witness for the moment t is also the witness for all
moments within the interval (10 : 40, 11 : 30]. Thus, a point on the temporal continuum
is like a flow that sinks back to the past eventually.

We consider the above explanation as our understanding of the notion of orientation
and attempt to formalize it in this paper. In our perspective, we regard t as a flow from
the past, meaning it encompasses all moments that have occurred before t. If t is a past
moment, we cannot obtain any additional information about which moments belong
to this collection and which ones do not. If t is a future moment, we still have time to
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gather data about the elements of the collection before t eventually sinks back to the
past. During this time, we may examine the membership status of certain moments.
However, as soon as t sinks back to the past, we can no longer acquire any new data.

This passage discusses the experience of a point on the temporal continuum,
emphasizing the concept of orientation and how it is related to the passage of time
and our ability to observe and distinguish moments. It also introduces the idea of a
point being a flow from the past, capturing the continuous and irreversible nature of
time.

Brouwer’s perspective on the continuum is that it is intuitively given as a flowing
medium of cohesion between two events, not comprised of points (events) itself, but
rather an inexhaustible matrix allowing for a continued insertion of points. Originally,
there are no points on the continuum, but we can construct points on it or indicate
a position within it. Brouwer emphasized that the intuition of the continuum is the
intuition of the medium of cohesion between two events. He distinguishes between
two things: the medium of cohesion (first thing) and the continuum (second thing),
or primum and secundum as he puts it (See [14, p. 70]). Brouwer utilized the category
of choice sequences and the continuity principle to provide a mathematical analysis
of continua. Using choice sequences to define points on the continuum, a point is
modeled as a halo. Consequently, to construct a witness for a point on the continuum,
the witness is constructed for a halo around it. Brouwer proposed his famous continuity
principle for choice sequences and used it to prove that every total function over the
real line is continuous (see [17, p. 305]).

Motivated by the characteristic aspect of the temporal continuum, i.e., the orienta-
tion, as explained above, we introduce oriented cuts to model points on the temporal
continuum as flows. The traditional modeling of the continuum using the Cauchy
fundamental sequences of rationals [17] allows every real number to be approximated
by rational numbers. However, since moments on the temporal continuum sink back
to the past, they cannot be approximated by rationals. Consequently, the Cauchy
sequences appear unsuitable for modeling the temporal continuum. Instead, Dedekind
cuts prove to be more appropriate for this purpose. Among the constructive Dedekind
lines introduced in [17], only Rd can be positively approximated by rationals due to
its locatedness property (see [17, p. 270]), while Re and Rbe can be approximated by
rationals only up to the double negation via the strong monotonicity property. We
demonstrate that the collection of oriented Dedekind cuts cannot be approximated by
rationals, as desired in this case. As discussed earlier, points on the temporal continuum
are like flows that sink back to the past. Once they have sunk back, we cannot acquire
new data about them, and thus, they cannot be approximated by rationals.

In addition to our main objective of introducing a mathematical model for the
temporal continuum, we also aim to demonstrate that every total function over the
temporal line is continuous, similar to the Brouwerian real line. For this purpose, we
require a continuity principle for the Dedekind cuts. Hence, we propose a principle called
the oriented continuity principle (OCP) and define two topologies for the temporal
continuum: 1. the oriented topology and 2. the ordinary topology. Utilizing OCP, we
establish that every total function from the oriented topological space to the ordinary
one is continuous.

The sequel of the paper is organized as follows. In Section 2, we define the notion of
the oriented cuts, and justify a continuity principle for them. The oriented continuity
principle, OCP, expresses formally the feature we have in mind about a continuity
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principle. We show that the oriented reals cannot be approximated by rationals. In
Section 3, the oriented topology and the ordinary topology are defined, and then some
consequences of OCP for the temporal continuum are demonstrated.

We argue in the context of constructive logic. As far as possible, the standard
notations in [17] are used in this paper.

§2. Oriented cuts. In this section, we introduce a type of left cuts of Q, named
oriented cuts, and state the oriented continuity principle.

Definition 2.1. We let Ro be the set of all strictly increasing bounded sequences of
rational numbers, i.e., α ∈ Ro if and only if ∃M∀n(α(n) < α(n + 1) < M ). For all
α, � ∈ Ro we define:

• α ≤ � if and only if ∀m∃n(α(m) < �(n)),
• α < � if and only if ∃n∀m(α(m) < �(n)), and
• α =o � if and only if α ≤ � ∧ � ≤ α.

We call the set Ro, regarding equality =o, the set of all oriented reals (cuts).

Oriented reals, bounded strictly increasing sequences of rationals, are supposed to
model the passing of time. The increase of sequences reflects the passing of time and
the strictness of increase ensures that time cannot rest.

Definition 2.2. For a rational number q ∈ Q, let q̂ be the oriented real defined by
q̂(n) = q – 1

n+1 , for all n. Let q → q̂ be the mapping which assigns the oriented real q̂ to
q. For each q ∈ Q and α ∈ Ro, we say:

a. q < α if and only if q̂ < α,
b. α ≤ q if and only if α ≤ q̂,
c. α < q if and only if α < q̂, and
d. q ≤ α if and only if q̂ ≤ α.

Proposition 2.3. For q ∈ Q and α ∈ Ro,

(1) q < α if and only if ∃n(q < α(n)),
(2) α ≤ q if and only if ∀n(α(n) < q),
(3) α < q if and only if ∃p ∈ Q(p < q ∧ α ≤ p),
(4) q ≤ α if and only if ∀p ∈ Q(p < q → p < α).

Proof. For each q ∈ Q consider its map q̂ in oriented reals. Items (1) and (2) are
straight forward.

(3). Ifα < q̂ then by Definition 2.1, there exists m such that for all n,α(n) < q – 1
m+1 .

Let p = q – 1
m+1 . By (2), we have α ≤ p. The converse is straight forward.

(4). If q̂ ≤ α then for all m there exists nm such that q – 1
m+1 < α(nm). For p < q,

there exists m0 such that p < q – 1
m0+1 < α(nm0 ). By (1), p < α. For the converse

assume ∀p ∈ Q(p < q → p < α). Then for all m, q – 1
m+1 < α. By (1), there exists nm

such that q – 1
m+1 < α(nm).

For each α ∈ Ro, let Aα = {q ∈ Q | ∃n(q < α(n))} be the cut specified by α. Note
that α =o � if and only if Aα = A� as sets.
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Proposition 2.4. For α ∈ Ro,

1. ∀q ∈ Q (q ∈ Aα → ∃p ∈ Q (p > q ∧ p ∈ Aα)) (openness),
2. ∀p, q ∈ Q (p < q ∧ q ∈ Aα → p ∈ Aα) (monotonicity),
3. ∃p, q ∈ Q (p ∈ Aα ∧ q 	∈ Aα) (boundedness).

Proof. It is straightforward.

Lemma 2.5. For all α, � ∈ Ro, there exists � ∈ Ro, which specifies the cut Aα ∩ A� .

Proof. The proof is easy.

Lemma 2.6. Let � : N → Q be an upper bounded sequence, i.e., ∃M ∈ Q∀n(�(n) <
M ), then there exists α ∈ Ro which specifies A = {q ∈ Q | ∃n ∈ N(q < �(n))}.

Proof. Let α(n) = max{�(0), �(1), ... , �(n)} – 1
n+1 . The sequence α is strictly

increasing and the set A would be equal to {q ∈ Q | ∃n ∈ N(q < α(n))}.

The main difference between the collection of oriented reals Ro and other collections
of Dedekind reals such asRd , extended realsRbe and classical realsRe is that the former
satisfies the monotonicity property (∀α ∈ Ro∀p, q ∈ Q(p < q ∧ q ∈ Aα → p ∈ Aα)),
whereas the others satisfy strong monotonicity (for each Dedekind cut A, ∀p, q ∈
Q(p < q ∧ ¬¬q ∈ A→ p ∈ A)). It is known that Rd ⊂ Rbe ⊂ Re (see [17, p. 270]). In
the following proposition, by using the Markov Principle (see [17, p. 204]):

MP ∀� ∈ NN(¬¬∃k�(k) = 0 → ∃k�(k) = 0),

we show that Ro ⊆ Rbe .

Proposition 2.7 (MP). For α ∈ Ro, the cut Aα satisfies strong monotonicity.

Proof. We show that for every α ∈ Ro, Aα satisfies strong monotonicity, i.e.,
∀p, q ∈ Q(p < q ∧ ¬¬q ∈ Aα → p ∈ Aα). Since q ∈ Aα ↔ ∃k ∈ N(q < α(k)), we
have ¬¬q ∈ Aα ↔ ¬¬∃k ∈ N(q < α(k)). By MP, ¬¬∃k ∈ N(q < α(k)) ↔ ∃k ∈
N(q < α(k)), (assume �(k) = {0 q<α(k)

1 otherwise). So ¬¬q ∈ Aα ↔ q ∈ Aα , for any
arbitrary q ∈ Q. Then p < q ∧ ¬¬q ∈ Aα ↔ p < q ∧ q ∈ Aα , and since Aα satisfies
monotonicity, we derive p ∈ Aα .

For choice sequences, if Φ is a total function from the collection of choice sequences
to natural numbers, the value of Φ for a sequence α just depends on a finite segment
of α. Now this question seems natural in constructive mathematics:

how can we construct a total mapping Φ : Ro → N?

Assume we have a strategy to construct a total mapping Φ : Ro → N. Then for any
arbitrary sequence α ∈ Ro, we must be able to construct a witness for α. Since Φ
is well-defined, for any sequence � =o α, we will have Φ(�) = Φ(α). Therefore, our
strategy cannot depend on any finite segment of α. Because of this obstacle, one may
expect that it is not possible construct Φ unless Φ happens to be constant. We fulfill
this intention, using Brouwer’s weak continuity principle (see [17, p. 209]):

WCN ∀α ∈ T∃y(Φ(α) = y) → ∀α ∈ T∃x∀� ∈ T(�̄x = ᾱx → Φ� = Φα),

where T is a spread and for each sequence α, ᾱx = 〈α(0), α(1), ... , α(x – 1)〉.
Proposition 2.8 (WCN). Any (constructive) total function Φ : Ro → N is constant.
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Proof. Let α, � ∈ Ro be arbitrary, α ≤ � , M ∈ Q be an upper-bound for � . The
set RoM = {� ∈ Ro | � < M} is a spread. Since Φ is a total, by WCN, there exists
t such that, for all � ∈ RoM , if �̄t = ᾱt then Φ(�) = Φ(α). Find � ∈ RoM passing
through ᾱt such that � =o � . By well-definedness of Φ we conclude Φ(�) = Φ(α).
So, for all α, � ∈ Ro, if α ≤ � then Φ(�) = Φ(α). Now, for arbitrary α, � ∈ Ro,
define �(n) = min(α(n), �(n)). Here, � ≤ α and � ≤ � . Then Φ(�) = Φ(α) and
Φ(�) = Φ(�). Consequently Φ(�) = Φ(α).

We showed that any total function from Ro to natural numbers is constant in the
presence of the Weak Continuity Principle, that is, if one has a constructive method
that for each oriented cut is able to introduce a witness, a natural number, then the
witness is unique. To avoid this, as a replacement for natural numbers, we consider
another category of objects called almost natural numbers, and construct witnesses for
oriented reals from this category.

Definition 2.9. We let N∗ be the set of all functions � from N to N such that, for some
k, for all n, �(n) ≤ �(n + 1) ≤ k. For all �, � in N∗ we define:

� ≤ � if and only if ∀m∃n(�(m) ≤ �(n)), and
� =∗ � if and only if (� ≤ �) ∧ (� ≤ �).

We call N∗, regarding equality =∗, the set of almost natural numbers.

It is clear that N∗ is classically isomorphic to N as a set. In fact, classically, elements
in N∗ are increasing sequences that converge.

Lemma 2.10. For every � ∈ N∗,

1. ¬¬∃n∀m > n[�(m) = �(n)],
2. ¬∀n∃m > n (�(m) 	= �(m + 1)).

Proof.

1. To show ∀� ∈ N∗¬¬∃n∀m > n[�(m) = �(n)], it is enough to show ¬∃� ∈
N∗¬∃n∀m > n[�(m) = �(n)], by the intuitionistic valid statement ¬∃xA(x) ↔
∀x¬A(x). So assume for some �0 ∈ N∗, ¬∃n∀m > n[�0(m) = �0(n)]. Then,
∀n¬∀m > n[�0(m) = �0(n)].

Since �0 ∈ N∗, there exists k0 ∈ N such that �0(n) ≤ �0(n + 1) ≤ k0, for all
n ∈ N.

We prove that for every k ∈ N, (∀n(�0(n) ≤ k)) → (∀n(�0(n) < k)) (1).
Assume there exists t ∈ N such that �0(t) = k. Since �0 is nondecreasing

and ∀n(�0(n) ≤ k)), we have ∀n > t[�0(n) = k]. It contradicts with ∀n¬∀m >
n[�0(m) = �0(n)]. Hence ∀n(�0(n) < k).

Now let k = k0. By (1), we derive ∀n(�0(n) ≤ k0 – 1). Repeating using (1),
we have got ∀n(�0(n) = 0). It contradicts with ∀n¬∀m > n[�0(m) = �0(n)].

2. Let � ∈ N∗, there exists k ∈ N such that for all n, �(n) < k. Assume

∀n∃m > n (�(m) 	= �(m + 1)). (2)

Define f : N → N as

f(n) = min{m | (m > n ∧ �(m) 	= �(m + 1))} + 1.
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Due to the assumption (2), the function f is a constructive well defined function.
It is easy to see that n < f(n) and �(n) < �(f(n)). Therefore,

�(1) < �(f(1)) < �(f(f(1))) < �(f(f(f(1)))) < ... .

It contradicts with the fact that for all n, �(n) < k.

It is worth mentioning that if � is an almost natural number then the set I = {n ∈
N | ∃k (n ≤ �(k))} is not necessary finite, but it is quasi-finite in the sense of [18], i.e.,
it is a subset of a finite set. Moreover, its complement is almost full [18], meaning that
for every strictly increasing sequence α, one may find a natural number n such that
α(n) belongs to the complement of I.

Until now, the two notions of oriented reals and almost natural numbers have been
defined. The following proposition (accompanied by its proof) shows that how these
two notions are related to our intuition of orientation. In contrast with Proposition
2.8, we have the following.

Proposition 2.11. There exists a non-constant total function Φ : Ro → N∗.

Proof. Choose d1 < d2 < ··· < dj from Q for some fixed j ∈ N. For any � ∈ Ro, we
define:

Φ(�)(0) = 0, and
Φ(�)(n) = max({i | i ≤ j ∧ (di ≤ �(n))} ∪ {0}) for all n ≥ 1.

One may easily check that the followings hold true for Φ:

1. Φ(�) ∈ N∗.
2. Φ is well-defined, i.e., if α =o � then Φ(α) =∗ Φ(�).
3. Φ is non-constant. Assume two different oriented cuts α, � , such that
d1 	∈ Aα and d1 ∈ A�, d2 	∈ A� . Then ∀n ∈ N Φ(α)(n) = 0, whereas, ∃k∀n >
k Φ(�)(n) = 1.

The function Φ can be computed by the following algorithm as well:

1. Put Φ(�)(0) := 0;
2. Put t = 1;
3. For i=1 to j do:

{
while (�(t) < di) do:

{
define Φ(�)(t) := i – 1;
put t = t + 1;
}

}
4. For k=t+1 to ∞ do:

{
Put Φ(�)(k) := j;
}

The above algorithm checks the membership status of di ’s in A� , respectively, in an
ordered manner. As soon as, the algorithm detects that di is in A� , the future value of
Φ(�) changes. We defined Φ using the above algorithm, in order to evoke our sense of
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the orientation explained in the introduction; the oriented real number � is assumed
to be a moment in future. Rational numbers d1 < d2 < ··· < dj are assumed as future
moments which we examine the occurrence of � at them, as time passing. Using the
information attained by the examination, the value of Φ(�) ∈ N∗ is determined.

Therefore there exists a total function from Ro to N∗ which is not constant. How a
constructive total function form Ro to N∗ can be? or in other word, how can we construct
a total mapping Φ : Ro → N∗? We answer this question soon in Section 2.2.

In the following, we illustrate that, although the oriented reals can not be
approximated by rationals, they can be approximated by almost rational numbers,
defined below.

Definition 2.12. Let Q be the set of all rational sequences � : N → Q in which:

1. � is increasing, and
2. the image of � is a subset of a finite set.

For all �, � ′ ∈ Q, we define:

� ≤ � ′ if and only if ∀m∃n(�(m) ≤ � ′(n)), and
� = � ′ if and only if (� ≤ � ′) ∧ (� ′ ≤ �).

We call Q the set of almost rational numbers.

Note that Q is classically isomorphic toQ as a set. The set of almost rational numbers
Q is embedded into Ro, by � �→ �̂ where �̂(n) = �(n) – 1

n+1 , for n ∈ N, is an oriented
real specifying the cut {q ∈ Q | ∃k(q < �(k))}.

Definition 2.13. For every α ∈ Ro, and r ∈ Q, define (α + r) ∈ Ro, by (α + r)(n) :=
α(n) + r, for every n.

Definition 2.14. We say that an oriented real α can be approximated by rationals, if for
each n, there exists q ∈ Q such that (q ≤ α ∧ α ≤ q + 2–n).

As we explained in the introduction, since moments of time sink back into the past,
it is not possible to approximate them using rationals. The following proposition shows
that oriented reals cannot be approximated by rational numbers either.

Proposition 2.15 (¬∃-PEM). It is false that every oriented real can be approximated
by rationals.

Proof. For an arbitrary bounded increasing sequence α of rationals, let �α be an
oriented real defined by �α(n) = α(n) – 1

n+1 , for n ∈ N, which specifies the cut A =
{q ∈ Q | ∃k(q < α(k))}. If �α can be approximated by rationals, then �α is a Cauchy
sequence. Consequently, the sequence α is also Cauchy and so it converges. Since α
was arbitrary, it would imply that every bounded monotone sequence has a limit in
Brouwerian real line. That contradicts with ¬∃-PEM (see [17, p. 268]).

Definition 2.16. We say that an oriented realα can be approximated by almost rationals,
if ∀n∃� ∈ Q(�̂ ≤ α ∧ α ≤ (�̂ + 2–n)).

Proposition 2.17. Every oriented real can be approximated by almost rationals
numbers.
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Proof. Let � ∈ Ro, andM ∈ Q be an upper bound for � . We define � by induction.
Let �(0) = �(0), and assume we have defined �(k). We define

�(k + 1) = �(k) + 2–nt, where t ∈ N and�(k) + 2–nt ≤ �(k + 1) < �(k) + 2–n(t + 1).

Note that � ∈ Q, since image(�) ⊆ {�(0) + 2–nt | �(0) + 2–nt < M, t ∈ N} and the
latter is not infinite. We claim that �̂ ≤ � ∧ � ≤ �̂ + 2–n. For �̂ ≤ � , we have for each
k ∈ N there exists m such that �(k) < �(m). For the second clause, i.e., � ≤ �̂ + 2–n,
we have �(k) < �(k) + 2–n.

A subset B of N is called (intuitionistically) enumerable if it is the image of a function
on natural numbers (see [1]). Assuming the Kripke schema (see [17, p. 236]):

KS ∀X∃α∀n[n ∈ X ↔ ∃m(α(n,m) = 0)],

every inhabited2 subset of natural numbers is (intuitionistically) enumerable [1].

Lemma 2.18. If B ⊆ Q is (intuitionistically) enumerable and bounded from above,
then there exists an oriented real number α such that Aα = C (B) = {q ∈ Q | ∃p(p ∈
B ∧ q < p)}.

Proof. As B ⊆ Q is (intuitionistically) enumerable, there exists a sequence � : N →
Q such that ∀q ∈ Q[q ∈ B ↔ ∃m(�(m) = q)]. Since B is bounded from above, the
sequence � has an upper bound. By Lemma 2.6, there exists an oriented number α
such that Aα = C (B).

Assume B ⊆ Q is (intuitionistically) enumerable and upper bounded. We define the
supremum of B, sup(B), to be the oriented real number α thatAα = C (B). Assuming
the Kripke schema, KS, every upper bounded subset of Q has supremum.

Proposition 2.19 (KS). Assume B ⊆ Q is upper bounded. Then for α = sup(B), the
following hold.

1. ∀q ∈ Q(q ∈ B → q ≤ α),
2. ∀p ∈ Q(p < α → ∃q ∈ Q(q ∈ B ∧ p < q)).

Proof. (1.) Assume p ∈ B . For any q < p, we have q ∈ C (B) = Aα . Then there
exists n such that q < α(n). By items (1) and (4) of Proposition 2.3, we have p ≤ α.

(2.) Assume p < α. Then p ∈ Aα . As Aα = C (B), there exists q ∈ B such that
p < q.

Definition 2.20. Let D ⊆ Q is lower bounded, and B = {p ∈ Q | ∀q(q ∈ D → q ≥
p)}. We define the infimum of D, inf(D), to be the supremum of B.

Proposition 2.21 (KS). AssumeD ⊆ Q is lower bounded. Then for α = inf(D), the
following hold.

1. ∀q ∈ Q(q ∈ D → α ≤ q),
2. ∀p ∈ Q[(∀q ∈ Q(q ∈ D → p ≤ q)) → p ≤ α].

Proof. (1.)α = inf(D) is an oriented real such thatAα = C (B) = {q ∈ Q | ∃p(p ∈
B ∧ q < p)}, where B = {p ∈ Q | ∀q(q ∈ D → q ≥ p)}. Let q ∈ D. Since Aα = {q ∈
Q | ∃n(q < α(n))} and α is strictly increasing, we have α(n) ∈ Aα , for every n. By the

2 A set B is inhabited if ∃x(x ∈ B). We indicate that by B#∅.
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equalityAα = C (B), it is derived that for each n, there existsp ∈ B such thatα(n) < p.
Then by definition of B, α(n) < q.

(2.) Assume p ∈ Q is such that for all q ∈ D, p ≤ q. Then p ∈ B , and thus for
all p0 < p, p0 ∈ C (B) = Aα . According to definition of Aα , there exists n such that
p0 < α(n). Then, (∀p0 < p)∃n(p0 < α(n)). By items (1) and (4) of Proposition 2.3,
we have p ≤ α.

Theorem 2.22 (KS. The monotone convergence theorem). For every upper bounded
nondecreasing sequence (αn)n∈N of oriented reals, there exists an oriented real α such
that:

1. ∀n(αn ≤ α),
2. (∀p ∈ Q)[(p < α) → (∃m∀n(n ≥ m → p < αn))].

Proof. Let B = {p ∈ Q | ∃n(p < αn)}. The set B is upper bounded, so let α =
sup(B). For all n,m ∈ N, we have αn(m) ∈ B , since αn is a strictly decreasing sequence
of rationals. By Proposition 2.19, we have for each n, for all m,αn(m) < αn(m + 1) ≤ α.
So, by items (1) and (4) of Proposition 2.3, for each n, αn ≤ α.

If p < α, then by Proposition 2.19, there exists q ∈ B such that p < q. By definition
of B, there exists m ∈ N, p < q < αm. As (αn)n∈N is a non-decreasing sequence, we
have for all n ≥ m, p < αn.

Among the Dedekind lines Re , Rbe , and Rd introduced in [17], the line Rbe is much
similar to Ro. The only difference between the cuts of Rbe and the cuts of Ro is that the
first one satisfies strong monotonicity, whereas the second one just fulfils monotonicity.
On the other hand, as we have already noted, the reals in Rbe cannot be approximated
by rationals, as desired as a requirement for the temporal line. Hence, the line Rbe

could be assumed as an appropriate mathematical model for the temporal line if there
was a continuity principle for it, like Brouwer’s continuity principle for Cauchy reals R.
We note that the line R is the Cauchy completion of Q and the line Rbe is the order
completion of Q.

Let us define a mapping Ψ : Ro → Rbe as follows:

Ψ(α) := {r ∈ Q | (∃s ∈ Q)[r < s ∧ ¬¬∃n(s < α(n))]}.

One can easily check that Ψ is well-defined and for all α ∈ Ro, Ψ(α) ∈ Rbe .

Proposition 2.23 (KS). The mapping Ψ : Ro → Rbe is surjective.

Proof. Assuming the Kripke schema, it can be shown that every inhabited subset of
natural numbers is (intuitionistically) enumerable [1].

Let S ∈ Rbe , and � : N → S enumerates S, i.e., ∀q ∈ Q[q ∈ S ↔ ∃m(�(m) = q)].
Define

α(n) = max{�(0), �(1), ... , �(n)} –
1
n + 1

.

The sequence α is in Ro. We claim Ψ(α) = S.
Assume r ∈ Ψ(α). Then there exists s ∈ Q such that r < s and ¬¬∃n(s < α(n)).

For the sake of argument, assume ∃n(s < α(n)). Note that for all m, α(m) ∈ S. By the
monotonicity of S, we have s ∈ S. Thus ¬¬s ∈ S. By the strong monotonicity, we have
r ∈ S.
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For the converse, assume r ∈ S. Let k be such that �(k) = r. By openness, there
exists r′ ∈ S such that r < r′, and let �(m) = r′ for some m. Choose n > m such that
r′ – r < 1

n+1 . Then we have r < α(n) and thus r ∈ Ψ(α).

Proposition 2.24. For all α, � ∈ Ro

α < � implies Ψ(α) < Ψ(�).

Proof. The relation “<” for cutsS,T is defined as follows:S < T := ∃r > 0(S + r ⊂
T ) (see [17, defn. 5.4]). Suppose α < � . Then for some n, we have ∀m(α(m) < �(n)).
Let r = �(n + 1) – �(n). It is easy to check that Ψ(α) + r ⊂ Ψ(�).

2.1. Arithmetic in Ro. As explained in the introduction, we propose Ro as a model
for the temporal line. Each oriented real illustrates a moment. Then what does it mean
to add or multiply two moments? What is a proper arithmetic of the temporal line?

The real line Rbe is a field due to the strong monotonicity property of its elements.
A field 〈F,+, ·〉 is an algebraic structure with two functions + and · from F × F to F,
where F equipped with the functions + or ·, is a group, and · is distributed over +. In
our model, Ro, the operations + and · are relations instead of being functions, i.e., it is
an algebraic structure known as a hyperstructure3.

Definition 2.25. A h-field is a tuple 〈F,+, ∗, 0, 1〉 where + ⊆ F × F × F and ∗ ⊆
F × F × F satisfy the following axioms:

- Inhabitance.

(∀x, y)(∃z) + (x, y, z) (∀x, y)(∃z) ∗ (x, y, z).

- Identity.

(∀x) + (x, 0, x) (∀x) ∗ (x, 1, x).

- Inverse.

(∀x∃y) + (x, y, 0) (∀x∃y) ∗ (x, y, 1).

- Commutativity.

(∀x, y, z)(+(x, y, z) ↔ +(y, x, z)) (∀x, y, z)(∗(x, y, z) ↔ ∗(y, x, z)).

- Associativity.

(∀x, y, z, w, v, u)((+(x, y,w) ∧ +(w, z, v) ∧ +(y, z, u)) → +(x, u, v))
(∀x, y, z, w, v, u)((+(x, y,w) ∧ +(x, u, v) ∧ +(y, z, u)) → +(w, z, v))

(∀x, y, z, w, v, u)((∗(x, y,w) ∧ ∗(w, z, v) ∧ ∗(y, z, u)) → ∗(x, u, v))
(∀x, y, z, w, v, u)((∗(x, y,w) ∧ ∗(x, u, v) ∧ ∗(y, z, u)) → ∗(w, z, v)).

- Distributivity.

(∀x, y, z, w, v, u, r)((∗(x, v, w) ∧ +(y, z, v) ∧ ∗(x, y, u) ∧ ∗(x, z, r)) → +(u, r, w))
(∀x, y, z, w, v, u, r)((+(u, r, w) ∧ +(y, z, v) ∧ ∗(x, y, u) ∧ ∗(x, z, r)) → ∗(x, v, w)).

3 For similar definitions and applications of hyper-algebraic structures as arithmetic, see
[8, 9, 13].
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We define an addition relation +, and a multiplication relation ∗ on Ro as follows:
For α, �, � ∈ Ro, we let:

1. +(α, �, �) if and only if Ψ(α) + Ψ(�) = Ψ(�), and
2. ∗(α, �, �) if and only if Ψ(α) · Ψ(�) = Ψ(�).

Proposition 2.26 (KS). 〈Ro,+, ∗, 0̂, 1̂〉 is a h-field.

Proof. The proof is straightforward by using the fact that Rbe is a field.

2.2. The oriented continuity principle. In this part, we propose the oriented
continuity principle which expresses formally our sense of the notion of orientation.
To do this, we study total functions Φ from (0, 1]o to N∗, where (0, 1]o = {α ∈ Ro | 0̂ <
α ≤ 1̂}. Similarly, we let [0, 1]o = {α ∈ Ro | 0̂ ≤ α ≤ 1̂}. We assume such function Φ
is well-defined, i.e., α =o � implies Φ(α) =∗ Φ(�).

Lemma 2.27 (WCN). Let Φ ∈ (0, 1]o → N∗ be total. Then ∀α, � ∈ (0, 1]o(α ≤ � →
Φ(α) ≤ Φ(�)).

Proof. For 	 ∈ N∗ define N	 = {m ∈ N | ∃n(m ≤ 	(n))}. We need to show that
α ≤ � implies NΦ(α) ⊆ NΦ(�). Assume Φ(α)(n) = k for some n, k ∈ N. The set (0, 1]o

is a spread and Φ is total, so by WCN we can find a t such that for each 
 ∈ (0, 1]o,

̄t = ᾱt implies Φ(
)(n) = Φ(α)(n). We have, for each 
 ∈ (0, 1]o, if 
̄t = ᾱt then
k ∈ NΦ(
). Since α ≤ � there exists � ∈ (0, 1]o such that �̄t = ᾱt and � =o � . Note that
Φ is well-defined, therefore k ∈ NΦ(�). Since we assumed k ∈ N to be arbitrary, we
have NΦ(α) ⊆ NΦ(�).

The following theorem is by W. Veldman from our correspondence with him.

Theorem 2.28 (WCN). Let Φ be a total well-defined function from (0, 1]o to N∗. Then

∀α ∈ (0, 1]o¬¬∃q ∈ Q[q < α ∧ ∀� ∈ (0, 1]o[(q < � ≤ α → Φ(α) =∗ Φ(�)]].

Proof. Let α ∈ (0, 1]o. Since Φ(α) ∈ N∗, by Lemma 2.10, ¬¬∃n∀m > n[Φ(α)(m) =
Φ(α)(n)]. For the sake of the argument, assume ∃n∀m > n[Φ(α)(m) = Φ(α)(n)], and
let n0 be such that ∀m > n0[Φ(α)(m) = Φ(α)(n0)]. By WCN, there is a t such that for
all � in the spread (0, 1]o, if �̄t = ᾱt then Φ(�)(n0) = Φ(α)(n0). It follows that, for all
� ∈ (0, 1]o passing through ᾱt = 〈α0, α1, ... , α(t – 1)〉, Φ(α) ≤ Φ(�).

Define q := α(t – 1). Assume that � ∈ (0, 1]o and q < � ≤ α. Find � passing
through ᾱt such that � =o � , and conclude Φ(α) ≤ Φ(�) =∗ Φ(�). On the other
hand, by Lemma 2.27, since � ≤ α we have Φ(�) ≤ Φ(α). Hence, for every �
satisfying q < � ≤ α, Φ(�) =∗ Φ(α). This conclusion is obtained from the assumption:
∃n∀m > n[Φ(α)(m) = Φ(α)(n)]. As we know ¬¬∃n∀m > n[Φ(α)(m) = Φ(α)(n)],
we may conclude∀α ∈ (0, 1]o¬¬∃q ∈ Q[q < α ∧ ∀� ∈ (0, 1]o[(q < � ≤ α → Φ(α) =∗

Φ(�)]].

Note that for any Φ : (0, 1]o → N∗, there existsk ∈ N such that for all n, Φ(1̂)(n) ≤ k,
by definition of almost natural numbers.

Proposition 2.29 (WCN). Let Φ : (0, 1]o → N∗ be total, k ∈ N be such that for all n,
Φ(1̂)(n) ≤ k, and Ti = {q ∈ Q | Φ(q̂) =∗ i}, for 0 ≤ i ≤ k, where i = 〈i, i, i, ... 〉 ∈ N∗.
Then:
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(a) if i < j, q ∈ Ti and p ∈ Tj , then q < p,
(b) for each α ∈ (0, 1]o, if Aα ∩ Ti#∅, then Φ(α) ≥ i ,
(c) for each α ∈ (0, 1]o, if Φ(α) =∗ i , then ¬(Aα ∩ Ti = ∅),
(d) for each α ∈ (0, 1]o, ¬¬∃i [(0 ≤ i ≤ k) ∧ (Φ(α) =∗ i)].

Proof. (a) and (b) are derived by Lemma 2.27. (c) follows from Theorem 2.28,
and (d) is a consequence of the definition of almost natural numbers, and the fact
∀α ∈ (0, 1]∗(Φ(α) ≤ Φ(1̂) ≤ k).

Theorem 2.30 (WCN + KS). Assume Φ : (0, 1]o → N∗. Let 
i = inf(Ti ), for Tis 0 ≤
i ≤ k, defined above, and E = {
i | 0 ≤ i ≤ k}. For each α ∈ (0, 1]o, define Lα = {� ∈
(0, 1]o | � < α}. Then

∀α, � ∈ (0, 1]o[(Lα ∩ E = L� ∩ E) → ¬¬(Φ(α) =∗ Φ(�))].

Proof. First, observe that for α ∈ (0, 1]o and 0 ≤ i ≤ k,

(a) 
i ∈ Lα → ¬(Aα ∩ Ti = ∅), and
(b) Aα ∩ Ti#∅ → 
i ∈ Lα

To prove the theorem, let α, � ∈ (0, 1]o such that Lα ∩ E = L� ∩ E and ¬(Φ(α) =∗

Φ(�)) (1). we want to derive a contradiction. By Proposition 2.29(d), we have
¬¬∃i [(0 ≤ i ≤ k) ∧ (Φ(α) =∗ i)] (2), and ¬¬∃i [(0 ≤ i ≤ k) ∧ (Φ(�) =∗ i)] (3).
Applying the intuitionistic valid statement ¬¬(ϕ ∧ 
) ↔ ¬¬ϕ ∧ ¬¬
 to (1), (2),
and (3), gives ¬¬(∃i, j[(0 ≤ i, j ≤ k) ∧ (Φ(α) =∗ i) ∧ (Φ(�) =∗ j) ∧ ¬(Φ(α) =∗

Φ(�))]), which implies

¬¬(∃i, j[(0 ≤ i, j ≤ k) ∧ (Φ(α) =∗ i) ∧ (Φ(�) =∗ j) ∧ ¬(i =∗ j)]).

Now, for the sake of argument, assume


 ≡ ∃i, j[(0 ≤ i, j ≤ k) ∧ (Φ(α) =∗ i) ∧ (Φ(�) =∗ j) ∧ ¬(i =∗ j)].

Either i < j or j < i , and assume the first case. By Proposition 2.29(b), ¬(Aα ∩ Tj#∅),
i.e., Aα ∩ Tj = ∅. So by (a), ¬(
j ∈ Lα), and by the assumption Lα ∩ E = L� ∩ E,
we have ¬(
j ∈ L�). By (b), ¬(A� ∩ Tj#∅), that is, A� ∩ Tj = ∅. But it contradicts
with Proposition 2.29(c), and thus ¬¬(Φ(α) =∗ Φ(�)). By assuming 
, we derived a
contradiction. By (
 → ϕ) → (¬¬
 → ¬¬ϕ), assuming¬¬
 yield also a contraction.
So ¬¬(Φ(α) =∗ Φ(�)).

The theorem says that if Φ is a total constructive function from the temporal interval
(0, 1]o to N∗ then there exists a non-infinite subset E of [0, 1]o such that

∀α, � ∈ (0, 1]o[(Lα ∩ E = L� ∩ E) → ¬¬(Φ(α) =∗ Φ(�))].

As mentioned in the introduction, a moment α on the temporal continuum is a
flow from the past, i.e., the moment α is adhered to the collection of all moments
that happened before it. We think up of this flow as Lα . To construct a witness for a
moment α, the occurrence of α is compared with the occurrence of non-infinitely many
moments in E. If the results of the comparison are the same for two moments α and � ,
then it is not false that the witness constructed for α is also a witness for � . In this way,
the Theorem 2.30 formalizes our sense of the orientation discussed in the introduction.

We believe that the following form of Theorem 2.30 is plausible to be accepted as a
principle, which we name the oriented continuity principle, OCP:
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Oriented continuity principle:

For every Φ : (0, 1]o → N∗,
if ∀α ∈ (0, 1]o ∃� ∈ N∗ [Φ(α) =∗ �] then there exists a non-infinite subset E ⊆ [0, 1]o such that
∀α, � ∈ (0, 1]o [(Lα ∩ E = L� ∩ E) → (Φ(α) =∗ Φ(�))].

§3. Topologies for continuum. What is the proper topology of the intuitive temporal
continuum? Clearly, the topology must display the notion of orientation. As is
emphasized in the introduction, since t sinks back to the past, the moment t is not
distinguishable from moments in (10 : 40, 11 : 30]. Therefore, if we have a constructive
method to introduce witnesses for all moments on the temporal line then the witness
for the moment t is also the witness for all moments in (10 : 40, 11 : 30]. Thus, for
a suitable topology of the temporal continuum, it seems that every total function is
continuous.

As Brouwer distinguishes between the intuitive continuum and the “full continuum”
of the unfinished elements of the unit segment (intuitionistic real line) (see [14, p. 74]),
we do not claim that our oriented line, equipped with topologies defined below is
exactly the intuitive temporal continuum based on our intuition. We believe that the
only difference between the intuitive continuum and the intuitive temporal continuum
is taking into account the notion of orientation as a new aspect of the continuum besides
inexhaustibility and non-discreteness. Our oriented line and the following topologies
are our suggestions for modeling the temporal continuum.

3.1. The oriented topology.

Definition 3.1 (The oriented topology on the temporal interval (0, 1]o). A subset U
of (0, 1]o is called open if and only if for every α in U there exists a non-infinite set
E ⊆ [0, 1]o such that SE(α) ⊆ U , where SE(α) = {� ∈ (0, 1]o | Lα ∩ E = L� ∩ E}.
We indicate the set of all open subsets by T1, and refer to ((0, 1]o, T1) as the oriented
topological space.

Example 3.2. The interval ( 1
4 ,

1
2 ]o = {α ∈ (0, 1]o | 1̂

4 < α ≤ 1̂
2} is open. For α ∈

( 1
4 ,

1
2 ]o, let E = { 1̂

4 ,
1̂
2}. Then Lα ∩ E = { 1̂

4}, and SE(α) ⊆ ( 1
4 ,

1
2 ].

We must show that the class of all open subsets of (0, 1]o is a topology. It is obvious
that the empty set and (0, 1]o belong to T1. One may easily see that the topology T1 is
closed under arbitrary union. The next proposition shows that it is also closed under
finite intersection.

Proposition 3.3. The class of open subsets of (0, 1]o is closed under finite intersection.

Proof. Let U1 and U2 be open, and α ∈ U1 ∩U2. Let the non-infinite sets E1, E2

be such that SE1(α) ⊆ U1, and SE2 (α) ⊆ U2. It is easily seen that SE1∪E2(α) ⊆
U1 ∩U2.

3.2. The ordinary topology. We first define the notion of semi-metric spaces, and
then introduce the ordinary topology based on this notion.

Definition 3.4. Assume Q+ = {q ∈ Q | q > 0}. A semi-metric space is a couple (I, d),
where I is a set and d is a relation d ⊆ I × I ×Q+ satisfying the following properties:

P1. ∀x ∈ I∀q ∈ Q+d(x, x, q).
P2. ∀x, y ∈ I∃q ∈ Q+d(x, y, q).
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P3. ∀x, y ∈ I∀q, p ∈ Q+(d(x, y, q) ∧ q < p → d(x, y, p)).
P4. ∀x, y ∈ I∀q ∈ Q+(d(x, y, q) ↔ d(y, x, q)).
P5. ∀x, y, z ∈ I∀q, p ∈ Q+(d(x, y, q) ∧ d(y, z, p) → d(x, z, p + q)) (triangle

inequality).

The intended meaning of d(x, y, q) is ‘the distance of x from y is less than q’. Then
by this intention, all properties P1–P5 are understood clearly. For x ∈ I and p ∈ Q+,
let Sp(x) = {y ∈ I | d(x, y, p)}.

Remark 3.5. Note that two notions of metric space and semi-metric space are
classically the same. Assume R is the classical real line. For a semi-metric space
(I, d), we can define a metric function dist : I × I → R, such that dist(x, y) = inf{p |
d(x, y, p)}. One may easily verify that dist is a (classical ) metric. Also if (I, dist) is a
(classical ) metric space, defining d ⊆ I × I ×Q+ by d(x, y, q) ↔ dist(x, y) < q, would
make (I, d) a semi-metric space.

Proposition 3.6. If (I, d) is semi-metric space, then the collection of subsets U ⊆ I
satisfying the following property is a topology:

∀x ∈ U∃p ∈ Q+(Sp(x) ⊆ U ) (∗).

Proof. It is clear that both sets I and the empty set satisfy (∗). We only need to show
that the collection is closed under arbitrary union and finite intersection. Being closed
under arbitrary union is trivial. We prove that it is closed under finite intersection.
Assume U1 and U2 satisfy the property and let x ∈ U1 ∩U2. Since both U1 and U2

satisfy the property, there exist p1, p2 ∈ Q+ such that Sp1(x) ⊆ U1 and Sp2(x) ⊆ U2.
Let q = min(p1, p2). Then Sq(x) ⊆ U1 ∩U2. To show this, assume y ∈ Sq(x). Then
d(x, y, q) holds, and by (P3), we have d(x, y, p1) and d(x, y, p2), which implies y ∈
Sp1(x) ∩ Sp2(x) ⊆ U1 ∩U2. Hence U1 ∩U2 satisfies the property.

Proposition 3.7. Let d ⊆ Ro × Ro ×Q+, defined by

d(α, �, q) := ∃� ∈ Q∃p ∈ Q+(p ≤ q ∧ (�̂ ≤ α, � ≤ �̂ + p)).4

Then (Ro, d) is a semi-metric space.

Proof. We must show that d satisfies properties P1–P5.

• P1. It follows from Proposition 2.17.
• P2. Let α, � be two oriented reals. There exist rational numbers p1, p2, q1, q2

such that p1 < α < p2, q1 < � < q2. Let � ∈ Q defined by �(n) = min(p1, q1)
for each n ∈ N. Then

�̂ ≤ α, � ≤ (�̂ + |min(p1, q1)| +max(p2, q2)).

• P3. Trivial.
• P4. Trivial.
• P5. Assume α, �, 
 ∈ Ro and for some p, q ∈ Q, d(α, �, q) and d(�, 
, p) hold.

Then there exist �1, �2 ∈ Q, q1 ≤ q, and p1 ≤ p, such that

�̂1 ≤ α, � ≤ (�̂1 + q1)

4 We use expression a ≤ x, y ≤ b as a short abbreviation of a ≤ x ≤ b ∧ a ≤ y ≤ b.
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and

�̂2 ≤ �, 
 ≤ (�̂2 + p1).

Let �(n) = min(�1(n), �2(n)), for each n. We claim that

�̂ ≤ α, 
 ≤ (�̂ + (p1 + q1)).

From �̂1 ≤ α and �̂2 ≤ α, we derive �̂ ≤ α. We also derive �̂ ≤ 
 simi-
larly. Assume an arbitrary t ∈ N. The fact α ≤ �̂1 + q1 implies that there
exists k ∈ N such that α(t) < �̂1(k) + q1. On the other hand, since �̂1 ≤
� and � ≤ �̂2 + p1, there exists k′ ∈ N such that �̂1(k) < �̂2(k′) + p1, and
consequently α(t) < �̂2(k′) + p1 + q1. Let k′′ = max(k, k′). Since both of
�̂1, �̂2 are strictly increasing, we have �̂1(k) < �̂1(k′′), �̂2(k′) < �̂2(k′′), and
hence α(t) < �̂1(k′′) + q1 + p1 and α(t) < �̂2(k′′) + p1 + q1. Then α(t) <
(min(�1(k′′), �2(k′′)) – 1

k′′+1 ) + p1 + q1. It is shown that α ≤ �̂ + p1 + q1.

Similar argument works for � ≤ �̂ + p1 + q1.

Definition 3.8 (The ordinary topology on Ro). The ordinary topology on Ro is the
topology induced by the semi-metric (Ro, d), where d is defined above. We show the
ordinary topological space by (Ro, T2).

3.3. A consequence of OCP. We use OCP to prove that:

Theorem 3.9. Every total function from ((0, 1]o, T1) to (Ro, T2) is continuous.

Proof. Let f : ((0, 1]o, T1) → (Ro, T2) be total. We prove that for each n ∈ N,
for every α ∈ (0, 1]o, there exists SEn (α) ∈ T1 such that for every � ∈ SEn (α),
d(f(α), f(�), 2–n). Consider rational numbers qi = i2–n, 0 ≤ i ≤ 2n. For each 
 ∈
(0, 1]o, define φ(f(
))(0) = 0 and φ(f(
))(k) = i if and only if qi ≤ f(
)(k) < qi+1.
The function Φ(
) = ϕ(f(
)) from (0, 1]o to N∗ is total and well-defined. By OCP,
there exists a non-infinite subsetE ⊆ [0, 1]o, such that for every α, � , if � ∈ SE(α) then
Φ(α) =∗ Φ(�). It easily seen that for �1(i) = qΦ(α)(i) ∈ Q and �2(i) = qΦ(�)(i) ∈ Q, we
have �1 = �2 and

�̂1 ≤ f(α), f(�) ≤ (�̂1 + 2–n),

i.e., d(f(α), f(�), 2–n).

§4. Concluding remarks. For Brouwer, constructing a total function over the
continuum that is not continuous seemed implausible. The continuum is a unified
whole, not composed of discrete atoms. To address this, Brouwer introduced choice
sequences to model points on the continuum, not as dimensionless atoms, but rather
as halos. The proof that every total function over the continuum is continuous is
grounded in the non-atomicity modeled by choice sequences and Brouwer’s continuity
principle. Choice sequences are non-predetermined and unfinished entities, and the
value of every total function from choice sequences to natural numbers relies on an
initial segment of sequences.

We modeled points on continuum, not as atoms, but rather as flows from past
to future. We also demonstrated that every total function over the continuum is
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continuous, but our assertion is based on the orientation property modeled by oriented
cuts and the oriented continuity principle, OCP. As oriented cuts (moments) recede
into the past, the value of every total function from oriented cuts to almost natural
numbers relies on the experience of the oriented cut (moment) before receding into the
past.

In the spirit of Brouwer and Weyl, our modeling philosophy aligns with the idea that
the continuum is not separable. Yet, what distinguishes our approach is the derivation
of this conclusion from another intrinsic property of the temporal continuum – its
orientation.

In Brouwer’s intuitionism, the ‘creative subject’ constructs choice sequences based on
their free will. Due to the free will of the creative subject, always only a finite segment
of a choice sequence is determined. It is through this premise that Brouwer justifies his
continuity principle.

In our framework, the ‘knowing subject’ interacts with time, which operates
independently of them. The knowing subject experiences time, and orientation imposes
a restriction on this interaction, thereby justifying our oriented continuity principle.

Our temporal continuum suggests a new framework for constructive analysis. We
need to investigate the following questions as further work: Is every total function on
Ro with one topology (either the oriented topology or the ordinary one) continuous, or
do we need a third topology? What happens to the uniform continuity theorem? What
does the intermediate value theorem looks like?
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