
Canad. Math. Bull.Vol. 36 (1), 1993 pp. 103-107 

DISCRIMINANTS OF METACYCLIC FIELDS 

DANIEL C. MAYER 

ABSTRACT. Some formulas for multiplicities of pure cubic discriminants are gen
eralized to the case of a pure field of arbitrary odd prime degree. 

Introduction. By a metacyclic field we understand the normal field of a pure field 
Q«<D)ofodd prime degree /?, which is generated by the unique real solution of a pure 
equation Xp — D — 0 (D e Z) and is a non-Galois algebraic number field with p — \ 
complex isomorphic fields all of whose arithmetical invariants coincide, in particular 
their discriminants. 

However, there are also examples of non-isomorphic pure fields which share a com
mon discriminant, and it is the purpose of the present note to determine the exact number 
of all non-isomorphic pure fields with a foregiven discriminant, which is called the mul
tiplicity of that discriminant. Making use of a theorem on the connection between the 
discriminant and the radicand D by W. E. H. Berwick [1], we generalize the formulas for 
multiplicities of pure cubic discriminants, which were given in a recent paper [2], to the 
case of a pure field of arbitrary odd prime degree. 

1. Radicands and conductors. Let p be an odd rational prime, q\,...,qs pairwise 
distinct primes (with s >l and/? may be among them), D = q\l • • • qe

s
s a/7-th power free 

radicand with integer exponents 1 < el < p — 1 (/ = 1,. . . , s), and L — Q(j/D) the pure 
field of degree p with radicand D. 

Then the normal field N of L is the compositum Q(£, tfD) of the cyclotomic field 
k = Q(0 of/7-th roots of unity £ with L.N is a metacyclic field of degree p(p — 1) whose 
Galois group Gal(N/Q) is the semi direct product of two cyclic groups C(p) x C(p — 1). 

W. E. H. Berwick [1] has proved the following relationship between the radicand D 
of a pure field L — Q({/T)) and the conductor/ of the corresponding cyclic relative 
extension N/k of degree p. 

THEOREM 1. IfR = q\ • • • qs denotes the square free product of all prime divisors 
of the radicand D of the pure field L = Q{yD), then the associated conductor f satisfies 
the relation 

fP~l = I P2RP~1 ^Z > 7 _ 1 ^ Kmod/72) (field of the 1st kind), 
J \ RP~l if DP~l = l(mod/72) (field of the 2nd kind). 
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Consequently, since 

dL = 

dN = dp
k 

dk = (-

dk -f-1 

•f^X)\ 

- ! ) • * > 

i 

and 

-2 

the discriminants ofL and N are given by 

v-1 if DP'1 ^ l(mod/?2) 
pP-2RP~l if DP'1 = l(mod/?2), *=(-D^-Kr_, ^ : ^ ™ d ^ 

, = / n ^ i f pP2~2I&-»2 if DP~l ^ l(modp2), 
N l } \P(P-VPR(P-V2 if^-' = l(modp2). 

2. Multiplicities of metacyclic discriminants. We call the number m(f) of pure 
fields L = Q(̂ /Z>) sharing the same associated conductor/ (and thus also the same 
discriminant d£) the multiplicity off. With the aid of Berwick's result and the technique 
of [2], we obtain the complete solution of the multiplicity problem for discriminants of 
pure fields of odd prime degree. 

THEOREM 2. Letf — pe • q\ • • • qt > I be the conductor associated with a pure field 
L = Q(\/Z>) of odd prime degree p, i.e., e G {0, -^ j - , ^ry }, t > 0, and the qt are pairwise 
distinct rational primes different from p, for i — 1 , . . . , t. Put 

u = #{1 < / < 11 cfr1 = l(mod/?2)}, 

v = #{1 < / < 11 q^'1 ^ l(modp2)}. 

Then the multiplicity m(f) of the discriminant di = (— 1 ) ~ / / -fp- can be expressed 
by the formulas 

f ( p - l ) ' ife=0-v i.e., p\D, 

mtf)={(p- D" • Xv ife = -£rv i.e., U-x ^ l(modp2), p j( D, 

I (p - 1)" • Xv_, i/e = 0, i.e., DP'1 = l(modp2), 

where Xj = l-((p - iy' - (-iy) for all j > - 1 

' p - 1 Moreover, the multiplicities of conductors with p-exponents e — 0, - ~ satisfy the 

equation 
m(qi--qt) + m(p~i > qx •••^) = (p - 1)'_1. 

EXAMPLE. AS an illustration, let us take/7 = 5. In this case, the sequence (Xj)j i>-\ 
is given by ( j , 0,1,3,13,51,...), and the sequence of rational primes q satisfying q4 = 
l(mod25) (or, equivalently, q = ±1 , ±7(mod25)) starts with 7,43,101,107,.... 
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Theorem 2 tells us that examples of pure quintic discriminants di — d^ • f4 of mul
tiplicity 3 can be constructed by taking conductors/ with u — 0 and v = 2, such that 
e=\, i.e., such that D4 ^ l(mod25) and 5 / D . 

We obtain the first occurrence of three non-isomorphic pure quintic fields L = Q(\/D) 
sharing a common discriminant by selecting the two smallest possible conductor prime 
factors distinct from 5 and not belonging to the sequence (7,43,...), that is, q\ = 2, qi = 
3, and/ = 5^ • 2 • 3. The discriminant is therefore dL = +125 -(25-16-81) = 4 050000. 

The technique in the subsequent proof of Theorem 2 will show how to get the nor
malized radicands D of the corresponding pure quintic fields by raising various power 
products of 2 and 3 to successive powers and reducing the exponents modulo 5: 

2 - 3 , 22 • 32 , 23 • 33 , 24 • 34 ; 
2 2 - 3 , 2 4 - 3 2 , 2 - 3 3 , 2 3 - 3 4 ; 
2 3 - 3 , 2 - 3 2 , 2 4 - 3 3 , 2 2 - 3 4 ; 
2 4 - 3 , 2 3 - 3 2 , 2 2 - 3 3 , 2 - 3 4 . 

The minima of the rows are 6, 12, 18, and 48. However, D — 18 = —7(mod25) is the 
radicand of a single field of the second kind. Hence, the desired three pure quintic fields 
with the coinciding minimal discriminant 4 050 000 are 

0(^6), 0(^12), 0(^48). 

They are all of the first kind. Here, we have t — u + v = 2 and the relation 

m(6) + m(5^ • 6) = 1+3 = 4 = (p - l) '"1. 

Numerous examples for higher multiplicities of discriminants of pure cubic fields, the 
case p = 3, can be found in [2]. 

PROOF. First observe that every field L — Q({/D) can be generated by p — 1 dif
ferent radicals without rational divisors. The corresponding p-th power free radicands 
differ from D, D2,..., Z^ - 1 only by complete p-th powers and are obtained by reduction 
of the involved exponents modulo p. The smallest one among them will be called the 
normalized radicand of L. 

J-1 /?+! 

The case e — f-j- is treated separately. / = pp~l • q\ • • -qt is equivalent t o / = 
pp^R, p\R, and thus also to D = 0(mod/?). In this case, there are (p — l)t+l choices 
for the exponent systems 1 < w0,vvi,..., wt < p — 1 in p-th power free radicands 
D — pw° • q™1 • • • q^ which all share the same value of R — p • q\- • -qt. But only the 
(p — l)-st part of all systems (WQ, . . . , wt) belongs to normalized radicands. Hence, 

m(p# -qx • --qt) = -^—(p- l)r+1 = (p - 1/. 
P- 1 

Now, the cases e = -^j and e = 0 are investigated simultaneously. / = pp-] -q\- • -qt 

is equivalentto/ = p~xR,p / /? , and further to L?1 ^ l(mod/72), whereas/ = q\- -qt 

is equivalent to f — R,p / R, and also to Dp~l = l(modp2). In both cases, there are 
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(p — If choices for exponents 1 < w\,...,wt < p — 1 inp-th power free radicands 
D — q™] • • • <ft

l which all share the same value of R = q\ • • • qu but some of them 
(those with Z^7-1 = l(mod/?2)) belong to the conductor/ = R and the others (with 
D?1 ^ l(mod/?2)) to the conductor/ = p~xR. Again, only the (p — l)-st part of the 
systems (wi, . . . , wt) belongs to normalized radicands. (The normalized radicand and the 
non-normalized radicands of a given pure field are all of the same kind.) Therefore, 

miqi-'-qu + mip^ • q\ - • • qt) = ——j-(P~ 1)' = (P ~ l)'"1-

To separate these two multiplicities it is convenient to fix a value u > 0 of the number 
of prime divisors q with qp~x = l(mod/?2) of D and to argue by induction with respect 
to the number v > 0 of prime divisors q with qp~x ^ l(mod/?2) of D. Then u + v = t, 
since p / D , in the present situation. 

To start the induction we must consider the two values v = 0 and v = 1. 
In the case v = 0, we have R = q\ • • -qu with u > 1 and D ^ 1 = l(mod/?2), whence 

Y-l:=m(qi..'qu) = (p-\)u-\ 
2 

Y0 :=m(pp~l 'q\"'qu) = 0. 

In the case v = 1, we have R = q\ • • • qu • qu+\ with u > 0 and certainly Ef1 ^ 
1 (mod/?2), whence 

m(q\ --qu • qu+\) = 0 = Y0, 

Y\ := m(p~\ -q\--qu' qu+\) = (p - 1)". 

Now we carry out the induction step for an additional prime factor qu+v+\ with g^v+i ^ 
1 (mod/?2), assuming that the multiplicitiesm{q\ • • -qu+v) =: Fv-i andra^^1 -q\ • • -^M+v) 
=: Yv are known already. 

If the new prime factor qu+v+\ and the powers <72
+v+1,... ,<7̂ v+i ( w m c n are not 

(p — l)-st roots of unity mod p2 either) are multiplied by a radicand D with DP~X = 
l(mod/?2), then there are generated/? — 1 new radicands D' = D • q™+Jl\ (1 < wM+v+i < 
/? — 1) with (D'Y~l ^ l(mod/?2). However, if they are multiplied by a radicand D with 
D? -1 ^ l(mod/?2), then exactly one of the/? — 1 new radicands D' satisfies (P'Y~X = 
l(mod/?2) (the one, where q™+£\ represents the inverse of D in the group 
U(l/p2l)/{x | xP~x = l(mod/?2)} ~ C(/?)) and the other p — 2 radicands satisfy 
(D'f-1 ^ l(mod/?2). Thus, 

w(#i ' • -̂ u+v+i) = w(/?Fi • ^i • • -</M+v) = yv, 
2 

yv+i :=m(ppi >qx • ••? I I + v+i) 

= (/? - 2) • ra(/?^ • q\ • • • #M+V) + (/? - 1) • ra(<7! • • • qu+v) 

= ( p - 2 ) . y v + ( p - i ) . y v _ i . 
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Consequently, the numbers Yj (j > —1) satisfy a binary linear recursion, Yj+\ = 
(p - 2)Yj + (p - l)Yj-i forj > 0, with initial values F_i = (p - l)u~l and Y0 = 0. 
This recursion can be solved by diagonalization of the corresponding matrix 

The solution obtained by this straightforward procedure is Yj• = (p — l)u • Xj with Xj := 
I ( ( p - i y - ( - i y ) for all; > - l . 
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