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Maximal sum-free sets in cyclic groups
of prime-power order

Anne Penfold Street

A subset S of an additive group G is called a maximal

sum-free set in G if (S+S) n S = 0 and \s\ 2: |T| for every

sum-free set T in G . In this paper, the maximal sum-free

sets in cyclic p-groups are characterized to within

automorphism.

Given an additive group G and non-empty subsets S, T of G , let

S + T denote the set {s+t; s € S, t € T) , S the complement of 5 in

G and S\ the cardinality of S . We call S a sum-free set in G if

{S+S) c S . If, in addition, |S| > \T\ for every sum-free set T in

G , then we call S a maximal sum-free set in G . We denote "by \{G)

the cardinality of a maximal sum-free set in G .

Exact values of \(G) were given by Diananda and Yap [7] for |G|

divisible by 3 or by at least one prime q = 2 (3) . When every prime

divisor of \G\ is a prime p = 1 (3) then, by [/],

\G\(m-l)/yn £ X(G) 5 (|G|-1)/3 , where m is the exponent of G , and it

is conjectured that in fact

(1) \G\(m-l)/3m = X(G) .

This conjecture was verified in [7] for Z , the cyclic group of order

n , and by RhemtuI la and Street [4] for elementary abelian p-groups.

Maximal sum-free sets have been characterized (up to automorphism) for

the following classes of abelian p-groups:
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408 Anne Penfold Street

(i) for Z , with p = 2 (3) in [7] and [6], and with p = 1 (3)

in [4], (see also partial results in f7]);

(ii) for elementary abelian p-groups, with p = 2 (3) in [7], and

with p = 1 (3) in [5];

(iii) for Z , with p = 2 (3) in [7].

Here we extend the argument of [4] to characterize the maximal

sum-free sets in Z with p = 1 (3) • More precisely, we prove the

following:

THEOREM. Let G = Z , where p = 3k + 1 is prime and

p = 3k + 1 . Then any maximal sum-free set S may be mapped, under some

automorphism of G , to one of the following:

A = {k , k +2, . . . , 2k - 1 , 2k +1} :a a a a a

B = {k , ... , 2k -l) ;a a a

DEFINITION. Let C be a subset and H a subgroup of an abelian

group G .

(i) C is said to be in arithmetic progression if

C = {g+id I i = 0, 1 |C| —3_> , for some g, d 6 G ,

d + 0 . If so, d is called a difference of C .

(ii) C is said to be aperiodic if C + H = C implies H = {0} .

(iii) C is said to be periodic if C + H = C for some H # {0} .

If so, E is called a period of C .

(iv) C is said to be quasiperiodic if C = C' u C" , where

C1 n C" = q> , C + H = C' for some H * {0} and C" is

contained in one coset of H . If so, H is called a

quasiperiod of C .

Notation. Let G = Z and let fl # {0} be a subgroup of
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Maximal sum-free sets 409

G, H = Z . If S is a maximal sum-free set in G , then S. denotes

P

the subset of H such that S. + i = S n {H+i) , where H + 1 generates
If

G/H and i = 0, 1, . . . , pO~B-l .

The proof of the theorem depends primarily on resul ts of Kemperman

[2] , especially on Theorems 2.1 and 3-** and Lemma k.3. We also need

Kneser's Theorem [3] , the lemma of [4] and the following simple resu l t s .

LEMMA 1. Let G = Z , p = 3k + 1 , and let C be a subset of G
Pa

in arithmetic progression, with difference d . If \c\ > pa/l , then d

has order p

LEMMA 2. Let G = Z a where p = 3k + 1 and pa = 3k + 1 . Let
pa

H t {0} be a subgroup of G , H = Z , and let S be a maximal sum-free
P6

set in G .

(i) Let I = \i | i = 0, 1, . . . , pa~B-l; \S.\ > (pe+l)/2> . Let
t. t J

L = il | 1 = 0 , 1 , . . . , p a ~ 6 - l ; 57 = 0[ . Then I + I cL .

(ii) If SQ f 0 , then Si+E for any i = 0, 1, ..., p a ~ 6 - l .

(Hi) X(G) > \{G/H)\H\ .

(iv) Suppose the theorem is true for Z . , for all 6 < a . Then
V

S. = H for fewer than k . values of i .
% ot—p

Proof. (i) Since S is sum-free,

(2) (S.+S.) n S.+ . = 0 .

By Kneser's Theorem [3], there exists some subgroup K < H , \K\ = p ,

such that S.+S.+K = S.+S. and |£.+S.| 2: \S.+K\ + |S.+iC| - |#| .

Since |S.| 2 (pB+l)/2 , we must have \S.+K\ > (pB+pY)/2 and

https://doi.org/10.1017/S000497270004675X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004675X


410 Anne Penfold Street

similarly for S. . Hence \S^+S .\ > 2{p^+py)/2 - pY = p6 and 5. . = 0

(it) Apply (2) in the particular case j = 0 .

(Hi) \{G) = ka = fefp""1 + . . . + p+l} ,

\(G/H)\H\ = fea_gp
6 = k(pa-X + . . . + p6j .

fiu; By Ci;, if S. = H then £ 6 J which is a sum-free set in

G/H = Z . Hence S. = H for at most k values of i .
p

Suppose S. = H for k „ values of i and let

T = |i ( 2 | S. = ff> . Then 21 may be mapped (under automorphism of
( a~e % J

G/H ) tc one of the sets A o , B „ , C .
ct—p a—p a—p

W O W Aa-B + Aa-$ = Aa-B ' s o i f T = V g t h e n' b y (2)' Si = 0 f o r

all i { T .

(B +B J U B = {fe -2 , k -1} .

Hence if T = B^ then, by (2), S. = 0 for all £ f 2" except possibly

for i = fe - 2 or fc - 1 . If fc = 2 , then 5, „ = Sn = 0 by (ii);
a

i f ka > 2 , then 2 ^ - 2 ) € 21 so , by ( 2 ) , Sfe _ 2 = j3 . Also 2 ( k a - l ) € ?
a

so 5, = 0 . Hence S. = 0 for all i { T .
a

A similar argument shows that if T = C , then 5. = 0 for all
ot—p ^

Hence A(G) = X(G/H)\H\ which contradicts (Hi).

Proof of the Theorem. We proceed by induction on a . For a = 1 ,

the theorem reduces to Theorem 2 of [4].

By [/], for any a , \S\ = k = [pa-l)/3 . Since S is sum-free, we

must have \S+S\ < 2|S| + 1 and \S-S\ 2 2JS| + 1 .
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Suppose that \S+S\ < 2\s\ - 1 . By Kneser's Theorem [3], there

exists a subgroup H < G , H # {0} , such that S+S+H=S+S and

\S+S\ 2 2\S+H\ - \H\ . By Lemma 1 of [?], 5 + H = 5 , which implies that

\s\ . Since |#| = p^ , 1 S 0 < a , we have a contradiction. Hence

|5+S| 2 2|S| - 1 and a similar argument shows that \S-S\ > 2\s\ - 1 .

Now S - S = - (5-5) and 0 i 5 - 5 . Hence |5-5| is odd and can

take one of two values: \S-S\ = 2\s\ ± 1 .

I. If |5-5| = 2|5| - 1 then, by Theorem 2.1 of [2], either S-S

is in arithmetic progression or S-S is quasiperiodic.

Suppose that S-S is quasiperiodic. Now

|5-5| = 2k{pa~1 + ... + p+l) - 1 . Hence there exists a subgroup H < G ,

\H\ = p S p , such that S-S consists of the union of

2k(p + ... + p+l) complete cosets of H , together with

2k [p + ... + p+l] - 1 elements, all contained in one other coset of

H . Since \G/H\ = p a " e and since S - S = - (S-S) , these

2k [p + ... + p+l) - 1 leftover elements must belong to H itself.

Since |(5-5)u5| =• |G| - 2 , at least kip®'1 + ... + p+l) of the

remaining elements of H must belong to 5 . But

fefp6"1 + ... + p+l) = k. = X(H) , so IsJ = ko . So the remaining
p Up

k(p + ... + p+l) cosets of H must be contained in 5 ,

contradicting Lemma 2 (ii).

Hence S-S is in arithmetic progression. Since \S-S\ = 2k - 1 ,
a

a
Lemma 1 shows that the difference, d , of S-S must be of order p

By Lemma i.3 of [2], 5 (and -S ) must also be in arithmetic progression

with difference d . Hence 5 may be mapped (by some automorphism of G )

to B or C
a a

II. If |5-5| = 2|5| + 1 , then S - S = S . Hence S = -S ,

S + 5 = 5 - S and we may apply the Lemma of [4].

(a) Suppose that, for some g € G , \{S+g)nS\ = 1 . Then by the
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lemma, \(S+3g/Z)nS\ > k - 3 •

I f p j g , map 3^/2 to 1 so that g = k^ + 1 . The f i r s t par t

of the argument of Theorem 2 of [4] shows tha t S may be mapped, \inder
automorphism of G , t o A

I f P a ~ 6 I 9 » p a " B + 1 | £ , map 3^/2 to p " " 6 so tha t

<7 = [kp + kp + . . . + kp + &+l]p = [k +l)p ~ . Now

| (5+pa~6)rvS| >fe - 3 . Let H = Z = <pa"6> . Then
P

p a ~ - 1 a_g p a ~ - 1
S = U [S. +i} and | fs+p ) nS | = T

i=Q % i=0

Note tha t S. + p°~e = 5 . i f and only if 5 . = 0 or S. = H .

Ci — ft

If | (S+p J^i = &„ » then 5 consists of a union of complete

\s\ which is a contradiction.cosets of H . Hence \H\

If fco - 1 > |[s+p
a B)nS\ > ̂  - 3 , we have to consider several

possibilities for 5 :

(i) 5 consists of a union of k (p ~ + ... + p+l) = fe complete

cosets of H , together with k (p + ... + p+l) other elements

distributed between one, two or three other cosets of H . But this

contradicts Lemma 2 (iv).

(ii) 5 consists of a union of k - 1 complete cosets of H ,
a— p

together with p + k (p + . . . + p+lj other elements distributed between

two or three other cosets of H . But since S = -S , one of the complete

cosets must be H itself, contradicting the sum-freeness of S .

(iii) 5 consists of a union of k - 2 complete cosets of H ,

a-p
together with 2p + k(p + . . . + p+l) other elements distributed
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Maximal sum-free sets 413

between three other cosets of H . Since S = -S , one of these three

other cosets must be H itself. Since A(#) = fe = k{p^~ + ... + p+l) ,

at most ko of the remaining elements belong to H , and in fact k
p ot—p

complete cosets of H are contained in S . This is impossible by (i).

(b) We are now left with the case where |(5+^)n5| # 1 for any

9 € G .

(i) Suppose that by taking an automorphism of G , we may ensure that

|(5+l)nS| S |(S+£)nS| for all g i G . We list the elements of S as

follows:

(3) S = {ax, ..., a^l-^, a2, ..., <^2
+l2' '"' ah' '"' ah+lh^

where 0 < a± 5 a^ + l < a -1 < a^-l < ... < a,-1 < \ + K < p" and

a., ..., a . + 1. denotes a string of fZ-.+l) consecutive elements of 5 .

Since S = -S ,

{h) %-i + lh-i = Pa ~ ai+i ' f o r a 1 1 i = 0, 1, .... h-1 ,

and |(5+l)nS| = feQ - h 2: |(5+g)nS| for all g i G . Hence h is minimal

in (3) and we show that h = 2 .

Let X = {a , ..., a,} and let

X = {o^+^+l, ..., ah+lh+l} = {l-a±, ..., l-ah) = 1 - X

by (h). A repetition of the argument of [4] shows that

| [S+a^-l] nS\ ± h - 1 and

(5) h > | fx+a.WI > ft - 1 for all i = 1, ..., h .

If \X+X\ > 2h - 1 , the argument of [4] shows that h = 2 and S

maps under automorphism to A

If \X+X\ s 2h - 2 , then by Kneser's Theorem [3], AT + X \s periodic

so that for some subgroup H < G , H = Z „ , we have X+X+H=X+X

P6

and \X+X\ > 2\x+H\ - \H\ . Using Theorem 3-1* of [2], we can construct all
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possible sets X . We choose a subset X* of G/H such that X* + X* is

aperiodic in G/H and |#*+AT*| = 2\X*\ - 1 . If 0 denotes the natural

mapping of G to G/H , then X can be any subset of a" X* , such that

\a~XX*nX\ < (p6-l)/2 . Hence any coset of H which contains the first

element of a string of elements of S must contain the first elements of

at least {p&+l)/2 strings of 5 .

By (5), X + X contains all of Y except possibly one element, say

y . Since X + X consists of a union of complete cosets of H ,

(H+y) n Y = {y} . Since Y = 1 - X , this implies that |cf ̂ riFl > p 6 - 1

which is impossible. Hence Y c X + X . We can now describe the

distribution of the strings of 5 . Suppose

X* = iH+i1, ..., H+iz] for some i±, ..., %z € {0, 1, ..., p a ~ 6 - 1} .

In each coset H + i . , more than half of the elements of the coset are
3

starting points of strings of 5 . Since S = -S , the strings finish in

the cosets of -X* . If a string finishes in H - i . , then the next coset
0

H + [l-t- .) i Y c X + X . Hence no string can continue into this coset, and
3

similarly no string could pass through H + i . - 1 .
3

Hence any coset which contains an element of S contains at least

[p +lj /2 elements of 5 . By Lemma 2 (i), the cosets containing elements

of S must therefore form a sum-free set in G/H . Hence

|S| = X(G) < \(G/H)\H\ , contradicting Lemma 2 (Hi).

(ii) Finally suppose that by taking an automorphism of G , we may

ensure that | (S+p )nS| > \(S+g)nS\ for all g (. S and that

| (5+pa"8jn5'| > \{S+g)nS\ for all g € 5 such that p""6 \ g . Let

H = <pQ > = Z . and let q = p for the remainder of this section.

P

For each i = 0, 1, ..., q-1 , we have S. = 0 or S. = H or
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si =

where 0 < a, . 5 a., .+Z. . < a . . - l <
It It l i 2t . < . . . < a . - 1 < a -+Z . <

v \> .i v.i v . i

and a..(?, . . . , (a..+ £..}<? denotes the set of (Z...+1J consecutive

multiples of q which we ca l l an ff-string in S .

Let 1= i | i = 0, 1 q-1; I S |S\ | 5 p -If . Since

S. + q = S. if and only if i \ I , we have

(6) \(S+q)nS\ = \S\ - v . > for a l l g i G, q \ g .

Let X = {«..<?+•£ | i = 0, 1, .
31

we have V. = v . and
1 q-r

implying that

(7)

, q-1; j = 1, . . . , v.} . Since S = -5 ,
1

i

Le t

Wow

Y = {[a +1 .+l)q + i I i = 0 , 1 , . . . , q - 1 ; J = 1 , . . . , v . }

= <? - X b y ( 7 ) .

a..
01

+ i (. S so, by (6) and the lemma of [ 4 ] ,

\S + (a..-l
iel

\ ~ 1 =

But for any s.. , s~ t S , s1 + (a. .-l)<? + i = s implies that s 6 X

so ? -X and s, + a . .0 + i € Y . Hence2 1 QV1-

(8)
iel

for all j, i .

AT| = [ v . > \(X+a ..q+i)m\ > [ l v 1 - 1 = |*| - 1
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If \X+x\ > 2\x\ - 1 , then X + X contains at least |*| - 1

elements of Y but X + a . .q + i contains at most one element of Y .

Thus for at least \x\ - 2 values of (j, i) , we have 2(a..q+i) { Y .

But 2(a..c?+l) \ Y implies that q(l-a..) - i k X + a . -q + i , since

Y = q - X . Hence for at least \x\ - 2 values of (j, i) ,

{x+a^q+i} n Y = {(a^+a^q + i + n \ a^q + n € X, {m, n) + {3, i)}

= ^ " (arnnq+n^ I amnq + n € X' ^m' n^ * ̂ ' i^ '

Hence, summing these two expressions for the elements of [x+a •-q+i) n Y ,

we have

V

(\x\-3){aHq+i) = (\X\-I)q -2 I I [a q+n) (mod p° ) .
3 ntl m=l tm

Hence |̂"| — 3 and S contains at most three //-strings, together with

complete cosets of H .

If I A" I = 0 , S is a union of cosets of H . This implies \H\

which is a contradiction.

\S\

If | X | = 1 or 3 , then S = -S implies 5 ^ 0 . By Lemma 2 (-Li),

S. + H for any £ . Hence

\S\ 5 X(H) + 2(|ff|-l) = T(pB-l)/3 = lkB < X(G)

by Lemma 2 (iii), since p 2 7 .

If |*| = 2 , then S = -S implies that either vQ = 2 and
 S

Q ± <t>

or v. = V • = 1 for some £ .

By the previous argument, we must have S_ = 0 . Hence 5 consists

of a union of 2\ cosets of H together with two ^-strings, each of

length at most p - 1 .

Thus

(9) |S| = ka 5 2Xp
B + 2(pB-l) = 2(A+l)p6 - 2 .
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S i n c e S i s s u m - f r e e , 2X < fc . I f 2X 5 fc - 2 , t h e n (9 ) toecomes

k < k ap
B - 2

Ot 0 1 — p

which is a contradiction "by Lemma 2 (ii-i) . But if 2X = k , we have a
CX—p

contradiction toy Lemma 2

If | JM| S 21A"| - 2 , then toy Kneser's Theorem [3 ] , X + X i s

periodic and for some subgroup K < G , K = Z , we have
P

X+;r + £ = * + * and \X+X\ > 21 AT+if | - |x| . We now apply the argument

of (to) (i) to G/K , using (8) instead of (5)- If K > H , then any coset

of K is a union of cosets of H . By the previous argument, any coset of

K which contains an element of X must contain at least [p +l)/2

elements of X . Hence there exists a coset of H , more than half of

whose elements are starting-points of fl-strings in 5 . This is clearly

impossible, so 5 must consist of a union of complete cosets of H . But

this implies |ff| |s| which is a contradiction.

If K < H , so that any coset of H is a union of cosets of K , then

the argument of (to) (i) shows that any coset of K which contains any

element of an fl-string in S must contain at least (pY+l)/2 elements of

^-strings in S . Hence for each coset, K + i , of K either

(K+i) n S = ty or \{K+i)nS\ > (pY+l)/2 . But by Lemma 2 (i) , the cosets

of K , more than half of whose elements toelong to S , form a sum-free set

in G/K . Hence \S\ = X(G) 5 \(G/K)\K\ , contradicting Lemma 2 (Hi).
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