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Abstract
We investigate symmetry of the silting quiver of a given algebra which is induced by an anti-automorphism of
the algebra. In particular, one shows that if there is a primitive idempotent fixed by the anti-automorphism, then
the 2-silting quiver (= the support τ -tilting quiver) has a bisection. Consequently, in that case, we obtain that the
cardinality of the 2-silting quiver is an even number (if it is finite).

1. Introduction

In this paper, we study symmetry of the silting quiver of a finite dimensional algebra � over an alge-
braically closed field; the silting quiver is a quiver whose vertices are (basic) silting objects and arrows
T → U are drawn whenever U is an irreducible left mutation of T , and it coincides with the Hasse quiver
of the poset silt � of silting objects [5].

The main theorem (Theorem 1.2) of this paper shows that an anti-automorphism of � (i.e., an algebra
isomorphism �op � �) induces a symmetry of silt �. Here, �op stands for the opposite algebra of �.
Focusing on 2-term silting objects, which bijectively correspond to support τ -tilting modules [3], we
obtain a bisection of the poset 2silt � of 2-term silting objects if there is a fixed primitive idempotent
by the anti-automorphism (Theorem 1.4). Thus, in that case, it turns out that the cardinality of 2silt �
is even (if it is finite).

When � is 2-silting finite (= τ -tilting finite); i.e., | 2silt �| < ∞, counting the number of elements
in 2silt � is one of the important problems in this area; see [1, 2, 4, 9, 15]. In this context, Theorem 1.4
gives a very useful method to reduce the whole pattern to half of 2silt �. Indeed, this may be applied to
such works on Hecke algebras and Schur algebras, see [8], [17], etc.

For example, the following admit anti-automorphisms fixing a primitive idempotent:

• enveloping algebras (Theorem 2.1);
• preprojective algebras of Dynkin type (Theorem 2.5);
• cellular algebras (Theorem 2.6);
• symmetric algebras with radical cube zero, which contain multiplicity-free Brauer line/cycle

algebras (Theorem 2.7);
• selfinjective Nakayama algebras, which contain Brauer star algebras with an exceptional vertex

in the center (Theorem 2.8);
• group algebras (Theorem 2.10);
• the trivial extensions of algebras with an anti-automorphism fixing a primitive idempotent

(Theorem 2.12).
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Here is an illustration of the symmetry of 2silt � for the preprojective algebra � of Dynkin type A3,
in which and correspond:

Notation. Throughout this paper, let � be a finite dimensional algebra over an algebraically closed
field K, and K� := Kb( proj �) denote the perfect derived category of �. The �-dual is denoted by
(−)∗ := Hom? (−, �) for ? =K� or K�op .

2. Results

We say that an object T of K� is silting (tilting) if it satisfies HomK�
(T , T[i]) = 0 for every integer

i > 0 (i �= 0) and K� = thick T . Here, thick T stands for the smallest thick subcategory of K� containing
T . We denote by silt � ( tilt �) the set of isomorphism classes of basic silting (tilting) objects in K�.

Let us recall silting mutation and a partial order on silt �.

Definition-Theorem 1.1. [5, Theorem 2.11, 2.31, 2.35 and Definition 2.41]

1. Let T be a silting object of K� with decomposition T = X ⊕ M. Taking a minimal left add
M-approximation f : X → M′ of X, we construct a new object μ−

X (T) := Y ⊕ M, where Y is the
mapping cone of f . Then μ−

X (T) is also silting, and we call it the left mutation of T with respect
to X. Dually, we define the right mutation μ+

X (T) of T with respect to X.
2. For objects T and U of K�, we write T ≥ U if HomK�

(T , U[i]) = 0 for i > 0. Then ≥ gives a
partial order on silt �.

3. We construct the silting quiver H of K� as follows.

• The vertices of H are basic silting objects of K�;
• We draw an arrow T → U if U is a left mutation of T with respect to an indecomposable

direct summand.
Then H coincides with the Hasse quiver of the partially ordered set silt �.

We define a subset of silt � by

2silt � := {T ∈ silt � | � ≥ T ≥ �[1]} .

This bijectively corresponds to the poset of support τ -tilting modules [3, Theorem 3.2].
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We say that � admits an anti-automorphism if there is a K-linear automorphism ς : � → � satisfying
ς (xy) = ς (y)ς (x), or equivalently if an algebra isomorphism σ : �op → � exists. Here, �op stands for
the opposite algebra of �. In this case, we obtain an equivalence K�op →K�, also denoted by σ .

We now investigate that an anti-automorphism of � induces a symmetry of silt �/2silt �.

Theorem 1.2. Assume � admits an anti-automorphism σ . Then we have the following.

1. The functor Sσ := σ ◦ (−)∗ induces an anti-automorphism of the poset silt �.
2. Let T be a silting object. Then there is an algebra isomorphism EndK�

(T)op � EndK�
(Sσ (T)).

Moreover, if � is derived equivalent to �, then so is �op; hence, � and �op are also derived
equivalent.

3. The functor Sσ := [1] ◦ Sσ induces an anti-automorphism of the poset 2silt �.

Proof. (1)(3) It is evident that (−)∗ and σ yield an anti-isomorphism silt � → silt �op and an iso-
morphism silt �op → silt �, respectively. Composing them makes an anti-automorphism of silt �. This
immediately implies that Sσ := [1] ◦ Sσ is also an anti-automorphism of 2silt �.

(2) Clearly, EndK�
(Sσ (T)) � EndK�op (T∗) � EndK�

(T)op. If � is derived equivalent to �, then there
is a tilting object T of K� with � � EndK�

(T). Since Sσ (T) is also tilting, it is seen by (1) that �op �
EndK�

(Sσ (T)) is derived equivalent to �.

We discuss a benefit derived from the symmetry Sσ of 2silt �.
Let P be an indecomposable projective �-module. We define subsets of 2silt � by

T −
P := {T ∈ 2silt � | μ−

P (�) ≥ T ≥ �[1]} and

T +
P := {T ∈ 2silt � | � ≥ T ≥ μ+

P[1](�[1])}.

Denote by Xi the ith term of a complex X. We make the following observation.

Lemma 1.3. We have T −
P = {T ∈ 2silt � | P ∈ add T−1} and T +

P = {T ∈ 2silt � | P ∈ add T0}. In
particular, T −

P  T +
P = 2silt �.

Proof. Let T ∈ 2silt �. We know that T is of the form [T−1 → T0] with T−1, T0 ∈ add �. By
[5, Lemma 2.25], we have add T−1 ∩ add T0 = 0. It is easily seen that add (T−1 ⊕ T0) = add �. Now,
we obtain from [5, Theorem 2.35] (and its dual) that:

(i) P ∈ add T−1 ⇐⇒ μ−
P (�) ≥ T;

(ii) P ∈ add T0 ⇐⇒ T ≥ μ+
P[1](�[1]).

This completes the proof.

The symmetry Sσ is useful to analyze the cardinality of 2silt � as follows.

Theorem 1.4. Let e be a primitive idempotent of � and put P := e�. Assume that � admits an anti-
automorphism σ . If σ (e) = e, then we have a bijection between T −

P and T +
P , i.e., T −

P

anti� T +
P . In particular,

| 2silt �| = 2 · |T −
P | = 2 · |T +

P |.
Proof. We see that Sσ gives a one-to-one correspondence between T −

P and T +
Sσ (P). As Sσ (P) � P by

assumption, the assertion follows from Lemma 1.3.
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Let T := [T1 → T0] be a 2-term silting object of K�; i.e., T ∈ 2silt �, and E denote a complete list
of pairwise orthogonal primitive idempotents of �. Recall that the g-vector gT of T is the vector (ge)e∈E
which is given by ge := ce

0 − ce
1. Here, ce

i stands for the multiplicity of e� in Ti.
We immediately obtain the following corollary.

Corollary 1.5. Suppose that � admits an anti-automorphism σ satisfying σ (e) = e for every primi-
tive idempotent e of �. Then Sσ reverses the directions of the g-vectors of all 2-term silting objects
in K�.

Proof. Let T := [e1� → e0�] be a 2-term silting object of K�, where e0 and e1 are idempotents of �.
Since any idempotent is fixed by σ , we observe that Sσ sends T to the 2-term silting object [e0� → e1�],
which immediately tells us the fact that gSσ (T) = −gT .

3. Applications and examples

We explore when � admits an anti-automorphism σ with σ (e) = e for some primitive idempotent e of
�, and give applications and examples of Theorem 1.4.

Let us start with enveloping algebras.

Theorem 2.1. The enveloping algebra �op ⊗K � has an anti-automorphism (a ⊗ b �→ b ⊗ a) fixing the
primitive idempotent e ⊗ e for a primitive idempotent e of �. In particular, there is a bijection between
T −

P and T +
P , where P := (e ⊗ e)�op ⊗K �.

Let Q := (Q0, Q1) be a (finite) quiver, where Q0 and Q1 are the sets of vertices and arrows, respec-
tively. For a vertex v of Q, we denote by ev the primitive idempotent of KQ corresponding to v. The
opposite quiver of Q is denoted by Qop; that is, it consists of the same vertices as Q and reversed arrows
a∗ for arrows a of Q, i.e., a∗ is obtained by swapping the source and target of a. For an admissible
ideal I of KQ, reversing arrows makes the admissible ideal Iop of KQop; for example, ab ∈ I implies
b∗a∗ ∈ Iop.

We consider the case that an isomorphism ι : Qop → Q of quivers exists; ι gives rise to an algebra
isomorphism KQop → KQ, which will be also written by ι.

Proposition 2.2. Let � be an algebra presented by a quiver Q and an admissible ideal I of KQ. Suppose
that there is an isomorphism ι : Qop → Q of quivers satisfying Iop = ι−1(I) and fixing a vertex v; put
P := ev�. Then we have a bijection between T −

P and T +
P . In particular, | 2silt �| = 2 · |T −

P |.
Proof. As Iop = ι−1(I), we get isomorphisms

�op = (KQ/I)op � KQop/Iop ι� KQ/I = �;

write the composition by σ : �op → �. Since ι(v) = v by assumption, we have σ (ev) = ev. Thus, the
assertion follows from Theorem 1.4.

Example 2.3. Let � be the algebra given by the An-quiver Q : 1
x−→ 2

x−→ · · · x−→ n and the admissible
ideal I = 0 or I := 〈xr〉 for some r > 0. We have an isomorphism Qop → Q of quivers which assigns
i �→ n − i + 1 (i ∈ Q0) and x∗ �→ x (x ∈ Q1). The equalities Iop = 〈(x∗)r〉 = ι−1(I) imply that � admits an
anti-automorphism σ . If n is even, then we apply Theorem 1.2. If n is odd, then the vertex v := n+1

2
is fixed

by σ , whence we can apply Proposition 2.2; we get T −
ev�

anti� T +
ev�

. The following are the Hasse quivers of
2silt � for n = 2 and n = 3, in which and correspond and • is stable by Sσ .
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Here, in the RHS, and are the members of T +
P2

and T −
P2

, respectively.

3.1. Algebras presented by double quivers

Recall that the double quiver Q of Q is the quiver constructed by Q0 := Q0 and Q1 := Q1  {a∗ | a ∈
Q1}, where a∗ is obtained by swapping the source and target of a. Clearly, the assignments v �→ v (v ∈
Q0), a∗ �→ a∗ and (a∗)∗ �→ a (a ∈ Q1) make an isomorphism ι : Q

op → Q of quivers; note that ι fixes all
vertices.

Let us give examples of algebras presented by a double quiver.

Example 2.4.

1. [11] The preprojective algebra �Q of a Dynkin quiver Q is defined as the quotient KQ/I of KQ
by I := 〈aa∗ − a∗a | a ∈ Q1〉. Then, it is finite dimensional and selfinjective.

2. [18, Example 1.6] Let Q be a quiver and I an admissible ideal of KQ. For a path p = a1a2 · · · a	

in Q, write p∗ := a∗
	
· · · a∗

2a∗
1 ; extending it linearly, we also use the terminology p∗ for a lin-

ear combination p in KQ. We define an ideal I of KQ which is generated by p, p∗ (p ∈ I)
and ab∗ (a, b ∈ Q1). Then the algebra �(Q, I) := KQ/I is finite dimensional. If Q contains no
oriented cycle, then �(Q, I) is a quasi-hereditary algebra with a duality.

Now, an application of Proposition 2.2 is obtained.

Theorem 2.5. Let � = �Q for a Dynkin quiver Q or �(Q, I) for a quiver Q and an admissible ideal I
of KQ. Then we have a bijection between T −

P and T +
P for any indecomposable projective module P of

�. In particular, | 2silt �| = 2 · |T −
P |.

Proof. We can easily check the equality I
op = ι−1(I) holds, and apply Proposition 2.2.

3.2. Cellular algebras

Cellular algebras were introduced by Graham and Lehrer [10]. An algebra � is called cellular if
it admits a cellular basis; that is, a basis with certain nice multiplicative properties. We refer to
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[14] for more details. By the definition, each cellular basis of � admits an involution σ ; i.e., an
anti-automorphism σ of � with σ 2 = 1. It is shown in [14, Proposition 5.1] that the involution σ fixes
all simples of a cellular algebra. Hence, we have the following result.

Theorem 2.6. Let � be a cellular algebra. Then there exists a bijection between T −
P and T +

P for any
indecomposable projective module P of �. In particular, | 2silt �| = 2 · |T −

P |.
Nowadays, a lot of interesting algebras have been found to be cellular, for example, Ariki–Koike

algebras, (q-)Schur algebras as well as various generalizations, block algebras of categoryO, and various
diagram algebras. We hope that Theorem 2.6 will be useful to verify the finiteness of | 2silt �| for the
aforementioned algebras, especially for Hecke algebras [18], Schur algebras [17], etc.

3.3. Symmetric algebras with radical cube zero

We get the following result.

Theorem 2.7. Let � be a symmetric algebra with radical cube zero. Then there exists a bijection between
T −

P and T +
P for any indecomposable projective module P of �. In particular, | 2silt �| = 2 · |T −

P |.
Proof. By [2, Proposition 3.3], it turns out that the Gabriel quiver of � is given by adding loops to

the double quiver of a quiver Q; denote by Q̂ the quiver of �. We also observe that aa∗ �= 0 �= a∗a for
any arrow a of Q̂ and ab = 0 unless b = a∗ and a = b∗; if a is an added loop, write a∗ = a. Thus, we get
an isomorphism ι : Q̂op → Q̂ of quivers which fixes all vertices.

Let i be a vertex of Q̂ and a an arrow starting at i. Since � is symmetric, it is seen that aa∗ spans the
socle of Pi := ei� as a vector space. Applying changes of basis, we have aa∗ = bb∗ for every arrow b
of Q̂ starting from i. Let I denote the ideal of KQ̂ consisting of such relations; so � � KQ̂/I. Then, we
obtain the equality Iop = ι−1(I), whence the assertion follows from Proposition 2.2.

3.4. Selfinjective Nakayama algebras

It is well known that a self-injective Nakayama algebra is presented by a cycle quiver

with relations xr = 0 for some r > 0. Here is an easy application of
Proposition 2.2.

Theorem 2.8. Let � be a self-injective Nakayama algebra and P an indecomposable projective module
of �. Then we have a bijection between T −

P and T +
P . In particular, | 2silt �| = 2 · |T −

P |.

Remark 2.9. Let � be a self-injective Nakayama algebra given by a cycle quiver Q. Whenever we choose
a vertex i of Q, one gets an isomorphism Qop → Q of quivers fixing i. So, a bijection between T −

ei�
and

T +
ei�

depends on the choice of vertices.

3.5. Group algebras

Let G be a finite group and p the characteristic of K. While the group algebra KG is, in general, nei-
ther basic nor ring-indecomposable,1 it admits an anti-automorphism by g �→ g−1; we can then apply
Theorem 1.2 to KG.

The following situation enables us to apply Theorem 1.4.

1 It is well known that if there is a normal p-subgroup of G containing its centralizer, then KG is ring-indecomposable; see [16,
Exercise V. 2. 10] for example.
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Theorem 2.10. Let G be a semidirect product E � D of a p′-group E (i.e., p � |E|) on a p-group D.
Then there exists a primitive idempotent e of � := KG such that T −

e� bijectively corresponds to T +
e�. In

particular, | 2silt �| is double |T −
e�|.

Proof. As the argument above, we know that � admits an anti-automorphism σ (g �→ g−1). Since |E|
is invertible in K, we put e := 1

|E|
∑

g∈E g; clearly, it is an idempotent fixed by σ . It is seen that e� =
eKG = eKD � KD (as KD-modules), which implies that e is primitive. Thus, we deduce the assertion
from Theorem 1.4.

We obtain an interesting observation.

Corollary 2.11. Let � be a p-block of KG with a normal defect group D and E its inertial quotient. If
E has trivial Schur multiplier (i.e., H2(E, K×) = 1), then the number of 2-term silting objects is even if
it is finite.

Proof. Thanks to Külshammer’s theorem [13, Theorem A], we see that � is Morita equivalent to the
twisted group algebra Kα[E � D] for some 2-cocycle α, which is just K[E � D] by assumption. Thus,
we find out that | 2silt �| is even by Theorem 2.10.

It is known that groups of deficiency zero have the trivial Schur multiplier; see [12]. Here, the
deficiency of a group G is defined to be the maximum of the integers |X| − |R| for all presentations
G = 〈X | R〉 of G, which is nonpositive if G is a finite group. Typical examples of deficiency-zero
finite groups are cyclic groups 〈g | gn = 1〉 and quaternion groups 〈a, b | a2n = 1, an = b2, ba = a−1b〉 =
〈a, b | bab = an−1, aba = b〉. Thus, the first example of Corollary 2.11 should be the case that D is
cyclic; then, E is automatically cyclic, � is a symmetric Nakayama algebra [6, Theorem 17.2], and
so | 2silt �| = (

2n
n

)
(even), where n := |E| [1, Corollary 2.29]. Moreover, the equality | 2silt �| = (

2n
n

)
holds even if we drop the assumption of D being normal in G; then, � is still a Brauer tree algebra [6,
Theorem 17.1], whence the equality is obtained from [7, Theorem 5.1].

3.6. Trivial extension algebras

The trivial extension T(�) of an algebra � (by its minimal cogenerator D�) is defined to be � ⊕ D� as
a K-vector space with multiplication given by (a, f ) · (b, g) := (ab, ag + fb). Here, D denotes the K-dual.
We can easily verify that there is a one-to-one correspondence between simple modules of � and T(�);
so we use the same symbol e as a primitive idempotent of � and T(�) (via the correspondence).

We state that a bisection of 2silt � can be extended to that of 2silt T(�).

Theorem 2.12. An anti-automorphism σ of � induces one on T(�), say σ . If σ fixes a primitive idempo-
tent e of �, then the corresponding idempotent e of T(�) is stable by σ . In the case, we have a bisection
of 2silt T(�) with respect to P := eT(�).

Proof. Note that T(�)op = T(�op). Since σ−1 : � → �op is an algebra isomorphism, we have a
K-linear automorphism tσ := HomK (σ−1, K) : D(�op) → D� of D�. For any a, b ∈ �op and f ∈ D(�op),
we get equalities

tσ (a • f • b)(x) = (a • f • b)(σ−1(x)) = f (b • σ−1(x) • a) = f (σ−1(σ (b)xσ (a)))

= tσ (f )(σ (b)xσ (a)) = (σ (a)tσ (f )σ (b))(x).

Here, • stands for the multiplication or the action of �op. It turns out that

tσ (a • f • b) = σ (a)tσ (f )σ (b).
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Now, we define a K-linear automorphism σ : T(�op) → T(�) by (a, f ) �→ (σ (a), tσ (f )). Let us check
that σ is an anti-automorphism of T(�); for any a, b ∈ �op and f , g ∈ D(�op),

σ ((a, f ) • (b, g)) = σ (a • b, a • g + f • b) = (σ (a • b), tσ (a • g + f • b))

= (σ (a)σ (b), σ (a)tσ (g) + tσ (f )σ (b))

= (σ (a), tσ (f )) · (σ (b), tσ (g))

= σ (a, f ) · σ (b, g).

Thus, the first assertion holds. As the second assertion is clear, the last one immediately follows from
Theorem 1.4.

Remark 2.13. Theorem 2.12 does not imply that taking trivial extensions transmits the τ -tilting finite-
ness. In fact, the radical-square-zero self-injective Nakayama algebra with 2 simple modules is τ -tilting
finite, but its trivial extension is not so.

3.7. Applying the main theorem twice

In this subsection, we try applying Theorem 1.4 twice in a row. Let us show the following.

Theorem 2.14. Assume that � is basic and admits an anti-automorphism σ fixing a primitive idempo-
tent e of � ; write P := e�. Let P′ be the mapping cone of a minimal left add (�/P) -approximation of P ;
that is, μ−

P (�) = P′ ⊕ �/P. Putting � := EndK�
(μ−

P (�)), e′ denotes the idempotent of � corresponding
to P′. Assume that the following hold:

1. μ−
P (�) is tilting;

2. There is an anti-automorphism σ ′ of � satisfying σ ′(e′) = e′.

Then, we have a poset isomorphism T −
P � T +

e′� and | 2silt �| = | 2silt �|.
Proof. As μ−

P (�) is tilting, we identify 2silt � with {T ∈ silt � | μ−
P (�) ≥ T ≥ μ−

P (�)[1]}. By Lemma
1.3, we have an equality:

{T ∈ silt � | μ−
P (�) ≥ T ≥ μ−

P (�)[1]}
= {T ∈ silt � | μ−

P′μ−
P (�) ≥ T ≥ μ−

P (�)[1]}  {T ∈ silt � | μ−
P (�) ≥ T ≥ �[1]},

in which the components of RHS have the same cardinality by Theorem 1.4. Thus, the cardinality of
LHS in the equality is the double of that of T −

P , which is equal to the cardinality of 2silt �.

We give two examples; one illustrates Theorem 2.14, and the other explains that a derived equivalence
does not necessarily preserve the cardinality of the poset 2silt (−) even if a given algebra is a symmetric
algebra which admits an anti-automorphism fixing a primitive idempotent.

Example 2.15. Let � be the algebra presented by the quiver with relations as follows:
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Note that � is symmetric and admits an anti-automorphism which fixes the vertex 1 and switches the
vertices 2 and 3. Set Pi := ei�.

1. Let T1 be the left mutation of � with respect to P1. By hand, we can check that the endomorphism
algebra �1 of T1 is given by the quiver with relations:

It is obtained that �1 has an anti-automorphism fixing the vertex 1. Thus, we derive from
Theorem 2.14 that 2silt � and 2silt �1 has the same cardinality; it is illustrated by (anti-)
isomorphisms T +

(P1)�

anti� T −
(P1)� � T +

(P1)�1

anti� T −
(P1)�1

. Actually, 2silt � and 2silt �1 are finite sets and
the numbers are 32 [4, Theorem 2].

2. Let T2 be the left mutation of � with respect to P2. We have the endomorphism algebra �2

presented by the quiver with relations:

Unfortunately, the cardinality of 2silt �2 is 28 by [4, Theorem 2]. Since �2 admits an anti-
automorphism fixing the vertex 2, a similar argument as the proof of Theorem 2.14 explains
that T −

(P2)� � T +
(P2)�2

anti� T −
(P2)�2

, and so we obtain |T −
(P2)� | = 14 and |T +

(P2)� | = 18. (Note that T −
(P2)�

anti�
T +

(P3)�; so, |T −
(P3)� | = 18 and |T +

(P3)� | = 14.) When U3 is the left mutation of �2 with respect to P3,
the endomorphism algebra of U3 is isomorphic to �. This says that a derived equivalence
does not necessarily preserve the number of 2silt (−), although �2 is symmetric and admits an
anti-automorphism fixing all vertices.

There are some special derived equivalence classes of algebras for which the cardinalities of 2 silt
(−) are constant, but the proofs are case by case for each algebra. Using Theorem 2.14, we may give an
explicit example of such classes.

Example 2.16. Let � be the multiplicity-free Brauer triangle algebra; that is, it is given by the quiver
with relations as follows.

We see that � admits an anti-automorphism fixing every vertex; cf. Theorem 2.7.
Let P := e1� and � denote the endomorphism algebra of the left mutation μ−

P (�) ; note that μ−
P (�)

is a tilting object in K�, and so � and � are derived equivalent. By hand, we obtain that � is presented
by the quiver with relations:

Observe that � admits an anti-automorphism fixing all vertices.
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Thus, it turns out by Theorem 2.14 that 2silt � and 2silt � have the same cardinality; actually, they
are finite sets and the numbers are 32. See D(3K) and D(3A)1 in Table 1 of [9]. Moreover, the class
{�, �} forms a derived equivalence class.
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