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Abstract

Objective: Most neuropsychological tests were developed without the benefit of modern psychometric theory. We used item response theory
(IRT)methods to determinewhether awidely used test – the 26-itemMatrix Reasoning subtest of theWAIS-IV –might be usedmore efficiently if
it were administered using computerized adaptive testing (CAT).Method:Data on theMatrix Reasoning subtest from 2197 participants enrolled
in the National Neuropsychology Network (NNN) were analyzed using a two-parameter logistic (2PL) IRT model. Simulated CAT results were
generated to examine optimal short forms using fixed-length CATs of 3, 6, and 12 items and scores were compared to the original full subtest
score. CATmodels further explored howmany itemswere needed to achieve a selected precision ofmeasurement (standard error≤ .40).Results:
The fixed-length CATs of 3, 6, and 12 items correlated well with full-length test results (with r= .90, .97 and .99, respectively). To achieve a
standard error of .40 (approximate reliability= .84) only 3–7 items had to be administered for a large percentage of individuals. Conclusions:
This proof-of-concept investigation suggests that the widely used Matrix Reasoning subtest of the WAIS-IV might be shortened by more than
70% inmost examinees whilemaintaining acceptablemeasurement precision. If similar savings could be realized in other tests, the accessibility of
neuropsychological assessment might be markedly enhanced, and more efficient time use could lead to broader subdomain assessment.
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Introduction

Neuropsychological assessment methods would benefit from
modernization. Many tests have origins in the 19th century and
most elements of modern batteries were in place by the end of
World War II (Bilder, 2011). Despite widespread advocacy for the
“flexible” approach to neuropsychological assessment, the most
widely used methods center on tests that include the Wechsler
Adult Intelligence Scale and selected other tests that are considered
measures of specific neurocognitive domains (Rabin et al., 2005;
Rabin et al., 2016). Most tests used today were developed based on
the intuitions and ingenuity of the test developers. In contrast,
modern psychometric approaches use a priori definitions of
constructs and careful psychometric evaluation of how those
constructs are measured.

Test refinements over recent decades have led to better
understanding of many tests using classical test theory methods.
Test publishers have generally improved their standardization

practices through better sampling methods and improved test
refinement practices. This work has provided greater insight into
the factor structure of widely used tests and better definition of
certain test properties (internal consistency, test-retest, and
alternate-forms reliability). A few measures have further demon-
strated external validity relative to selected demographic variables
(e.g., age, education, race, and ethnicity), and by showing
differences associated with specific diagnostic groups or treatment
outcomes (Holdnack et al., 2011; Wechsler, 2008a, 2008b).

In contrast, modern psychometric theory has been used
infrequently in the construction and evaluation of neuropsycho-
logical tests, with several noteworthy exceptions (Bilder & Reise,
2019; Crane et al., 2008; Gershon et al., 2014; Moore et al., 2015;
Mungas et al., 2003; Mungas et al., 2000; Yudien et al., 2019). Item
response theory (IRT) offers the potential to better define and
measure latent traits identified in many neuropsychological tests.
IRT can further specify the precision of measurement at different
levels of the construct, which is often particularly important in the
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assessment of individuals with very high or very low levels of
ability, and critical to assure that measurement properties are
comparable within individuals when change has taken place due to
disease or interventions. These methods are further important to
assure that our tests measure the same constructs across groups
that differ by sex, race, ethnicity, cultural backgrounds, and clinical
conditions (Bilder et al., 2022).

IRT can further markedly reduce test length by identifying the
information contributed by each item to the measurement of the
latent trait(s), and optimizing the combined information generated
by subsets of test items administered in an adaptive format.
Specifically, computerized adaptive testing (CAT) based on item
response theory (IRT) has been extensively researched, and
implementations are common around the world. The
International Association for Computerized Adaptive Testing lists
39 large scale CAT programs (https://www.iacat.org/content/
operational-cat-programs). These include the Armed Services
Vocational Aptitude Test Battery and the Graduate Record
Examination, which are used in high-stakes placement and
admissions decisions. A clinical example is the Patient Reported
Outcomes Measurement Information System (PROMIS) that
enables efficient, fixed precision assessment of depression, anxiety,
self-reported cognitive ability/dysfunction, and more (https://
www.healthmeasures.net/resource-center/measurement-science/
computer-adaptive-tests-cats). Unfortunately, CAT research
has seldom been applied to neuropsychological assessment, with a
few exceptions (Moore et al., 2015, 2023; Yudien et al., 2019).

Adaptive testing starts by administering an item of intermediate
difficulty. If the examinee passes that item, they next get an item
that is more difficult, but if they fail the item, they will next get
an easier item. This process continues, adjusting the difficulty of
the next-selected item until a “good” estimate (with predefined
precision) of the examinee’s ability level is obtained. Computerized
adaptive testing (CAT) (Choi, 2009, 2020) often reduces test length
by 50% or more, resulting in markedly increased efficiency of
assessment, which in turn can reduce assessment time and cost,
and thereby increase access to additional care (Bilder &Reise, 2019;
Gibbons et al., 2008; Reeve et al., 2007; Reise &Waller, 2009). Most
current practice models relying on traditional testing have led
neuropsychological assessment to be among the most time-
consuming of medical diagnostic procedures, with associated high
costs that differentially impact individuals with fewer financial
resources, and often lead to long waiting lists so that care, even
when provided, is often delayed. CAT has an additional advantage:
because item selection and scoring are typically done automati-
cally, additional time and cost savings accrue relative to traditional
assessment that depends on manual scoring by highly trained
individuals.

The National Neuropsychology Network (NNN) was created to
enable assessment of widely used neuropsychological tests using
IRT and other modern psychometric methods, and to facilitate
development of more efficient methods to measure latent traits
(Loring et al., 2021). The NNN enables these kinds of analyses
because all data are being acquired at the item level, in contrast to
databases that comprise only summary scores.

As a proof-of-concept demonstration, we examined the Matrix
Reasoning (MR) subtest of the Wechsler Adult Intelligence Scale,
4th Edition (WAIS-IV; Wechsler, 2008). The MR subtest was
introduced in the WAIS-III (Wechsler, 1997), but historical roots
of this test may be traced to the much earlier development of the
Raven Progressive Matrices (Penrose & Raven, 1936). Factor
analytic work has shown that the Matrix Reasoning subtest loads

together with other measures (Visual Puzzles, Block Design) to
form the WAIS-IV Perceptual Reasoning Index (Wechsler et al.,
2008; Wechsler, 2008a). We recently used confirmatory factor
analysis to demonstrate that the WAIS-IV factor structure shows
strong measurement invariance across a heterogeneous patient
group from the NNN and the original healthy standardization
sample (Bilder et al., 2022).

The primary goal of our analyses was to demonstrate possible
savings in administration time of theMatrix Reasoning subtest that
could be gained using IRT-based CAT item-selection strategies,
under the assumption of unidimensionality. Preliminary analyses
were also necessary to determine if the assumption of unidi-
mensionality was justified in our sample.

Method

Participants

Inclusion/exclusion
Because this project involved care-as-usual, no a priori restrictions
on inclusion of participants were used, except that the study
included only adults (ages 18 years or older) and only those whose
primary language was English. Data were collected from 2197
patients who were administered the Matrix Reasoning subtest of
the WAIS-IV as part of a routine clinical neuropsychological
evaluation. Patients were between the ages of 18 and 90 years
(M= 51.68, SD= 18.15), about half of whom indicated that their
biological sex assigned at birth was Female (N= 1163). A small
minority identified as Hispanic (N= 45), while the vast majority
identified as not Hispanic (N= 2059); ethnicity was unknown for
the remaining 93 individuals.

Demographic and clinical variables
We recorded age, educational attainment, sex, race and ethnicity
following protocols developed by the National Human Genome
Research Institute’s “PhenX” (phenotypes and genotypes) project
(McCarty et al., 2014) that were endorsed by the NIMH as
Common Data Elements for demographic variables (Barch et al.,
2016). Complete data dictionaries for the NNN database are
available online at www.nnn.ucla.edu. This study was not
preregistered.

Human subjects
All procedures were conducted with approval from the
Institutional Review Boards at each site, using reliance agreements
implemented by SmartIRB. Initially we obtained informed consent
(for the first 2138 cases), and excluded participants if there
were concerns about capacity to provide informed consent.
Subsequently we received a waiver of informed consent so all clinic
patients could be included. For participants older than 89, we
coded age as “90þ”. The UCLA IRB was the IRB of record.
Participants were identified by Global Unique Identifiers (GUIDs)
or pseudo-GUIDs, as defined by the NIMH. Some participants had
multiple neuropsychological evaluations during their clinical care;
in these cases, results of the first examination only were included
for each examinee. An “examination” was operationally defined as
a set of tests administered within a period of 30 days, intended to
represent a single episode of care.

Data sources and measures

All clinics administered the Matrix Reasoning subscale following
standard administration and scoring methods set forth in the
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manual (Wechsler, 2008). The Matrix Reasoning subtest includes
two sample items (A and B), and 26 test items. Item 4 is
administered first unless intellectual disability is suspected, in
which case administration begins with item 1. If examinees do not
obtain perfect scores on either items 4 or 5, then preceding items
are administered in reverse order until the examinee obtains
perfect scores on two consecutive items. Following the adminis-
tration manual, items were otherwise administered in order of
difficulty (easiest to hardest). For each item, individuals received a
score of either 1 (correct) or 0 (incorrect). After three consecutive
scores of 0, the test was discontinued. Missing values after the test
was discontinued following three failures were later coded as 0’s
(i.e., incorrect) for purposes of CAT simulation.

Dimensionality assessment

The Matrix Reasoning subtest is universally scored as a single
construct in practice. Nevertheless, the IRT model to be applied
here assumes “essential” unidimensionality, that is, the responses
primarily reflect a single common dimension. Thus, it is important,
prior to estimating an IRT model, to first empirically establish the
viability of a unidimensional model in our sample. To evaluate
unidimensionality in the present data, we first estimated
tetrachoric correlations among the items (deleting the first five
items due to very high proportion corrects, see Table 1) and then
factor analyzed the tetrachoric correlations using minres extrac-
tion. To establish essential unidimensionality, we examined the
ratio of the first to the second eigenvalue, the magnitude of factor
loadings, and several indices of statistical fit. Specifically, we used
the lavaan library (Rosseel, 2012) to fit a confirmatory unidimen-
sional model specifying the items as ordinal and using diagonally
weighted least squares estimation.We examinedmodel chi-square,

the scaled comparative fit index, scaled root mean squared error of
approximation, and standardized root mean square residual. By
traditional conventions, values of these indices >.90, <.05, and
<.08 would be considered “good”.

Item response theory (IRT)

Compared to classical test theory (CTT) which focuses on test-level
functioning, IRT focuses on item-level functioning. The chief goal
of IRT is to fit a statistical model, called an item response function
(IRF), which describes how the probability of responding correctly
to an item changes as a function of ability or “trait” level (generally
denoted as θ) and properties of an item (e.g., its difficulty and
discrimination). It is assumed that the probability of responding
correctly monotonically increases as a function of θ.This
interpretation assumes that any variation in item response is
driven by one dominant dimension (i.e., factor), which embodies
the unidimensionality assumption.

As noted, the IRF describes the probability of responding
correctly given ability or “trait level” (θ), and it is defined by several
parameters (e.g., item difficulty, guessing rate, discrimination). For
this application we selected a model that is analogous to the well-
known and extensively used item-level factor analytic model.
Specifically, we selected the so-called two-parameter logistic model
(2PL)1 as shown in Equation 1.

P x ¼ 1j�ð Þ ¼ 1
1þ expð�� �� βð ÞÞ (1)

In the above, examinee individual differences in trait level are
symbolized by θ, which in this study (and most IRT studies) is
assumed to be like a Z-score with a mean θ of zero and standard
deviation of 1.0. Test items vary in location (β), which is the point
along the trait continuum at which the probability of responding
correctly is 50%. Thus, the location parameter has a scale such that
positive values indicate a more difficult item, that is, an item that
would require higher than average trait level to get correct. A
negative difficulty item indicates an “easier” item, meaning that
even individuals below the population mean may have a high
chance to get it correct. The so-called “discrimination” parameter
(α) controls the slope of the IRF at its reflection point – higher
values indicate more discriminating items; more “discriminating”
means that the item is better able to distinguish between
individuals in the trait range around the item location.

In IRT, items can vary not only in discrimination, but also in
how much statistical information they provide in discriminating
among individuals. Specifically, once an IRF is estimated for each
item, it can be easily transformed into an item information
function (IIF) as shown in Equation 2.

Infoj� ¼ �2P x ¼ 1j�ð Þð1� P x ¼ 1j�ð ÞÞ (2)

An IIF describes how well an item can discriminate between
individuals at different levels of ability. Items with higher
discrimination (α) provide more information, but where that
information is concentrated is determined by the location
parameter (i.e., where the probability of a correct response is 50%).

Table 1. Matrix reasoning classical test theory statistics and item response
theory parameter estimates

Mean s raw.r r.drop

IRT Slope IRT Location

α β

V1 .99 .08
V2 .99 .09
V3 .99 .10
V4 .99 .11
V5 .95 .21
V6 .90 .30 .43 .39 1.59 −2.00
V7 .87 .33 .41 .36 1.23 −1.99
V8 .78 .42 .57 .52 1.68 −1.08
V9 .77 .42 .60 .55 1.86 −1.01
V10 .68 .47 .70 .66 2.41 −.49
V11 .71 .45 .62 .56 1.79 −.71
V12 .64 .48 .68 .63 2.13 −.38
V13 .64 .48 .74 .70 2.88 −.31
V14 .61 .49 .69 .64 2.23 −.25
V15 .52 .50 .68 .63 2.23 .04
V16 .52 .50 .74 .70 3.01 .09
V17 .41 .49 .67 .62 2.56 .40
V18 .46 .50 .74 .70 3.54 .25
V19 .33 .47 .62 .56 2.48 .62
V20 .36 .48 .67 .62 3.12 .52
V21 .32 .47 .66 .60 3.41 .61
V22 .35 .48 .65 .60 2.94 .54
V23 .21 .41 .55 .49 3.07 .95
V24 .18 .39 .52 .47 3.13 1.03
V25 .11 .31 .43 .38 3.58 1.27
V26 .08 .26 .36 .32 3.14 1.49

Note. IRT slope (α in the 2PL equation) is a discrimination parameter; IRT Location (β in the
2PL equation) is a difficulty parameter; s is standard deviation; raw.r is item to test score
correlation; r.drop is item to test score correlation if item dropped.

1Many additional psychometric analyses, such as evaluation of statistical and graphical
item fit for alternative IRT models (e.g., a 3-parameter model) were conducted. However,
discussion of these are beyond the scope and are not detailed here. They are available upon
request.
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Finally, it is critical to note that IIFs are additive across items
and thus can be summed to form an overall scale information
function (SIF). The SIF is key because it allows us to study how the
standard error of measurement changes as a function of trait level
for a given set of items administered, whether the full, complete
battery or only a few CAT items are administered. Specifically,
Equation 3 shows how scale information is converted to a
conditional standard error of measurement. This is critical because
information, and thus the standard error (SE), is leveraged in CAT
to more efficiently select items for administration.

SEj� ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj�p (3)

Our first analyses centered on performing traditional classical test
theory psychometric analyses on the data. This included item-test
correlations, item means and standard deviations. These values
were obtained using the R library psych (Revelle, 2023), alpha
command. The IRT 2PL model parameters were estimated using
the mirt library in R (Chalmers, 2012). Although there are no
definitive approaches to evaluating model fit in IRT, we examined
root mean square error of approximation, standardized root mean
square residual, and comparative fit index which are output from
mirt (Maydeu-Olivares et al., 2011). These are simply IRT versions
of the fit indices shown previously and similar “benchmarks”
would apply.

Computerized adaptive testing

As noted, CAT (Wainer et al., 2000; van der Linden & Glas, 2000)
has been investigated carefully in many assessment domains,
including psychopathology assessment (see Gibbons et al., 2016)
but has received scant attention in neuropsychological assessment.
In CAT, an item is administered, usually of medium location
parameter (e.g., around zero) and a response is collected and
scored. Based on that response, a trait level estimate is made, and a
new item is selected that is typically easier (if the examinee got the
item wrong) or harder (if the examinee got the item right). More
technically, the next item selected to administer is the one that
maximizes the psychometric information (i.e., provided the most
discrimination) at the current trait level estimate. This process of
administering items, updating the latent trait estimate, and
selecting new items to administer, continues until a termination
criterion is met.

There are two major termination criteria used. First, items are
adaptively administered until a fixed number, for example, 10, are
administered. That is called fixed length adaptive testing. Second,
items are administered until a standard error criterion is met. For
example, items are administered until the standard error is at or
below .30 (which would correspond roughly to an alpha reliability
of .90). Of course, the procedure used is limited by the item bank
one has on hand. If the test does not have enough items to provide
sufficient psychometric information to reduce the standard error
below a threshold, then a more liberal threshold is required.

In this research, for demonstration purposes, we conducted a
real data simulation.We began again by filling in all cells of the data
matrix after each person’s termination criterion wasmet with zeros
to eliminate missing data. Therefore, the number correct for an
individual is the number correctly answered until the stopping
criterion was reached, and the number wrong is the sum of items
missed prior to the stopping criterion plus all items after the
stopping criterion. This demonstration is hypothetical and a “proof

of concept,” but this is true of most real data simulations of CAT
(Thompson & Weiss, 2011).

The specific CAT algorithms evaluated here were as follows.We
began by selecting the most informative item (most discriminating
item) at trait level= 0. This item was always Item #13 which had
discrimination of 2.88 and location of−0.31. Each examinee began
with a trait level estimate of 0 and based on the response to the first
item, trait level estimate and standard error were updated using the
expected a posteriori (EAP) method of scoring (Bock & Mislevy,
1982). The next item selected was the one that provided the most
psychometric information at the current trait level estimate.

The first set of algorithms we examined were fixed test length.
Specifically, we limited the CAT administration to 3, 6, and 12
items respectively.We then examined a standard error-based CAT.
Specifically, we continued administering items in CAT format
until an examinee’s trait level estimates had a standard error below
.40 (16% error variance or reliability of roughly .84). The three
key outcome statistics are (1) the average standard error of
measurement for each CAT condition, (2) the root mean square
deviation between CAT and full scale trait level estimates (RMSD),
and (3) the correlations, both Pearson and Spearman, between
CAT trait level estimates and full scale estimates (i.e., based on
all the items). The first and second indices provide degree of
uncertainty around the true score and full scale score, respectively.
The CAT versus full scale correlations are part-whole correlations
and must be positive. They should be interpreted as descriptive
statistics reflecting the specific simulation and not as estimates of a
“population” parameter. High correlations (e.g., >.90) imply that
CAT scores would have very similar external correlates as the full
scale scores.

Results

In the current analysis, patients were originally administered
between 1 and 26 test items. On average, participants received
around 17 items (Mean = 17.30, Median = 19, Mode = 24).
A frequency graph of the number of items administered is shown
in Supplemental Figure 1. In Supplemental Figure 2 is displayed a
graph of the time, inminutes, to complete a given number of items.
The line is a linear regression, and the curves are locally estimated
scatterplot smoothing (LOESS) plots. In addition, Supplementary
Table 1 shows the mean and median times to complete each
number of items administered using no trimming and 5%
trimming to reduce the effect of outliers. These graphs and tables
indicate that people taking between 20 and 23 items tend to spend
about 8–10 min on the MR subtest.

Dimensionality assessment

The first five eigenvalues of the tetrachoric matrix were 13.09, 1.30,
0.71, 0.64, and 0.56, and thus 13.09/21= 62% of the item variance
was explained by the first factor. The ratio of the 1st to 2nd
eigenvalue was 10.07, much larger than the frequently noted
benchmark for “unidimensionality” of 3. This pattern suggests a
very strong common dimension as expected. The results of fitting a
unidimensional confirmatory model using lavaan (Rosseel, 2012)
produced a standard chi-square of 583.26 (robust 769.73) on 189
df, and scaled comparative fit index = .996, scaled root mean
squared error of approximation= .037, and standardized root
mean square residual = .052, all indicating an acceptable, if not
excellent, fit.
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Classical and IRT model fitting results

Basic classical test theory psychometric values are shown in the
first four columns of Table 1. Using these results, we decided to
eliminate the first five items from subsequent analyses; these items
are nearly universally passed (too high correct response rate) to
provide any discrimination among individuals. The first set of
columns contain the item-test total score correlations, and the
item-test correlation if the item dropped from the total score.
These values tend to be higher for items around #13 to #22 – items
that are completed correctly by 35–65% of the participants and the
item variance is largest. The item means in the third column
indicate that the items are well ordered by proportion correct (easy
to difficult) as would be expected given how the test is administered
and our method of treating missing data. Thus, our easiest item is
Item #6 with a .90 correct rate, and the hardest is Item #26 with a
.08 correct rate. Coefficient alpha was .92 for both the 26-item and
21-item versions.

Estimated item parameters from the 2PL model are shown in
the last two columns of Table 1 and the corresponding item
information curves are shown in Figure 1. The fit statistics output
by themirt program for this model were root mean square error of
approximation = 0.04, standardized root mean square residual
= .07, and comparative fit index = .99, agreeing almost exactly with
the CFI results shown previously and revealing excellent model fit
(Maydeu-Olivares et al., 2011).

Finally, one of the major features of IRT modeling is the
graphical display of item and test functioning. First, in Figure 2 we
display trait level (on a scale withM= 0, SD= 1.0) versus estimated
reliability conditional on trait level (Note: the concept of “test
score” reliability does not exactly apply to IRT, and thus this is a
rough approximation based on error variance of trait level
estimates). This graph shows that for 1.5 standard deviation below
the mean to 2 standard deviations above the mean, the reliability of
trait scores is above .80, a commonly used “benchmark”. Most
importantly, in Figure 3 scale information and conditional
standard errors are shown for this 21-item version of Matrix
Reasoning under the 2PL model. This figure tells the same story,
but now in purely IRT terms; from around −1.5 to þ2 standard
deviations from the mean, measurement precision is relatively
high, but is much lower at the extremes.

Computerized adaptive testing

For the fixed-length simulations for 3, 6, and 12 items, the Pearson
correlation between CAT trait level estimates and full-length trait
level estimates were .90, .97, and .99, respectively, and Spearman
correlations were .91, .96, and .99. The average standard errors of
measurement were .47, .35, and .29, respectively (.22, .12, and .08
error variance)2. These can be compared against the average
standard error of .27 for the full-length test (.07 error variance). In
these conditions, all individuals received the same number of
items, but the specific items administered depended on their
response pattern. Graphs of full length trait level estimates versus
CAT trait level estimates for these three conditions are shown in
Supplementary Figures 3 through 5, respectively. Clearly, as the
number of items increases, there are: (1) an increasing range of
CAT scores, (2) an increase in the number of different CAT scores
(possible response patterns and corresponding trait level estimates
equals 2 raised to the power of the number of items), and (3) lower

spread of full scale scores conditional on CAT scores. Finally,
RMSDwere .42, .22, and .08, indicating that, as the number of CAT
items increases, the typical difference between CAT and full-scale
trait level estimates gets smaller.

In the “standard error less than or equal to .40” CAT condition
(16% error variance or reliability of roughly .84), the mean number
of items administered was 6.72 (S= 5.70), the average standard
error of measurement was .38, the RMSD was .25 and the Pearson
correlation between CAT trait level estimates and full-length trait
level estimates was r= .97 (Figure 4); the Spearman was .94.
However, that CAT algorithm did not work for all individuals as
described below.

In Figure 4, the trait level scores are color coded by the number
of items received; these are grouped into 3–4, 5–13, and 21 (no one
received 14–20 items). The above reported correlations are
inflated, and RMSD deflated, due to the CAT algorithm not
converging for individuals with very high or very low estimated
trait levels, for whom all items needed to be administered.
Supplemental Table 2 shows the number of people (and proportion
of people) receiving specific numbers of items. The 283 individuals
who required all 21 items (about 13%) had very high or low trait
level estimates – locations on the trait where it was impossible to
achieve a standard error of .40 or below. This is shown in
Supplemental Figure 6. Because the same items were administered,
the CAT trait level estimate and full test trait level estimate are the
same for these individuals. This is a limitation of the item pool in
the original test; specifically at very low and very high levels of
performance, the original test has a standard error greater than .40.
This can be seen in the Scale Information Function plot in Figure 3,
which as in most tests, shows substantial increases in error at the
lower and upper ends of the trait. We thus estimated indices again,
but with the 283 individuals who received all items eliminated.
The new values are: average standard error= .37, RMSD = .26,
Pearson = .93 and Spearman = .90.

Discussion

This proof-of-concept investigation demonstrated that one of the
most widely administered neuropsychological tests – the Matrix
Reasoning subtest of the WAIS-IV – might be administered with
markedly greater efficiency using a computerized adaptive test
(CAT) method, based on item response theory (IRT). The CAT
models demonstrated that tests with 3 to 12 items correlated well
(r= .90 to .99) with full-length subtest scores based on 21 items.
When using a fixed-precision strategy, an average of 6.7 items was
needed to yield a standard error of less than .4 (which indicates
reliability of approximately .84), yielding strong correlations
(r= .929 and .902 when excluding people who received all items)
between the CAT estimate of ability and the estimate based on the
full-length test. Many participants (1431/2197 or about 65%)
required only 3 or 4 items to reach this level of precision.

For the Matrix Reasoning subtest alone, the results suggest the
total administration time could be reduced from 8–10 min3 to
2–3 min on average. Given estimates for total WAIS-IV
administration time of 60–90 min, these findings suggest that
the entireWAIS-IVmight be completed in 20–45 min following an
adaptive testing format. This is based on the fact that 8 of 10 core

2These standard errors correspond to marginal “reliability” values of .78, .88, and .92,
respectively, compared with .93 for the full length test.

3Some estimates of time to complete the MR subtest are slightly shorter, but available
estimates are for different versions in different samples. For example, Ryan, Glass and
Brown, 2007 reported forWISC-IV that theMatrix Reasoning subtest took on average 6:06
(SD 2:32) with a range from 2:18 to 16:15. Axelrod 2001 found the WAIS-III Matrix
Reasoning subtest took on average 5.3 (SD 3.8) minutes to administer.
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Figure 1. Item information functions for items 6–26. Note. The
item information functions for items 1–5 could not be estimated
as nearly all individuals got these questions correct, and
therefore provide no information.

Figure 2. Reliability estimate conditional on
trait level.
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subtests follow an item format. The two core subtests that do not
are Coding and Symbol Search. It remains unclear how much time
is necessary to arrive at accurate estimates of true scores for these
subtests; this could be a valuable topic for future research. Our
prior confirmatory factor analyses further showed that WAIS-IV
index scores, including the Perceptual Reasoning Index to which
MR contributes, might be well estimated with only 2 subtests per
index (Bilder et al., 2022).

Many other factors might alter these estimates of time
needed for examination, and in cases where performance is

inconsistent from trial to trial an adaptive algorithm might
take longer to execute successfully. If our results hold for other
tests, however, we could anticipate at least doubling of
efficiency, which would have a major impact on the potential
throughput of cases in existing clinics nationwide. Increasing
throughput has two major implications: (1) increasing access
to neuropsychological assessment by the many patients who
may benefit from it; and (2) decreasing the costs in both time
and money for the patients who do receive neuropsychological
services.

Figure 3. Test information and standard error conditional on trait level.

Figure 4. Computerized adaptive test esti-
mated matrix reasoning trait levels versus full
scale estimated trait level.
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If clinical neuropsychology increases use of adaptive testing
methods, it will be important to determine howmuch precision we
want in these assessments. The current practice, using fixed-length
tests, probably “over-tests” many patients and provides a higher
level of precision in measurement of the tested construct than is
clinically useful. A classic example may be drawn from studies of
the Wisconsin Card Sorting Test (WCST) in schizophrenia. There
was once heated debate about whether it might be reasonable to use
the “short” (64 card) version of theWCST rather than the standard
version (128 cards). A study (Prentice et al., 2008) examining
individual item responses found, however, that only four cards
were needed to provide most of the information relevant to
differentiate the schizophrenia group from healthy volunteers.

The model fitting results from the current study revealed that
item difficulty is well specified by the order of Matrix Reasoning
items following standard administration. In our sample, we also
found very little information was provided by the first five items. It
may be that these items are helpful in some populations of very low
ability, but it is noteworthy that these items were of little value in
our sample, which included patients with severe neurological and
psychiatric disorders. The IRT modeling further showed that
precision of measurement is very good from about −1.5 to þ2
standard deviations around the mean, but worse as values move to
extremes. For applications of this test that particularly require
assessment of patients with very low levels of ability, additional
easy items would be needed. For research on individuals of
exceptionally high abilities, more difficult items would be needed.

A key assumption in this work is that the Matrix Reasoning
subtest measures a unitary construct. Our dimensionality assess-
ment revealed a ten-fold difference between the first eigenvalue
(13.09) and the next highest eigenvalue (1.30) and the next three
eigenvalues were less than 1, suggesting a strong first factor.
Finally, a confirmatory factor analysis showed that the unidimen-
sional solution had acceptable fit. Thus, the assumption of
unidimensionality is generally sound. On the other hand, it is
plausible that more than one dimension might be measured by the
Matrix Reasoning subtest. Prior research on similar tests, such as
the Raven Advanced Progressive Matrices (Raven, 1998), has
suggested that this task involves Gf (general fluid intelligence,
following Carroll (1993)), and more specifically inductive
reasoning. Carpenter et al. (1990) examined multiple logical rules
involved in different RAPM problems and suggested a dual-
process model centering on inductive reasoning (finding abstract
relations and rules) and working memory (goal management)
processes. It is possible that distinct, separable processes like these
might be more prominent in samples with specific deficits or
strengths in the relevant abilities.

Understanding item-level responses on the Matrix Reasoning
subtest may further help development of novel procedures that will
enable open access assessment using adaptive testing methods.
One interesting example of this kind of innovation already has
been undertaken with the Matrix Reasoning Item Bank (MaRs-IB;
Chierchia et al., 2019). In theory, future development could lead to
creation of large, shared, open-access banks of items along with
their IRT parameters, that would enable free and flexible
administration of adaptive testing of the processes involved in
solving these widely used tests.

Limitations

A strength and potential weakness of the NNN sample is that it is
heterogeneous, with inclusion of all patients examined in

participating clinics. A potential weakness is that patients represent
a wide range of conditions so the findings may not generalize to
any one specific condition or to people who have no neuro-
psychological complaints. However, this diversity is also a strength
since the findings are more likely to generalize to other clinics
nationwide.

Another limitation is that our analyses considered each item
dichotomously (as correct or incorrect) and did not investigate the
possible selection of different response alternatives or qualitative
response features. Further, we did not use information about how
much time it took examinees to provide either correct or incorrect
responses. Theoretically, valuable information may be provided by
knowing which incorrect response option an examinee took, and
further in how long it took them to arrive at those answers.
Particularly relevant to potential future development of perfor-
mance validity indicators, it may be possible in the future to
identify selection of unusual response options, with atypically long
or short response latencies, that do not “fit”with other estimates of
the individual’s true ability as determined by other metrics. Very
large numbers of examinees must be used to analyze data in this
way, given that – by definition – such rare response selections are
infrequent. We hope as our sample grows we will be able to address
these issues.

Finally, several possible limitations to generalizability should be
mentioned. First, this is a simulation rather than implementation
study, so it is impossible to say how the CAT might change
examinee response patterns. Standard administration involves
progression from easy to more difficult items, which might enable
examinees to learn as the test progresses. It is also possible thatMR,
by sequencing items in order of difficulty and including a stop rule,
rather than giving items randomly, as is done in some achievement
tests, might yield different scores because examineesmay not get all
items. To perform an IRT calibration study, we would suggest
administering all items, not in a fixed order, so that item
characteristics can be estimated free from possible item-order
effects. Finally, we are sensitive to the fact that application of
adaptive tests requires the use of computers and/or internet access.
This raises a concern about unequal access that may dispropor-
tionately impact patients who may not be able to access the
necessary technology. Internet access is now prevalent in some
regions (e.g., 93% in North America) but lower in others (43% in
Africa). Even in regions with high overall access, those without
access are disproportionately poor, from minority groups, and
experience other adverse social and structural determinants of
health outcomes4 Federal rules to eliminate “digital discrimina-
tion”5 raise hope that action will soon reduce current disparities at
least in the United States. Despite these possible limitations, we
believe the results of this demonstration suggest major practical
advantages of using adaptive methods to increase efficiency and
improve access to neuropsychological assessment.
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