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Circular bubbles in a Hele-Shaw channel: a
Hele-Shaw Newton’s cradle
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We consider the propagation of inviscid bubbles in a Hele-Shaw cell under a uniform
background flow. We focus on the distinguished limit in which the hydrodynamic pressure
gradient due to the external flow balances viscous drag effects due to thin liquid films
between the bubbles and the cell walls (Bretherton, J. Fluid Mech., vol. 10, issue 2, 1961,
pp. 166–188), with the ratio between these two effects measured by a single dimensionless
parameter that we label δ. In this regime, we find that each bubble remains approximately
circular, and its propagation velocity is determined by a net force balance. The analytical
solution for the problem of an isolated bubble in an infinite Hele-Shaw cell is found to
agree well with experimental data in the literature. In particular, we find that the bubble
may move faster or slower than the background fluid speed, depending on whether δ > 1
or δ < 1, or precisely with the background flow if δ = 1. When the model is generalised to
include the effects of multiple bubbles and boundaries in the Hele-Shaw cell, we still find
that the sign of δ − 1 causes striking changes in the qualitative behaviour. For a train of
three or more bubbles moving along a Hele-Shaw channel, we observe longitudinal waves
that propagate forwards or backwards along the bubble train, depending on whether δ > 1
or δ < 1, resembling a Hele-Shaw Newton’s cradle.
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1. Introduction

Many microfluidic experiments and devices involve generating bubbles and then
transporting them along microfluidic channels (Huerre, Miralles & Jullien 2014; Anna
2016; Gnyawali et al. 2017). The bubbles are often large enough (compared with the
channel height) to be pancake-shaped, i.e. flattened against the top and bottom walls of the
channel, but almost always small enough to remain approximately circular in plan view
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(see e.g. Garstecki et al. 2004; Beatus, Bar-Ziv & Tlusty 2012; Shen et al. 2014; Gnyawali
et al. 2017). In this paper, we derive a simple model for the motion of approximately
circular bubbles in a Hele-Shaw cell, then use it to describe bubble propagation along a
microfluidic channel modelled as a long Hele-Shaw cell with side walls.

It was first shown by Taylor & Saffman (1959) that in the limit of zero surface tension, a
circular bubble in a Hele-Shaw channel travels at twice the speed of the outer liquid. More
generally, they found that for a specified channel width, outer liquid speed and bubble
area, one can achieve an arbitrary bubble speed; selecting a particular speed then specifies
the bubble shape. Maruvada & Park (1996) generalised the Taylor–Saffman solution to
describe an elliptical surfactant-laden bubble in a Hele-Shaw cell.

Complex analysis lends itself to Hele-Shaw flow problems since the pressure in the
fluid is modelled by Laplace’s equation. For example, Crowdy (2009) used complex
variable methods to study co-travelling multiple bubbles in an infinite Hele-Shaw cell. As
in the Taylor–Saffman problem, this model does not involve surface tension and suffers
from the same degeneracy. The degeneracy was removed by Tanveer (1986), who used
complex variable techniques to include surface tension in the Taylor–Saffman problem. In
particular, Tanveer showed that in the limit of large surface tension, the bubble shape is
circular. A class of exact solutions for an infinite stream of groups of bubbles was derived
by Vasconcelos (1994) by adapting the method of Tanveer. While the papers referenced
above concern the deformation of bubbles, with either weak or entirely absent surface
tension, in this paper we focus on the regime where surface-tension effects dominate
and the bubbles remain approximately circular, as is commonly seen in microfluidic
experiments.

Bretherton (1961) studied an inviscid bubble moving through a viscous liquid in a tube
in the limit of small capillary number Ca. Bretherton’s analysis was modernised by Park
& Homsy (1984) using matched asymptotic expansions, while applying the theory to
two-phase flow in a Hele-Shaw cell. For our purposes, their main finding is that viscous
flow in the thin liquid films between the bubble and the cell walls causes an additional
pressure jump across the bubble–liquid interface, which is proportional to Ca2/3. This
result was corroborated by Reinelt (1987), who further used numerical methods to extend
the theory to O(1) capillary numbers. Meiburg (1989) demonstrated numerically how
Tanveer’s solutions are modified by the inclusion of this additional pressure drop. The
effective boundary condition used by Meiburg (1989) was improved by Burgess & Foster
(1990), both to capture correctly the Bretherton pressure drop at the rear interface of a
moving bubble, and to analyse inner regions where the liquid flow is approximately tangent
to the bubble interface and the Park & Homsy (1984) model breaks down. Reichert, Cantat
& Jullien (2019) included the Bretherton pressure drop in their model for an isolated
circular bubble in a Hele-Shaw cell with a uniform background flow. Reyssat (2014) also
included the Bretherton drag force in his model for a bubble in a Hele-Shaw cell whose
walls are slightly inclined to form a thin wedge, and observed that the bubble migrates out
of the wedge to reduce its surface area.

Kopf-Sill & Homsy (1988) studied experimentally the velocities of variously shaped
bubbles in a Hele-Shaw cell, in particular observing circular bubbles that always travelled
more slowly than the background flow. However, Park, Maruvada & Yoon (1994) showed
that this behaviour was due to the presence of surfactants, and their experiments showed
circular bubbles moving more quickly than the background flow, though still less than
twice as fast (the Taylor–Saffman limit). Similarly, Reichert et al. (2019) found circular
bubbles travelling faster than the outer liquid velocity but with a larger range of bubble
velocities. Shen et al. (2014) investigated the motion of multiple droplets in a Hele-Shaw
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channel, observing behaviour including pair exchange, where a single droplet catches
up to a pair of bubbles and then the leading bubble breaks away. Beatus, Tlusty &
Bar-Ziv (2006) and Beatus et al. (2012) explored instabilities in a one-dimensional
array of droplets, resulting in the formation of transverse and longitudinal waves. Their
experimental observations were captured well by a model where the droplets are treated
as dipoles, although in principle this approach is strictly valid only when the droplets are
sufficiently well separated.

Sarig, Starosvetsky & Gat (2016) solved for the pressure field around two arbitrarily
spaced and sized droplets in a Hele-Shaw cell, and performed a force balance to determine
the bubble velocities, including an internal droplet friction as in Beatus et al. (2012).
We adopt a similar methodology, except that we use the boundary condition derived by
Burgess & Foster (1990) instead of the empirical friction force. The results of Sarig et al.
were further analysed by Green (2018), who showed that the dipole approximation of
Beatus et al. (2012) works well even when the bubble spacing is rather small, and extended
the analysis to model an arbitrary number of bubbles in the large-spacing asymptotic limit.

In § 2, we derive a model for a bubble being swept along by a uniform flow in
a Hele-Shaw cell, in a distinguished asymptotic limit where the Bretherton pressure
drop is of the same order as the Hele-Shaw viscous forces. In this regime, the bubble
remains approximately circular, as in many microbubble experiments; the pressure in the
surrounding liquid is found by solving a Neumann problem involving the a priori unknown
bubble velocity, which is determined by a coupled net force balance on the bubble. We first
derive the equation of motion for a single isolated bubble, which is equivalent to the model
obtained by Reichert et al. (2019) using a dissipation argument. We then generalise the
approach to describe an arbitrary collection of bubbles. In § 3, we demonstrate possible
analytical and numerical solution techniques by applying the model to some practically
relevant examples. In particular, we show that proximity to cell boundaries and/or to other
bubbles can either increase or decrease the bubble propagation speed, depending on the
value of a single key dimensionless parameter. In a train of three or more bubbles, these
effects result in the successive formation and breakup of bubble pairs in a phenomenon
that resembles the dynamics in a Newton’s cradle. We conclude in § 4 by discussing our
findings and the limitations of our model.

2. Model derivation

2.1. Isolated bubble in an infinite medium

We begin by considering an isolated bubble in a Hele-Shaw cell of thickness ĥ parallel to
the (x̂, ŷ)-plane. Under the lubrication approximation, in the limit where ĥ is much smaller
than the horizontal dimensions of the cell and the bubble, the flow away from the bubble
is governed by the Hele-Shaw equations:

v̂ = 3
2

û
(

1 − 4ẑ2

ĥ2

)
, (2.1a)

∇̂ · û = 0, (2.1b)

û = − ĥ2

12μ̂
∇̂p̂. (2.1c)

Here, v̂(x̂, ŷ, ẑ) is the full fluid velocity profile, û(x̂, ŷ) is the depth-averaged fluid velocity,
ẑ ∈ [−ĥ/2, ĥ/2] denotes the height coordinate, p̂(x̂, ŷ) is the leading-order pressure, and
μ̂ is the fluid viscosity.
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Figure 1. (a) Plan view of a bubble in a Hele-Shaw cell with a uniform background flow of speed Û. (b) Side
view of the bubble.

In this subsection, we focus on the simple model problem of a single bubble in a large
cell with a prescribed uniform background flow of speed Û in the x̂-direction, which gives
us the far-field condition

û → Ûi as x̂2 + ŷ2 → ∞, (2.2)

where i is the unit vector in the x̂-direction.
Looking down on the cell from above (figure 1a), the boundary of the bubble appears

to be a closed curve in the (x̂, ŷ)-plane, on which we impose the effective boundary
conditions (Meiburg 1989)

n · û = Ûn, (2.3a)

p̂b − p̂ = 2γ̂

ĥ
+ 2γ̂

ĥ
β(Can)Ca2/3

n + γ̂π

4
κ̂. (2.3b)

Here, n, Ûn and κ̂ are the outward-pointing normal, normal velocity and curvature of
the apparent bubble boundary, respectively; γ̂ is the surface-tension parameter, p̂b is the
uniform pressure inside the bubble, Can = μ̂Ûn/γ̂ is the capillary number based on the
normal velocity, and β is the Bretherton coefficient, whose value depends on whether
the meniscus is advancing or retreating (Bretherton 1961; Wong, Radke & Morris 1995;
Halpern & Jensen 2002):

β(Can) =
{
β1 ≈ 3.88 when Can > 0,
β2 ≈ −1.13 when Can < 0.

(2.4)

The first term on the right-hand side of (2.3b) is the capillary pressure difference due to
the meniscus at the bubble boundary, whose leading-order radius of curvature is given by
ĥ/2. The second term, containing the capillary number, is the correction to the pressure
difference in the limit Can � 1, derived in Bretherton’s original paper (Bretherton 1961),
due to the existence of the thin-film regions between the bubble and the walls of the cell
(see figure 1b). The final term in (2.3b) captures the in-plane contribution to the curvature
of the bubble interface, including the π/4 factor derived by Park & Homsy (1984).

We will discuss further the underlying assumptions and validity of the boundary
condition (2.3b) in § 4.

2.2. Non-dimensionalisation
We non-dimensionalise the model (2.1)–(2.3), scaling lengths with a typical bubble radius

R̂, and velocities with the far-field uniform flow speed Û. We also scale p̂ with 12μ̂ÛR/ĥ
2
,
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p̂b with 2γ̂ /ĥ, and κ̂ with 1/R̂. This process yields the following dimensionless system (in
which dimensionless variables are denoted without hats):

∇2p = 0 in Ω, (2.5a)

pb − 3 Ca
ε

p = 1 + Ca2/3 β(Un)U2/3
n + επ

4
κ on ∂Ωb, (2.5b)

n · ∇p = −Un on ∂Ωb, (2.5c)

p ∼ −x + o(1) as x2 + y2 → ∞, (2.5d)

where Ω is the fluid domain, and ∂Ωb is the apparent bubble–fluid boundary in
the (x, y)-plane, whose normal velocity is Un. The far-field condition (2.5d) (with no
logarithmic contribution) enforces conservation of the bubble area and thus in principle
allows the bubble pressure pb to be determined as part of the solution.

The system (2.5) contains two dimensionless parameters, the aspect ratio and the
capillary number, defined by

ε = ĥ

2R̂
, Ca = μ̂Û

γ̂
, (2.6a,b)

respectively. For the boundary-value problem (2.5) to be valid, both of these parameters
must be small: the Hele-Shaw model relies on ε being small, while the boundary condition
(2.3b) is an asymptotic approximation in the limit Ca → 0 (Park & Homsy 1984). In the
boundary condition (2.5b), the dominant balance depends on the relative size of these two
small parameters.

In this work, we study flows in which the Hele-Shaw pressure is of the same order as
the Bretherton drag term, and (2.5b) shows that this occurs when Ca = O(ε3). Expanding
pb and κ as asymptotic expansions in powers of ε, we then see that

pb0 + εpb1 + ε2pb2 − 3 Ca
ε

p︸ ︷︷ ︸
O(ε2)

+ O(ε3) ∼ 1 + επ

4
(κ0 + εκ1)+ β Ca2/3 U2/3

n︸ ︷︷ ︸
O(ε2)

+ O(ε3)

(2.7)

on ∂Ωb. At O(1), we find that pb0 = 1, indicating that the leading-order bubble pressure
is determined by the capillary pressure jump across the meniscus. At O(ε), we obtain
κ0 = 4pb1/π = const., which implies that the bubbles that we are studying are circular to
leading order in ε. By our choice of length scale R̂, we can take the bubble here to have
unit dimensionless radius.

Since the bubble remains (approximately) circular for all time, the normal velocity on
the boundary is just given by Un = Ub · n, where Ub = (Ub,Vb) is the constant bubble
velocity. In terms of plane polar coordinates (r, θ) based on the bubble centre, we therefore
find that the pressure in the liquid satisfies the problem

∇2p = 0 in r > 1, (2.8a)

∂p
∂r

= −Ub · n = −Ub cos θ − Vb sin θ on r = 1, (2.8b)

p ∼ −r cos θ + o(1) as r → ∞. (2.8c)

If Ub were known, then p would be uniquely determined by (2.8). To find the bubble
velocity, we return to the boundary condition (2.7), which so far has been imposed up
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to O(ε). In principle, the solvability condition at O(ε2) determines Ub and closes the
problem. As a shortcut to deriving this condition, we note that for any smooth closed
planar curve ∂Ωb and with k denoting the unit vector in the z-direction,∮

∂Ωb

n ds =
∮
∂Ωb

k × dr
ds

ds = 0,
∮
∂Ωb

κn ds =
∮
∂Ωb

−d2r
ds2 ds = 0, (2.9a,b)

by standard results from differential geometry (see e.g. Kreyszig 1959, Chapter 2). We
therefore obtain from (2.5b) the constraint∮

∂Ωb

−pn ds = ε

3 Ca1/3

∮
∂Ωb

β(Ub · n) (Ub · n)2/3n ds, (2.10)

which may be interpreted as a force balance on the bubble. To evaluate the integral on the
right-hand side of (2.10), we now use the fact that, to leading order, the boundary ∂Ωb is
the unit circle, which we parametrise using

r(s) = Ub

|Ub| cos s + k × Ub

|Ub| sin s. (2.11a)

With β given by (2.4), we thus obtain∮
∂Ωb

β(Ub · n) (Ub · n)2/3n ds =
∫ 2π

0

β(cos s) |cos s|2/3
|Ub|1/3 (Ub cos s + k × Ub sin s) ds

= (β1 − β2)

√
πΓ (4/3)
Γ (11/6)

Ub

|Ub|1/3 , (2.11b)

where Γ denotes the gamma function. Thus (2.10) reduces to the following condition for
the bubble velocity:

Ub

|Ub|1/3 = δ

π

∮
r=1

−pn ds, (2.12)

where we define the Bretherton parameter

δ = 3
√

πΓ (11/6)
(β1 − β2) Γ (4/3)

Ca1/3

ε
≈ 1.12

Ca1/3

ε
. (2.13)

By assumption, δ is O(1) while ε and Ca are asymptotically small.

2.3. Solution
The problem (2.8) for an isolated circular bubble in an infinite cell is easily solved to obtain
the pressure

p =
(

Ub − 1
r

− r
)

cos θ + Vb

r
sin θ. (2.14)

We can thus evaluate the integral on the right-hand side of the force balance (2.12) to
obtain an equation for the bubble velocity, namely

Ub

|Ub|1/3 = δ(2i − Ub). (2.15)
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Figure 2. The ratio Ub of the bubble velocity to the outer fluid velocity as a function of the Bretherton
parameter δ. The solid curve shows the model prediction (2.16). The points show experimental data: cyan
solid squares (ε = 0.035) and maroon solid dots (ε = 0.071) from Park et al. (1994), with Ca in the range
2.3–12.7 × 10−3; red squares (ε = 0.044), blue circles (ε = 0.07) and grey triangles (ε = 0.091) from Reichert
et al. (2019), with Ca in the range 0.4–6.0 × 10−3.

It follows that the bubble moves parallel to the background flow, as expected, with Ub =
Ubi, where Ub satisfies the algebraic equation

U2/3
b

2 − Ub
= δ. (2.16)

The equation (2.16) for the bubble speed is equivalent to that found in Reichert et al. (2019),
using a laborious viscous dissipation argument. (In Reichert et al. (2019), the constant of
proportionality in (2.13) is found to be 1.20 rather than 1.12, due to inaccurate calculation
of the integral and the Bretherton constants. Their method involves solution for the height
of the thin liquid films above and below the bubble, followed by calculation of the viscous
dissipation due to the thin films.) We note that (2.16) may be transformed into a cubic
and thus solved explicitly for Ub; however, the resulting expression is unwieldy and not
particularly illuminating.

We plot the prediction (2.16) for the bubble velocity Ub versus the Bretherton parameter
δ in figure 2, which shows good agreement with experimental data taken from Reichert
et al. (2019) and Park et al. (1994). We observe that Ub is an increasing function of δ;
from (2.13), we see that δ is proportional to the bubble radius R̂, which implies that larger
bubbles should travel faster. As δ → 0, the Bretherton drag term dominates and Ub ∼
(2δ)3/2. At the other extreme, where δ 
 1, we recover the traditional Taylor–Saffman
result (Taylor & Saffman 1959) of the bubble moving twice as fast as the outer flow.
However, we note that the assumption of the bubble remaining approximately circular
eventually fails if δ is too large. From (2.7), we observe that variations in the bubble
curvature are of order δ2ε, which is assumed to be small. We conclude that our model
remains valid when δ is large, provided that 1 � δ � ε−1/2.
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From (2.16), we observe a transition in behaviour at δ = 1: if δ < 1, then the bubble
moves slower than the outer flow (Ub < 1), while if δ > 1, then the bubble moves faster
than the outer flow (Ub > 1). The critical case where Ub = 1, so the bubble moves with
the external flow, corresponds to the particular solution of the problem where p ≡ −x. We
see that this solution satisfies (2.8) provided that (Ub,Vb) = (1, 0), and the force balance
(2.12) is also satisfied provided that δ = 1.

2.4. The N-bubble problem
It is straightforward to generalise the model derived above to describe a system of N
bubbles. For the moment, we continue to treat the Hele-Shaw cell containing the bubbles
as effectively infinite, with a uniform flow imposed at infinity; the effects of cell boundaries
will be incorporated below.

As in § 2.2, each bubble remains circular (to leading order), with dimensionless radius
Rk and velocity Uk, say, for 1 � k � N. The dimensionless pressure in the liquid domain
Ω therefore satisfies

∇2p = 0 in Ω, (2.17a)

n · ∇p = −Uk · n on ∂Ωk, (2.17b)

∇p → −i as x2 + y2 → ∞, (2.17c)

where ∂Ωk denotes the (circular) boundary of the kth bubble. In principle, p would thus
be determined if we knew the velocity Uk of each bubble. Indeed, the boundary-value
problem described in (2.17) would then be equivalent to finding the velocity potential
exterior to a collection of moving bodies or stirrers in two-dimensional irrotational flow
with no circulation. The two-body version of this problem has been solved by Tchieu,
Crowdy & Leonard (2010), and general integral expressions for the velocity potential due
to any finite number of moving bodies are given by Crowdy (2008).

In the present problem, however, the bubble velocities are not known in advance. As in
§ 2.2, the required equation of motion is obtained by performing an effective force balance,
which here leads to

Uk

|Uk|1/3 = δ

πRk

∮
∂Ωk

−pn ds. (2.18)

Again we notice that p = −x is a solution to the problem (2.17) if and only if all of the
bubbles move at the same velocity Uk = i for all k. The force balance (2.18) then requires
δRk = 1. Therefore, it is possible for all of the bubbles to be convected at the same velocity
as the outer flow, regardless of their position, only when all the bubbles are the same size.

Thus far we have formulated a general model for the motion of approximately circular
bubbles in a Hele-Shaw cell, and solved the model explicitly for the simplest possible case
of a single isolated bubble. In the next section, we use the model to analyse some more
complicated examples, which illustrate the effects of walls on the bubble motion and the
interactions between multiple bubbles.

3. Examples

3.1. Isolated bubble near a wall
Next, we consider the case of a single bubble in a semi-infinite Hele-Shaw cell (y > 0) with
an impermeable wall at y = 0 and a uniform flow −∇p ∼ i at infinity. The bubble is taken
to have unit dimensionless radius, with its centre a dimensionless distance a > 1 away
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from the boundary. The following analysis allows us to examine how proximity to a wall
affects the velocity of the bubble, and also illustrates the application of complex variable
methods to our model. This formulation is equivalent to the problem of two identical
bubbles in an infinite cell with their centres separated by 2a and lined up perpendicular
to the outer flow direction, with the wall representing the line of symmetry between
them. The corresponding two-bubble problem was solved by Sarig et al. (2016) using
bipolar coordinates rather than complex variables. We choose the bubble centre to be
instantaneously at z = x + iy = ai, so that the domain of interest is Ω = {z : Im(z) >
0, |z − ai| > 1}.

Since p satisfies Laplace’s equation, we introduce a complex potential w(z) = −p + iψ ,
where ψ is the streamfunction. The problem is then to find a holomorphic function w(z)
in the region Ω such that

Im[w(z)] = 0 on Im(z) = 0, (3.1a)

Im[w(z)] = q + Im
[Ūbz

]
on |z − ai| = 1, (3.1b)

w(z) ∼ z as z → ∞. (3.1c)

Both the complex bubble velocity Ub = Ub + iVb and the real constant q are a priori
unknown; q represents the flux of liquid through the gap between the bubble and the wall
(relative to the moving bubble). Once we have solved for w, the equation of motion (2.12)
may be imposed by evaluating

1
iπ

∮
∂Ωb

w(z) dz = −Ub + 1
π

∮
∂Ωb

pi dz = −Ub + Ub

δ |Ub|1/3
. (3.2)

We proceed by conformally mapping Ω onto a concentric annulus, where the problem
becomes solvable with standard techniques. Following the mapping

ζ = f (z) = z − i
√

a2 − 1

z + i
√

a2 − 1
, (3.3)

the solution domain in the ζ -plane is A = {ζ : X < |ζ | < 1}, where

X = a −
√

a2 − 1. (3.4)

Writing the complex potential in the form w(z) = z + W( f (z)), we find that W is
holomorphic on A and satisfies the boundary conditions

Im[W(ζ )] = 0 on |ζ | = 1, (3.5a)

Im[W(ζ )] = q − Im
[
α

(
1 + ζ

1 − ζ

)]
on |ζ | = X, (3.5b)

where α = (1 − Ūb)i
√

a2 − 1.
We then find that the a priori unknown flux q is given by

q = Im(α) = (1 − Ub)
√

a2 − 1, (3.6)

and the complex potential in the ζ -plane is given by

W(ζ ) =
∞∑

n=1

2X2n

1 − X2n (αζ
n + ᾱζ−n). (3.7)
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Figure 3. The function F(a) defined by (3.10).

We can thus calculate the integral on the left-hand side of (3.2) by transforming into the
ζ -plane and then using Cauchy’s residue theorem to obtain

1
iπ

∮
∂Ωb

w(z) dz = 2
√

a2 − 1
π

∮
|ζ |=X

W(ζ )
(ζ − 1)2

dζ = (1 − Ub)F(a), (3.8)

where

F(a) = 8(a2 − 1)
∞∑

n=1

nX2n

1 − X2n , (3.9)

with X given as a function of a by (3.4). The formula (3.9) may be written in closed form
as

F(a) = 2(a2 − 1)
Ψ ′

X2(1)

log2 X
, (3.10)

in which ΨX2 denotes the q-digamma function (Salem 2012), defined by

Ψq(z) = 1
Γq(z)

dΓq(z)
dz

, (3.11)

where Γq is the q-gamma function (Askey 1978). As shown in figure 3, F(a) is a decreasing
function of a, with F(1) = π2/3 and F(a) → 2 as a → ∞.

Comparing imaginary parts in (3.2), we find that Vb = 0, so the bubble moves parallel
to the wall. Then equating real parts in (3.2), the bubble’s velocity in the x-direction is
found to satisfy the algebraic equation

U2/3
b

(1 − Ub)F(a)+ Ub
= δ. (3.12)

Once again, (3.12) gives us a cubic that in principle can be solved explicitly for the
dimensionless bubble velocity Ub. Rather than writing this complicated expression out
explicitly, below we briefly examine the possible limiting cases.

First, we observe that Ub = 1 when δ = 1, so the bubble moves precisely with the
external flow at this same critical value of the Bretherton parameter, regardless of the
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distance from the wall. As noted in § 2.3, this special case corresponds to the particular
solution where p = −x. For the extreme values of the Bretherton parameter δ, using (3.12)
we derive the limits

Ub → F(a)
F(a)− 1

as δ → ∞, (3.13a)

Ub ∼ (δ F(a))3/2 as δ → 0. (3.13b)

Taking the derivative of (3.12) with respect to δ, we find

∂Ub

∂δ
= 3Ub

δ
[
3δ (F(a)− 1)U1/3

b + 2
] > 0, (3.14)

so Ub is a strictly increasing function of δ. It follows that Ub > 1 when δ > 1, and vice
versa.

As noted above, F(a) → 2 as a → ∞, so in this limit, (3.12) reduces to the result (2.16)
for a bubble in an infinite fluid medium, as expected. Similarly, we can look at the limit
a → 1 in which the bubble touches the wall. Since F(1) = π2/3, the bubble velocity tends
to a non-zero value, which depends on the Bretherton parameter through the relation

3U2/3
b

π2 − (π2 − 3)Ub
= δ. (3.15)

For intermediate values of a, we find that

∂Ub

∂a
=

[
−δ F′(a)

δ(F(a)− 1)+ 2
3 U−1/3

b

]
(Ub − 1), (3.16)

in which the term in square brackets is positive. It follows that Ub is a decreasing function
of a when δ < 1, but an increasing function of a when δ > 1.

The behaviour of the bubble velocity as the parameters a and δ are varied is shown
in figure 4. As predicted, we observe that the presence of the wall either increases or
decreases the bubble velocity, depending on whether δ < 1 or δ > 1, respectively. At the
critical value δ = 1, we have Ub = 1 and the distance from the wall no longer matters.

At first glance, it appears paradoxical that proximity to the wall may cause the bubble
to either speed up or slow down, depending on the size of δ, but the behaviour may be
explained as follows. By using the boundary condition (2.17b) and integration by parts,
the force balance (2.18) may be rewritten as

Ub

(
1 + 1

δ |Ub|1/3
)

= 1
π

∮
∂Ωb

u ds, (3.17)

where u = (u, v)T = −∇p is the dimensionless liquid velocity. For an isolated bubble,
with the pressure given by (2.14), the integral on the right-hand side of (3.17) is easily
calculated to be 2i, reproducing the equation of motion (2.15), and in general this term
captures the influence of the outer flow on the bubble motion.

Now, what happens when a wall is introduced next to the moving bubble? From (3.6),
we can calculate the average flow speed through the gap between the bubble and the wall
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Figure 4. (a) Bubble velocity Ub versus Bretherton parameter δ for a = 1 (dashed), a = 1.5 (dotted) and
a = ∞ (solid). (b) Bubble velocity Ub versus distance a from the wall for Bretherton parameter δ = 1/2
(dotted), δ = 1 (solid), δ = 5 (dashed) and δ = ∞ (dot-dashed).

(relative to the moving bubble) as

1
a − 1

∫ a−1

0
(u − Ub) dy = q

a − 1
= (1 − Ub)

√
a + 1
a − 1

. (3.18)

First, suppose that the bubble is moving more slowly than the external flow, so Ub < 1.
The right-hand side of (3.18) increases as the separation a − 1 between the bubble and the
wall decreases, measuring the acceleration of the liquid as it squeezes between the bubble
and the wall. We find that the average velocity on the bubble surface thus increases and,
according to (3.17), the bubble velocity also increases (relative to an isolated bubble). The
horizontal component of the right-hand side of (3.17) may be calculated as

1
π

∮
∂Ωb

u ds = 2 + (1 − Ub) (F(a)− 2) , (3.19)

which indeed increases as a decreases when Ub < 1.
On the other hand, if the bubble moves more quickly than the external flow (Ub > 1),

then the liquid is squeezed backwards through the gap between the bubble and the wall
so, by the same argument, the integral on the right-hand side of (3.17) and the bubble
velocity should both decrease. This physical reasoning indeed agrees with the behaviour
observed in figure 4. As noted above, the bubble travels faster or slower than the external
flow depending on whether δ < 1 or δ > 1, and the effect of proximity to the wall is
accordingly either to speed up or to slow down the bubble.

3.2. Isolated bubble in a channel
Next, we consider the motion of a singular bubble of unit radius in a Hele-Shaw channel
of width W > 2, between impermeable walls at y = ±W/2. We again impose a uniform
flow with p ∼ −x at infinity and, without loss of generality, take the bubble centre to be
instantaneously at (x, y) = (0, yb), where |yb| < W/2 − 1. It may then be shown that p is
an odd function of x, and it follows from (2.12) that Vb = 0. Thus a single bubble in a
channel will continue moving parallel to the outer flow no matter where in the channel it
is initially placed.
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To facilitate numerical solution, we pose the problem in terms of the streamfunction ψ ,
which satisfies Dirichlet boundary conditions

ψ(x, y) = ±W
2

at y = ±W
2
, (3.20a)

ψ(x, y) = q + Uby at x2 + ( y − yb)
2 = 1, (3.20b)

ψ(x, y) → y as x → ±∞. (3.20c)

The a priori unknown constant q is in principle determined by the constraint∮
∂Ωb

∂ψ

∂n
ds = 0, (3.21)

which follows from single-valuedness of the pressure. The streamfunction is then
decomposed as ψ = Uby + (1 − Ub)ψ1 + qψ2, where each ψk satisfies a normalised
boundary-value problem that is independent of q and Ub. We solve for ψ1 and ψ2 using
finite element methods, and then compute the four integrals

Ik = 1
π

∮
∂Ωb

(
∂ψk

∂x
dy − ∂ψk

∂y
dx

)
, (3.22a)

Jk = 1
π

∮
∂Ωb

(
x
∂ψk

∂x
+ ( y − yb)

∂ψk

∂y

)
dx (3.22b)

(k = 1, 2). The force balance (2.12) and constraint (3.21) provide two algebraic equations
for q and Ub. As in § 3.1, the resulting equation of motion may be expressed in the form

U2/3
b

(1 − Ub)F(W, yb)+ Ub
= δ, (3.23)

where now F(W, yb) = J2I1/I2 − J1. For given values of W and yb, the value of F(W, yb)
can be computed once-and-for-all, following the procedure described above, and the
dependence of Ub on δ is then determined by (3.23). An analogous approach is used to
compute the numerical solutions with multiple bubbles below.

We start by considering a bubble travelling along the centreline of the channel, with
yb = 0, in which case it is easy to see that q must also equal zero. Hence F(W, 0) = −J1,
and the one remaining integral can in principle be calculated using a Schwarz–Christoffel
mapping (Anselmo et al. 2018) or approximation schemes described by Crowdy (2016)
and Love (1938), for example.

In figure 5(a), we examine the effects of varying the channel width W and Bretherton
parameter δ. We observe that Ub is an increasing function of δ, and as δ → ∞, it tends
to a value strictly less than the Taylor–Saffman value Ub = 2. Again δ = 1 is the critical
value where the bubble moves with the external flow independently of the channel width,
corresponding to the exact solution of the problem where p = −x. As in § 3.1, the bubble
may be accelerated or retarded by the presence of walls, depending on whether δ < 1 or
δ > 1, respectively. In the limit of large W, the solution approaches that for an isolated
bubble, as expected, while the solutions all converge to Ub = 1 as W → 2. This latter
limit corresponds to the case when the bubble exactly fits the channel width and, by
conservation of mass, must travel at the same speed as the outer flow.

In figure 5(b), we study the effects of the bubble being off-centre in the channel by fixing
W = 4 and varying yb. Again we observe that proximity to a wall may either increase or
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Figure 5. Bubble velocity Ub versus: (a) channel width W, with offset yb = 0; (b) distance W/2 − 1 − yb
from the top channel wall, with width W = 4 and offset yb ∈ [0, 1]. Here, the Bretherton parameter is δ = 1/2
(dashed), δ = 1 (solid), δ = 5 (dotted) and δ = ∞ (dot-dashed).
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Figure 6. Bubble velocity Ub versus channel width W for a two-bubble system with separation S = 0.2
(dotted), S = 2 (dashed), single-bubble solution (solid), and (a) δ = 1/2, (b) δ = 5.

decrease the bubble velocity, depending on whether δ < 1 or δ > 1, respectively, with
δ = 1 the critical case where Ub = 1 for all yb. As in § 3.1, this behaviour is caused by the
liquid flowing through the gaps between the bubble and the channel walls, which either
speeds up or slows down, thereby increasing or decreasing the average velocity at the
bubble surface in (3.17).

3.3. Two identical bubbles in a channel
Next, we examine a system of two identical bubbles travelling along the centreline of the
channel. Without loss of generality, we take the centres of the two bubbles to be initially at
±(1 + S/2, 0), where S is the bubble separation. By symmetry, one can then show that the
bubbles must both move along the centreline with identical velocities U1 = U2 = (Ub, 0).

In figure 6, we show that the two-bubble solution converges rapidly to the corresponding
one-bubble solution as we increase the separation between the two bubbles, with the
solutions matching up very closely even for S = 2. For δ < 1, the bubble pair moves
more slowly than a single bubble, but for δ > 1, it moves more quickly. In other words,
the acceleration or retardation of the liquid as it squeezes through the gaps between each
bubble and the channel walls (as described in §§ 3.1 and 3.2) is suppressed by the presence
of the other bubble.

954 A21-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
08

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1008


Circular bubbles in a Hele-Shaw cell

t = 0 t = 30 t = 55

Time

t = 0 t = 10 t = 20

(b)

(a)

Figure 7. The progression of a series of three identical bubbles, with (a) δ = 1/2, (b) δ = 5.

3.4. A Hele-Shaw Newton’s cradle
With three identical bubbles moving along the centreline of a channel, we find that
the bubbles in general have different speeds so, for the first time, we have to solve an
unsteady problem. At each time step, we compute the three instantaneous bubble speeds
by following an approach similar to that described in § 3.2, and then update the bubble
positions. We again see different behaviour depending on whether δ < 1 or δ > 1.

At the special value δ = 1, all of the bubbles move with the background flow, so the
distances between them remain fixed. When δ < 1, the bubbles move more slowly than the
surrounding liquid. In this case, we recall from § 3.3 that the bubbles’ speed is increased
by confinement from the channel walls but decreased by the presence of a second bubble.
When there are three bubbles, we find that the outer two bubbles shield the middle one
from the accelerating influence of the walls. We therefore observe that the centre bubble
moves backwards relative to the outer two, and thus eventually becomes a pair with the
rear bubble (see figure 7a). This qualitative behaviour has been observed experimentally
by Shen et al. (2014); however, there were surfactants in their system so a quantitative
comparison with our model is not possible. The opposite effect occurs when δ > 1, where
now the central bubble moves faster than the outer ones and so eventually joins with the
front bubble (see figure 7b).

Figure 8 depicts the dependence on δ of the time T taken for the middle bubble either to
be caught by the rear bubble or to catch the front bubble. The initial bubble separations are
set to 1 and 0.04, as shown in figure 7(a) for δ < 1 and figure 7(b) for δ > 1, and we show
the results for two channel widths, W = 4 and W = 20. We see an asymptote at δ = 1, as
expected when all the bubbles travel at the outer fluid speed. There is also an asymptote as
δ → 0, since the bubble velocities all tend to zero in this limit. As δ → ∞, T approaches
a finite non-zero value that depends on W. Furthermore, we observe that T increases as we
decrease the channel width, with T → ∞ as W → 2 for all values of δ, again because the
bubbles all move at the same speed in this limit, by conservation of mass. Even at W = 4,
the transit time is quite large for all values of δ, indicating that the difference in speed
between the bubbles is relatively small.

When there are more than three bubbles, this effect can occur multiple times, as
illustrated in figure 9(a) for a case with δ < 1. Initially, the second bubble breaks away
from the front one to form a pair with the third bubble, before that pair itself breaks up so
the third and fourth bubbles can form a pair. For δ < 1, we recall from § 3.3 that a pair of
bubbles moves more slowly than an isolated bubble, so for longer times, the trailing pair
in figure 9(a) is left behind by the front two. Beatus et al. (2012) observed qualitatively
similar longitudinal waves propagating backwards relative to the outer fluid flow in a series
of bubbles on the centreline of a Hele-Shaw channel, which behaviour they termed the
peloton effect. However, we find that the wave propagation can occur in either direction,
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Figure 8. The transit time T versus Bretherton parameter δ for the system shown in figure 7(a) for δ < 1 and
figure 7(b) for δ > 1, in a channel of width W = 20 (solid) and W = 4 (dashed). When δ < 1, the computation
starts with separations of 1 and 0.04 between the rear two and front two bubbles, respectively, and finishes
when the separation between the rear two bubbles is 0.04; and vice versa when δ > 1.
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Figure 9. The progression of a series of four identical bubbles, with (a) δ = 1/2, (b) δ = 5.

depending on whether δ < 1 or δ > 1. Figure 9(b) shows a typical case with δ > 1, where
the initial condition is the reverse of that in figure 9(a), and the observed evolutions are
almost mirror images of each other. When δ > 1, a pair of bubbles travels faster than an
isolated bubble, so eventually the front pair breaks away and leaves behind the other two
bubbles.
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The formation and breakup of successive bubble pairs observed in figure 9 is highly
reminiscent of a Newton’s cradle, even though there is no inertia in our system, and the
motion arises solely due to viscous hydrodynamic interactions.

4. Conclusions

In this paper, we develop a model for the motion of bubbles in a Hele-Shaw cell in
the distinguished limit where the typical bubble aspect ratio ε and capillary number Ca
satisfy Ca1/3 = O(ε) � 1. In this regime, each bubble remains approximately circular,
and its velocity is determined by a net force balance. For an isolated bubble in an infinite
Hele-Shaw cell, the model may be solved analytically, and the qualitative behaviour
depends on a dimensionless ‘Bretherton parameter’, δ ∝ Ca1/3/ε. In particular, the bubble
moves faster than the outer fluid speed when δ > 1, slower when δ < 1, and precisely with
the background flow if δ = 1.

As shown in figure 2, the theoretically predicted bubble velocity agrees quite well with
the experimental literature, but we note that very little experimental data exists for the case
δ < 1. The regime with δ < 1 corresponds to Ca � 0.7ε3, and with small values of the
aspect ratio ε (as assumed in the Hele-Shaw theory), requires extremely small values of
Ca. At such very low capillary numbers, the thin films between each bubble and the cell
walls become so thin that other physical effects not included in the model (e.g. disjoining
pressure) may become important, leading for example to film rupture. We believe that it
is for this reason that the experiments at small values of δ usually include surfactants to
stabilise the thin films. Our model does not at present capture the influence of surfactants
on the bubble dynamics, though we note that some previous authors (e.g. Maruvada &
Park 1996; Reichert et al. 2019) have tried to incorporate such effects in an ad hoc way.

When the effects of cell boundaries and multiple bubbles are included, we still observe
striking changes in the qualitative behaviour depending on whether δ is greater or less
than 1. For example, in a train of three identical bubbles travelling along a Hele-Shaw
channel, we find that the middle bubble either catches up with the one in front (if δ > 1)
or is caught by the one behind (if δ < 1). In longer bubble trains, we observe bubble
pairs successively forming and breaking up from the front to the back of the train if δ <
1, or vice versa if δ > 1, resembling experimental observations by Beatus et al. (2012),
for example. Although this behaviour is reminiscent of a Newton’s cradle, it arises from
long-range hydrodynamic interactions rather than through momentum transfer between
the bubbles.

This phenomenon suggests that it is very difficult to maintain a finite stream of equally
spaced identical bubbles moving along the centreline of a Hele-Shaw channel. The bubbles
are always expected to bunch up into pairs or larger aggregates, unless we are in the
special case where δ = 1. We do find, though, that the relative bubble velocities are
often quite small, so the clustering occurs quite slowly, and it may be minimised in
experiments by reducing the channel width and by keeping δ as close to 1 as possible
(see figure 8). In future work, we will analyse the possible instability of bubble trains to
lateral perturbations, as is also often seen in experiments (Beatus et al. 2006; Shen et al.
2014).

It can be shown that the equation of motion (2.18) allows bubbles to approach and touch
cell boundaries or each other in finite time. In principle, our model breaks down when the
distance between two bubbles (or between a bubble and a wall) becomes comparable with
the cell thickness. However, it is often observed in experiments that bubbles can remain
apparently stuck together without coalescing (Battat, Weitz & Whitesides 2022), and our
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model can easily be adapted to describe propagating pairs of bubbles that either remain
attached or drift apart, depending on the sign of the mutual force between them.

We limit our attention in this paper to examples with relatively low numbers of equally
sized and collinear bubbles. For a general system of N bubbles, our solution method
would involve the numerical solution of 3N Dirichlet problems and computation of 9N2

force integrals to evaluate all of the bubble velocities at each time step. For large N, this
approach can become very slow even when the unsteady phenomena described below are
neglected. An attractive alternative approach is to assume that the bubbles are sufficiently
well-spaced to be approximated by dipoles, as in Beatus et al. (2012) and Shen et al.
(2014). In principle, dipole methods are valid only when the bubbles are well-separated;
for two identical bubbles in an infinite Hele-Shaw cell, Green (2018) found that the dipole
approximation works well when the bubble separation is greater than about two bubble
radii. It is the subject of current work to determine whether the dynamics that we observe
(e.g. in figures 7 and 9) can be captured adequately by a dipole model, even when the
bubbles become arbitrarily close and the dipole approach is not strictly valid.

Figure 2 shows that the speed of an isolated bubble is an increasing function of its radius.
In examples with many non-identical bubbles, the dynamics depends on the relative sizes
of neighbouring bubbles, as well as on the bubble interaction effects seen in figures 7
and 9, for example. In microfluidic experiments and devices, the bubble radii are often
almost but not precisely uniform, and the resulting delicate balance between size effects
and interaction effects is also the subject of current research.

As promised in § 2, we now discuss the validity of the boundary condition (2.3b). At the
front interface of a moving bubble, the additional pressure drop (proportional to Ca2/3

n )
may be derived by solving Bretherton’s problem for a meniscus advancing with effective
capillary number Can (Bretherton 1961). As noted by Reichert et al. (2019), this approach
is invalid close to points where Can changes sign. Burgess & Foster (1990) showed that
the discontinuous term in (2.3b), involving the function β, is smoothed out in ‘lateral
transition regions’ (LTRs) where Can = O(ε3/5 Ca1/5). In the distinguished limit studied
here, Ca is assumed to be of order ε3, and it follows that the LTRs contribute corrections
of order ε6/5 to the force balance (2.10). Since other corrections of order ε have already
been neglected, we conclude that these effects are indeed negligible in our model.

At a retreating meniscus, as well as the local value of Can, the additional pressure drop
depends also on the thickness of the liquid films between the bubble and the cell walls into
which the interface is propagating. In general, this dependence leads to a drag coefficient
of the form

β(Can) = F (
Ca+

n /Can
)

(4.1)

when Can < 0, where Ca+
n is the normal capillary number at the corresponding point

on the front interface that deposited the thin films currently being consumed by the rear
interface, and the function F has been calculated e.g. by Burgess & Foster (1990). For a
circular bubble moving at constant velocity, we have Ca+

n ≡ Can, so β(Can) = F(1) = β2
whenever Can < 0, as in (2.4). For a non-circular bubble moving at constant velocity, the
argument of the function F in (4.1) is equal to Ca+

n /Can = cos θ+/ cos θ−, where θ± are
the angles made with the direction of motion at corresponding points on the front and rear
bubble interfaces (Burgess & Foster 1990).

The situation is more complicated when the motion is unsteady, even if the bubbles
remain (approximately) circular, as assumed in this paper. According to (4.1), the pressure
drop across the rear meniscus depends on the normal velocity at the front meniscus at
some previous time, and the force balance (2.18) thus produces an integral equation rather
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than an algebraic equation for the bubble velocity. As a first approximation, we can justify
ignoring such effects in the unsteady multi-bubble solutions shown in § 3.4 by observing
that the computed bubble velocities are slowly varying (on a typical transit time scale
R̂/Û). Nevertheless, it is the subject of current research to quantify the impact of non-local
dynamics on the bubble motion in general.
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