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Abstract. We consider the structure of atoms and atomic chains in the presence of ultra-strong 
magnetic fields as might be found in pulsars or neutron stars. Some consequences of these models for 
neutron star surfaces are mentioned. 

1. Electrons in Superstrong Magnetic Fields 

The enormous range of known 'strong' magnetic fields which exist in the universe is 
sampled in Table I. In magnetic fields greatly exceeding 10 9 G the nature of matter is 
qualitatively different from that of our normal experience: magnetic forces on elec­
trons become stronger than Coulomb forces in atoms. The surface of a neutron star 
may consist of such a rather unique form of matter and this is the prime motivation 
for considering the structure of atoms, molecules, and above all compact matter, in 
superstrong fields. The nature of such matter seems reasonably susceptable to detailed 
analysis, if worth the effort. Any possible effects on observations or electrodynamics 
of pulsars is much less clear. 

TABLE I 
Very strong magnetic fields 

Location Field (Gauss) 

Iron magnet 104 

Superconducting magnet 10* 
Solar surface 1-10 
Outer solar interior 103 

Magnetic white dwarf surface 106-107 

Neutron star (pulsar) surface 10i2- io i3 
Neutron star interior ? > 1 0 1 3 

Nuclear surface and interior 1015-1Q16 

Classically a sufficiently huge magnetic field (B) confines a free electron to motion 
along the field like a bead on a straight wire. Quantum mechanical zero point motion 
perpendicular to B limits the magnetic confinement. 'Weak' electric fields can ac­
celerate electrons only parallel to B or give a slow unaccelerated drift velocity per­
pendicular to B. 

The essential features of the quantum mechanical description of the motion of 
electrons in superstrong B and weak atomic electric fields is clear in the Bohr model. 

* Permanent address: Department of Physics, Columbia University. 
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A non-relativistic electron of mass me in a uniform B has an equation of motion 

™^-=™B ( 1 ) 
Q c 

with Q the cylindrical radius perpendicular to B and v the perpendicular velocity. 
(Along B the electron, of course, moves as a free particle.) The quantization condition 
is 

p x Q = nhB/B (2) 
with 

eA 
p = m e v + . (3) 

c 
A convenient gauge for the vector potential is 

A = y<J>- (4) 

The quantized energies are 

En = nh(oc; « = l , 2 , . . . , o o (5) 

with the 'cyclotron frequency' 

eB 
a i c S - - . (6) 

m e c 

The circular orbits have quantized radii 

r„ = ( 2 « ) 1 / 2 e 
with 

fhc\m 2.6 x I O " 1 0 

o = eB/ B\12 
cm, (7) 

2 

1 2 where B12 is the field in units of 1 0 1 2 G. We shall generally consider fields so large 
that neither thermal energies nor perturbative electric fields are sufficient to give 
significant occupation to any except the lowest energy state with E=hcoc. (For 
B=2 x 1 0 1 2 G, hcoc~25 keV and rx = 3.6 x 1 0 " 1 0 cm.) 

By choosing other gauges for A the centers of the circular orbits can be moved 
anywhere. This degeneracy is most simply resolved by considering first the effect of 
a weak uniform electric field E perpendicular to B. The classical electron will then 
have a cycloidal motion with an average drift velocity 

E x B 
vrf = - ^ - c . (8) 

In a weak radial electric field, say from an unshielded nucleus at the origin £ = 0, the 
electron's uniform cycloidal motion becomes slightly bent along a large circle so that 
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the classical electron's cycloidal motion takes it slowly around the nucleus as shown 
in Figure 1. These orbits are just a superposition of the circular orbits with origins 
Q^O but with the orbit centers guided to revolve about the origin of E. The strength 
of the (weak) electric field controls only the rate of revolution about the origin and has 
only a very slight effect upon the electron confinement or energy. For the lowest 
energy orbits whose guiding center radius the quantization condition becomes 

2nmh = d) p-dg 
eA 

•dQ. 
c 

The quantization of (9) thus determines the guiding center radii to be 

qm = ( 2 m ) 1 / 2 £ ; m = 1, 2,...,oo 

(9) 

(10) 

t TVPOWW (.) 

( b ) 

Figs. la-b. (a) Motion of an electron in crossed electric and magnetic fields, (b) Motion in a radial 
electric field with perpendicular B out of the plane. 

for a set of states all of which in the limit E-»0 have energy 

E = hcoc ( a l l m ) . (11) 

The angular momentum quantum number m mainly determines how far away the 
electron is from the origin rather than its mcvg. The width of the cycloidal orbit ~ Q 
for all m. 
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The criterion for a 'weak' electric field is that the difference in potential across the 
orbit satisfy 

eEg <^ hcoc. (12) 

Applied to an atom this is equivalent to 

Q<<*o> O3) 

i.e., the magnetic confinement radius is much less than that from the atomic electric 
fields, the Bohr radius a0. Equation (13) gives 

(e2\2 m2

cc3 

This is the criterion that the magnetic field be sufficiently large that all electrons in 
ground state atoms or condensed matter be in the lowest magnetic energy states, 
given by (11). 

The magnetic confinement will force the electrons to be relativistic when Q<,h/mtc or 
hcoc>mec2. These criteria imply that a necessary condition for electrons to be non-
relativistic is 

YYl2C^ 
B<-^- = 4.4 x 1 0 1 3 G . (15) 

he 

The inequalities (14) and (15) are probably well satisfied for neutron star surfaces. 
(Relativity does not, however, introduce great complications into atomic calculations 
when fields exceed 4.4 x 1 0 1 3 G.) 

The wave mechanical description of the classical orbit of Figure lb uses the 'Landau 
orbital ' (Landau and Lifschitz, 1965) solutions of the Schroedinger equation with 
uniform magnetic field (in the z-direction): 

Kjk = e x p ( - ^ r ) 0 H e x p ( i m ^ ) e x p ( * z ) . (16) 

This wave function represents a free particle in the z-direction, magnetically confined 
in the perpendicular direction with a maximum probability at 

Q = (2m + 1)1/2Q; m = 0, l , . . . , oo . (17) 

The angular momentum mh is mainly eg x A/c. The energy of the states represented 
by the wave function of (16) is 

P2 ^ ea-B 
E= — + h(oc + ' (18) 

2m e mec 

with <r the Pauli spin matrices. All states not represented by (16) are higher in energy 
by an integral multiple of hcoc9 tens of keV on a pulsar surface. Similarly, parallel and 
anti-parallel electron spin differ by hcoc. A complete set of magnetic ground state wave 
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functions is given by (16) with anti-parallel electrons. From (18) the corresponding 
electron energies are 

P2 

£ = — ( a l l m ) . (19) 
2m e 

2. Atoms 
<. 

The hydrogen atom in a superstrong magnetic field contains an electron whose binding 
in the z-direction is caused by Coulomb attraction but whose confinement in the 
perpendicular direction is magnetic. The ground state is composed of an m = 0 Landau 
orbital except that exp(/A:z) is replaced by a real function of z chosen to minimize the 
total energy. The probability distribution is roughly a long cylinder of length / and 
radius Q with 1$>Q (Figure 2). Then, very roughly, 

* 2 e2 
In w ) 

2 | - , lnU-1 (20) 

and minimizing with respect to / yields 

\Q J 

(21) 

and 

a[K?)J 
h2 

. . , - U . , ( 2 2 ) 

m ' 
(cf. Haines and Roberts, 1969). In the limit of huge fields a0>l>Q and the binding 
energy E grows like ln2B. 

^ B 

P. 
i 

Fig. 2. Schematic hydrogen atom in a huge magnetic field. 

(An analogue of the hydrogen atom in superstrong B is obtained within some solids 
with achievable B because the dynamic mass of an electron m* can be enormously 
smaller than m where the curvature in an energy band is great. Then (14) gives a 
critical B smaller by (m*/m)2. An additional reduction can come from dielectric 
reduction of the effective e. Bound electron-hole pairs [excitons] can be qualitatively 
altered in 10 4 -10 5 G fields.) A more quantitative variational estimate of the hydrogen 
binding energy is given in Figure 3 for the regime BP 1 0 1 0 G (Cohen et al, 1970). A 
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free hydrogen atom on a pulsar surface would be expected to have a binding energy 
of a few hundred eV. 

There are two classes of excited states of such simple atoms, neither of which involve 
excitation out of the ground magnetic state. Instead of the smallest radius cylinder 
m = 0, higher values of m corresponding to cylinders of radius ~ ( 2 w + l ) 1 / 2 Q of (17), 
can be used for the electron. From (22) the binding energy depends only logarithmi­
cally on this radius, so that for superstrong B these states are bound almost as tightly 
as the ground state. The second class of excited state consists in replacing the nodeless 

3 0 0 , 

0 I 1 1 
1 0 II 1 2 

L o g | Q B 

Fig. 3. Binding energy of a hydrogen atom in superstrong magnetic fields. 

z-dependent part of the wave function by an orthogonal function with v = 1, 2 , . . . etc. 
nodes. All of these states are relatively very weakly bound (cf. Figure 4) and have a 
z-extent of order a0 or greater rather than the / of (21). A simple way to estimate the 
energies of the second class of excited state has been pointed out by L. Spruch. Normal 
hydrogenic ^-states satisfy the reduced wave equation — </>" — (2 mjh2r) $ = E(f) with 
^/ = (j>lr. Therefore 0(O) = O. The quasi-one dimensional atom in superstrong B satisfies 
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almost the same equation with r = z except that <̂->0 and not the ground but the first 
excited odd state has the node at z = 0. Therefore this one node excited state has about 
the same binding energy as the ground state of the normal atom. Multinode states are 
less bound as the number of nodes increases. 

The simplest multielectron atoms are formed by filling consecutively the ra = 0, 1, 
2 , Z Landau orbitals with a single (spin anti-parallel to B) electron in each. From 
Figure 4 it is evident tha \ putting two electrons in the same orbital by introducing 
excited states in the z-dependent component costs much more energy than putting 
the electrons slightly further away in Q. This continues to remain true only until the 
distance Q becomes comparable to a0Z; the ground states of heavy multinode wave 
atoms utilize functions to put many electrons into a Landau orbital. 

4 3 2 1 0 - * - m 
CONTINUUM E> 0 

00 y//<y/ 0 eV 
1 (4jT (ojT ~ 1 3 

0 { (4'0) m Tip) 

v t L ( m ^ 7 = 0 ) - | 8 5 e V 

Fig. 4. Energy levels of a hydrogen atom in a 2 x 101 2 G field (not to scale). 

For the light atoms in the Hartree approximation each electron has its own pure 
Landau orbital. A variational calculation with such wave functions in a 2 x 10 1 2 G 
magnetic field gives atoms whose shape and size is modeled in Figure 5 (Cohen et al., 
1970). The length of the cylindrical atoms is not sensitive to Z while the radii increase 
roughly as ( 2 Z + 1 ) 1 / 2 . These atoms have all electron spins anti-parallel to B, huge 
quadrupole moments, and volumes of order 1 0 ~ 3 - 1 0 " 4 that of normal atoms. The 
ionization energy (Ex) of the last electron of light atoms in B — 2x 1 0 1 2 G has been 
estimated as 

Ex ~ 160 + 7 0 1 n Z e V . (23) 

The InZ term is the exchange energy contribution, calculated in perturbation theory. 
Calculations including exchange ab initio are in progress (Kaplan and Glasser, 1972). 
The ionization energy of (23) is typically two orders of magnitude greater than that for 
single ionization of normal atoms. It is also a smooth function of Z with none of the 
usual steep valleys and peaks. The absence of significant 'chemical' differences between 
atoms with neighboring Z ' s is a consequence of the one-dimensional nature of the 
filling of orbitals: there are, for example, no closed shells, which depend upon special 
degeneracies among three-dimensional angular momentum components. 
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Fig. 5. Shapes and sizes of light atoms in a 2 x 101 2 G field. 
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For heavier atoms the recipe of achieving the lowest energy state of an atom by 
putting Only one electron in each Landau orbital fails. If it did not the last electron 
would be on a cylinder whose minimal approach to the nucleus is the radius 

QZ = (2Z + 1)1/2Q. (24) 

If, instead, the last electron were put into the closest orbital in its first excited state 
(i.e., a node at z = 0 in<the z-component part of the wave function), then its typical 
distance to the nucleus is a0/Z. The dimensionless ratio 

a0 / B \ 1 / 2 

' • S ' l i w i f z ' ) < 2 5 ) 

characterizes the different kinds of atoms which can exist (at B~5 x 1 0 1 2 G, rj~0.3 
for Z = 2 6 and rj = 33 for Z = l ) . 

(i) The regime rj$> 1, corresponding to B$>4.6 x 10 9 Z 3 G, is that described above 
with one electron per orbital. The total binding energy of such an atom has been 
estimated (Kadomtsev and Kudryavtsev, 1971a) as 

Fig. 6. Shapes of atoms in superstrong magnetic fields as a function of n of Equation (25) 
(not to scale). 
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The shape of the atom as revealed by cutting the atom in half with a slice through its 
symmetry axis parallel to B is given in Figure 6a. Dr H.-H. Chen finds this regime 
appropriate for iron ( Z = 2 6 ) in a field of a few times 1 0 1 2 G (Columbia Univ. doctoral 
thesis 1973). 

(ii) The regime rj ~ 1 is characterized by emptying some of the outer orbitals of 
regime (i) and placing those electrons into excited states in inner orbitals. This inter­
mediate regime has not yet been considered quantitatively. Its presumed shape is that 
of Figure 6b. 

(iii) The regime 1 >n>Z~3/2 still has sufficiently strong B that no excited magnetic 
states (n of equation [5]> 1) are significantly populated. But all of the inner Landau 
orbitals contain many electrons, so many that a Fermi-Thomas treatment of the 
electrons in each level appears reasonable. A Fermi-Thomas treatment of atoms (or 
ions) in superstrong B gives a spherical shape of radius 

and total energy 

£ ~ - 1 5 0 ( £ 1 2 ) 2 / 5 Z 9 / 5 e V (28) 

(Kadomtsev, 1970; M u e l l e r s #/., 1971). The Landau orbitals furthest from the nucleus 
have too few electrons to be treated in this approximation. These electrons 'see' a 
spherical ion core of net charge 2 < Z which is essentially impenetrable because of the 
Pauli principle. These extracore electrons fill successive Landau orbitals singly, be­
ginning with that orbital whose cylinder radius Q~a0/2rj*/5 (Ruderman, 1971). There 
are not yet quantitative descriptions for their wave functions. They form a cylindrical 
sheath surrounding a spherical core to give a shape sketched in Figure 6c. The thick­
ness of the sheath (<5) is of order rj4/5R. 

(iv) When rj<Z~3/2, i M 4 x 10 9 G, and perturbation theory is adequate. The per-
turbative part of the Hamiltonian is 

, eBL e2B2g2 

H' = + - H r . (29) 
mc 8mc 

When spin orbit coupling is negligible its effect on atomic shape is a slight additional 
confinement perpendicular to B. 

3. Condensed Matter 

Atoms in superstrong fields can bind to each other extraordinarily tightly. Even if all 
other quantum effects are ignored, the huge quadrupole moments of isolated atoms 
will result in a very strong electrostatic interatomic attraction for certain orientations. 
In an orthorhombic configuration near b.c.c. nearest neighbors attract and next 
nearest repel. But the quadrupole-quadrupole force falls off so rapidly with spacing 
( r ~ 6 ) that the attraction dominates. However a quantum mechanical binding analo­
gous to conventional covalent bonding appears to contribute the main binding energy. 

https://doi.org/10.1017/S0074180900099964 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900099964


M A T T E R I N S U P E R S T R O N G M A G N E T I C F I E L D S 127 

In ordinary matter the binding among atoms is essentially determined by the state 
of the least bound (valence) electrons. When these are shared between neighbors the 
binding energy is generally very much less than the total binding energy of the atoms. 
The wavelengths of almost all the atomic electrons, except the valence ones, are very 
much less than the interactomic spacing so that the state of most of the electrons is 
insensitive to the environment of the atom which contains them. This situation is very 
different for atoms in ^uperstrong magnetic fields, especially when rj > 1. All of the 
atomic electrons can be effective in binding, and in the limit B-+ oo the binding between 
atoms can greatly exceed the total binding energy of an isolated atom (Kadomtsev 
and Kudryavtsev, 1971b). 

The main difference between 'magnetic atoms' and conventional ones is the effect 
of the Pauli principle when atoms approach each other. Two hydrogen atoms with 

B = 0 

Is 
Is 

Is 

ls,2s,2p 

B » IO 9 

m = 0 m = 0 

m = 0 m = l 

m=0 
2 = 1 

m = 0 

m = 1 m = 1 m = l 
Fig. 7. Binding of magnetic hydrogen atoms into molecules and polymer chains. (All electron spins 

are antiparallel to B.) 
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parallel electron spins do not bind because in order to have the electrons close to each 
other one of the electrons has to be promoted out of its normal 1 s state to the 2 s, 
2 p, etc. in order to satisfy the exclusion principle. This takes a relatively enormous 
energy, i.e., one comparable to the binding of the 1 s electron. Magnetic atoms which 
approach each other along their symmetry axes can satisfy the exclusion principle 
with a relatively small energy expenditure (Figure 7). An excitation which consists 
just in changing a Landau orbital from state m to ra + 1 changes the average cylinder 
radius Q by only 8Q~(2 m)~lQ. This changed radius, according to (22), enters only 
logarithmically into the electron binding energy. In the regime n> 1 the energy needed 
to excite in this way is negligible next to the electron binding energy. Thus it is in­
expensive to satisfy the exclusion principle and both electrons can be shared by two 
nuclei. A similar argument holds for atoms with Z > 1: it does not cost an excessive 
amount of energy to alter Landau orbital quantum numbers m in order to make room 
for more electrons. 

When two atoms join in this way, additional atoms can attach at the ends (cf. 
Figure 7) to extend the diatom to a chain of arbitrary length (Ruderman, 1971). 
The magnetic polymer formed in this way can be described as a chain of nuclei of 
some spacing (/) surrounded by a sheath of electrons which occupy Landau orbitals 
out to some spatial distance ( r ) . Magnetic confinement holds them near to the sym­
metry axis along which the nuclei are distributed. The electrons are free to move in the 
z-direction subject only to the restrictions of Fermi statistics. They behave as if in a 
one-dimensional metal. For an infinitely long magnetic jelly roll polymer of this sort, 
the energy per atom (i.e., per cell of Z electrons) is 

{ZefV 21 ( 5Y1 2 Z V / z 2 / E V 

with y the Euler constant.* A minimization with respect to / and r yields (in the limit 
*-•«>) 

1.3 a0 

- ~ -475° (3D Z I F 

2_Aa0 

(32) 

and a total binding per a tom 

0 . 5 Z V A I K 

E a (33) 

This binding energy of a magnetic polymer atom is greater than the estimate of the 
binding energy of the isolated magnetic atom given in (26) when rj > 1. The polymer is, 

* I am grateful to Mr Hsing-Hen Chen for pointing out that the fraction J in the published result 
should be as in (30). 
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therefore, extremely tightly bound. Its density ( c r ) is 

• , . ^ - , . « _ 1 0 . ( i y ( 3 4 ) 

enormously greater than the 1-10 g c m " 3 range for conventional matter. 
The nuclei in the surface of a neutron star are probably not hydrogen. Most scenarios 

for the birth of a neutron star suggest iron peak elements with, perhaps, a very thin 
covering layer of helium. For helium n~ 12 so that the approximations leading to (33) 
may be valid. (The \Ea\ computed there is at least a minimum total binding energy for 
any n.) Then c r - 1 0 4 g c m " 3 and Ea 800 eV in a 5 x 1 0 1 2 G field. But if the nuclear 
constituent is iron with Z = 2 6 , #7 = 0 . 3 and regime (ii) or (iii) obtains. Only the outer 

L 

4/5 + R~a0/Z77 

S~aQ/Z I 
Fig. 8. Magnetic polymer chains in the regime rj< 1. 

sheath electrons contribute to the binding described above with the core electrons 
remaining almost unaffected (Figure 8). A very rough estimate for an iron magnetic 
polymer in a 5 x 1 0 1 2 G field gives Ea~ —30 keV and <r~4 x 10 4 g c m " 3 . (See note 
added in proof on page 131.) 

The strength or Young's modulus of a single polymer chain ~EJl~ 1 0 — 1 0 2 dyne. A 
bundle of polymers has a modulus ~ 1 0 1 9 dyne c m " 2 , about 10 7 that of steel. 

A polymer chain will attract a neighboring one electrostatically even if van der 
Waals polarization attraction is ignored. The periodically distributed nuclear charges 

Q • • • • 
• • • 

• • • • 
Fig. 9. Arrangement of adjacent magnetic polymer chains in condensed matter. 

are imperfectly screened by the surrounding electron sheath. Therefore a magnetic 
polymer chain will be attracted to one right alongside itself but displaced half a lattice 
length along the field (Figure 9). (The resulting distribution of nuclei is close to that 
of a b.c.c. lattice, expected for nuclei in an approximately uniformly distributed 
electron background.) Matter formed of such chains will have the density a in the 
range 10 4 -10 5 g c m " 3 . 
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4. Neutron Star Surfaces 

Even under its almost zero vapor pressure the magnetic matter described in Section 3 
remains in its condensed high density form up to very high temperatures; only when 
kT approaches the energy released when an atom is bound into a magnetic polymer 
chain does condensed magnetic matter become a gas. For iron this will happen near 
T~ 10 8 K ; even for helium such a Tapproaches 10 7 K. Both of these temperatures are 
much higher than estimated surface temperatures of all expect possibly very young 
pulsars, those whose age is less than or of order 10 3 yr. Therefore if a neutron star 
surface region were to be undisturbed except for thermal agitation it would have an 
abrupt edge. Unlike a gaseous surface the pressure can drop to zero even though the 
matter is dense and hot. The neutron star surface would more closely resemble that 
of the earth than that of a normal star. The solid (or liquid) magnetic polymer surface 
of a neutron star has a thickness of only a few meters. Below this the pressure from 
the weight of this layer compresses the underlying matter to above 10 5 g c m " 3 , where 
the electron Fermi energy exceeds /za> c~25keV. Then magnetic effects no longer 
qualitatively alter the matter equation of state. (The nuclei may arrange themselves in 
a crystalline lattice but this is a solid caused by the extreme pressure.) 

The electrical properties of the magnetic polymerized surface are those of a one-
dimensional metal: a good conductor parallel to B, a poor one perpendicular to it. 
Like a metal, and unlike an ionized gas, it has a work function which opposes the 
emission of electrons by appropriately directed electric fields. The electron work func­
tion (W) is typically expected to be of order a few hundred eV to a keV. In addition, 
an electric field whose direction is such that it would pull positive ions from a hot 
stellar surface plasma may be entirely ineffective in pulling nuclei out of the condensed 
metallic surface. 

In a pulsar older than, say, 10 5 yr the surface temperature is expected to be below 
10 5 K so that kT<^W. Then field emission from the surface would be the main source 
of electrons injected into the pulsar magnetosphere if bombardment of the stellar 
surface by energetic particles and radiation is ignorable. Only surface electric fields 
parallel to B are effective. Unfortunately, it is just this component that is extremely 
model dependent in magnetosphere models. A conducting sphere (of radius R with 
surface dipole field Bs) spinning in a vacuum with angular frequency Q has a surface 
electric field component E° given by 

OR 
E S ° B S ~ — Bl. (35) 

c 
This would give a vacuum electric field component parallel to B s of about 1 0 1 2 V c m " 1 

for the Crab pulsar and about 1 0 1 0 V c m " 1 for an old pulsar whose period is 3 s. The 
actual electric field component parallel to B s may be very much less. Thus, we write 

E s B s = eEs° B s , (36) 

where e = 1 for no magnetosphere, 8 = 0 for an exactly corotating magnetosphere and 
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s is near zero for models with almost corotating magnetospheres. The field emission 
electron current from the electric field of (35) and (36) is 

where j is the current in A c m - 2 , F is E s - f i s in V c m " 1 , W is the magnetic metallic 
surface's work function in<keV, and P is the pulsar period in seconds. (For most 
models of the Crab pulsar j ~ 1 0 5 - 1 0 7 A c m " 2 . ) From (37) long period pulsars 
(P^3 s) might have their electric current emission turned off and be unobservable. 
Faster pulsars could have sufficient field emission of electrons but the outgoing flow 
of negative charge would be balanced by electron inflow along other channels rather 
than positive ion outflow as conventionally assumed. Unfortunately uncertainties 
about the external flow of energetic particles and radiation onto the stellar surface 
preclude firm conclusions at present. 

Note added in proof. Dr Chen in his thesis (loc. cit.) finds the additional binding 
energy for a chain of iron atoms in 2 x 10 1 2 G to be about 10 keV/atom. The lattice 
spacing is 0.42 A; 8 electrons per atom remain localized around each iron nucleus 
while the other 18 move freely in the surrounding cylindrical sheath of radius 0.25 A. 
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