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The diffuselet concept for scalar mixing
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The advection–diffusion of a small surface element of scalar in three dimensions (or
of a small line element in two dimensions) is solved analytically thanks to the Ranz
transform (Ranz, AIChE J., vol. 25, issue 1, 1979, pp. 41–47). As the quantum or
elementary brick of any complex mixture, we call this element a diffuselet. Its evolution
is computed numerically from the integration of the velocity gradient along the trajectory,
as classically done for the Lyapunov exponents. The concentration profile across the
diffuselet is obtained from the product of its initial orientation with a dimensionless
tensor. Averaging over all initial orientations yields simple formulae for the mean scalar
variance and the scalar probability distribution function (p.d.f.). This technique is then
applied to two-dimensional and three-dimensional sine flows, in excellent agreement with
direct numerical simulations. For these simple flows, the temporal integration is obtained
analytically leading to simple integrals for the scalar variance and p.d.f. Statistics of
stretching rates are calculated as well. The Lyapunov exponent is close to the value for
short-time correlated flows (Kraichnan, J. Fluid Mech., vol. 64, issue 4, 1974, pp. 737–762)
in the case of a small displacement during each step; it is close to the value for a simple
shear in the case of a large displacement. The p.d.f. of stretching factors are log normal
with a ratio between the mean and the variance equal to half the dimension of space for
small displacements (in agreement with Kraichnan, J. Fluid Mech., vol. 64, issue 4, 1974,
pp. 737–762), but increases strongly for large displacements.

Key words: coupled diffusion and flow, computational methods

1. Introduction

Scalar mixing remains extremely difficult to solve numerically for weak diffusivities. We
provide here a new numerical method in three dimensions to calculate the evolution of
small blobs of diffusing scalar advected by a flow.

The advection–diffusion of a scalar in a flow is ubiquitous, including for problems at
the Earth scale. In the atmosphere these scalars can be temperature, humidity or CO2
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concentration, with an identified major impact on climate both on a short and long term
basis (Manabe & Wetherald 1975). In oceans temperature, salinity, CO2 concentration,
nutrients and micro-algae are examples of scalars whose patterns are sensitive to the
general, and local circulation (Munk 1966; Wunsch & Ferrari 2004), with intriguing
micro-structures (Hayes, Joyce & Milliard 1975).

More generally, mixing is at the crossroads of many different well-classified areas
of science. The reason is that one often needs to mix to make something, i.e. a new
product, a chemical reaction, an homogeneous blend, a fast combustion, etc or one needs to
understand how nature mixes or has mixed to gain information on, for example, the size of
a pollutant spot in a valley, the rate of destruction of ozone in the atmosphere or the earth
mantle dynamics, or even to understand how an animal navigates in a complex field of
nutriment (Celani, Villermaux & Vergassola 2014). Mixing is a key step in many complex
man made or natural operations but often remains difficult to predict, even if the flow is
known accurately. For example, simple laminar flows can create complex scalar structures
such as strange attractors, recurrent patterns or fractals (Sukhatme & Pierrehumbert 2002;
Rothstein, Henry & Gollub 1999).

Scalars in turbulence have been studied for a century, with an emphasis on
spatial correlations, spectra and, following Kolmogorov’s suggestion, the statistics of
concentration differences or increments (see the perspectives in Shraiman & Siggia 2000;
Warhaft 2000; Falkovich, Gawedzki & Vergassola 2001). The scalar energy spectrum has
been predicted earlier by Obukhov (1941) and Corrsin (1951) to be prescribed by the
hierarchy of time scales pre-existing in the stirring substrate, namely scaling like k−5/3

in the inertial range, a prediction confirmed experimentally (see, e.g. Gibson & Schwarz
1963), and scaling like k−1 for scalars with small molecular diffusivity in the dissipative
range of scales (Batchelor 1959).

One point scalar probability distribution functions (p.d.f.s) – as opposed to the p.d.f.
of scalar increments – are in general believed to be, and sometimes actually observed
to be close to Gaussian (Sreenivasan et al. 1980; Tavoularis & Corrsin 1981; Jayesh &
Warhaft 1991), like for the velocity field. However, measurements with narrow p.d.f.s
centred around the mean are representative of the well-mixed limit, in the late stages of
the mixtures evolution. By contrast, plumes released in a strongly turbulent environment
(a jet) soon resolving into a set of disjointed stretched sheets are known to exhibit skewed,
absolutely non-Gaussian p.d.f. shapes (Duplat, Innocenti & Villermaux 2010a) with an
exponential tail reflecting the distribution of mixing times (Villermaux 2019). For other
types of injection, for example, within a mean scalar gradient, Gollub et al. (1991) and
Jayesh & Warhaft (1991) have observed exponential tails, also interpreted by a distribution
of mixing times (Pumir, Shraiman & Siggia 1991). These exponential tails are even more
pronounced in the p.d.f. of the scalar gradient (Warhaft 2000), or of scalar increments in
complex mixtures, a fact which has contributed to understanding their architecture (Le
Borgne et al. 2017). Chaotic micro-mixers display a continuous transition of the p.d.f.
between the characteristic initial ∪ shape between the injection concentration and the zero
concentration of the diluting stream, and a final rounded, close to Gaussian shape around
the mean at late stages, nevertheless fitted with exponential tails (Simonet & Groisman
2005; Villermaux, Stroock & Stone 2008).

These non-Gaussian statistics are, in turbulence, called intermittency. There is, in fact,
no reason why the Gaussian should be an ideal limit. On the contrary, the diversity of
shapes reveals that the scalar p.d.f. depends on the nature of the injection (at small or large
scale compared with the stirring scale), the nature of the flow (homogeneous or sheared
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turbulence, with smooth or rough velocity increments), the space-fillingness of the scalar
support (isolated sheets or confined mixture) and on the age of the mixture. But diversity
does not imply that there is not a profound unity in the way mixtures are built (Villermaux
2019); they are made from quanta, or diffuselets, possibly interacting with each other
depending on the nature of the flow (dispersing or confined). The overlap of many quanta
leads to a scalar p.d.f. centred around the mean with few remnant fluctuations, while
solitary or weakly interacting diffuselets present a broad, skewed decaying distribution
of concentration with a fat tail, as in the present work.

It has been understood very early on that scalar diffusion is altered by the stretching
of material lines and surfaces (Batchelor 1952). In an incompressible fluid, stretching
of the scalar blob implies compression in its transverse direction, thus sharpening the
concentration gradient and enhancing diffusion; this is the spirit of the Ranz (1979)
transform. The stretching ability of the flow can be quantified by the pair dispersion,
which measures the separation distance � between two tracers advected by the flow. In
a pioneering paper, Richardson (1922) measured that the square of this distance increases
as t3. In homogeneous turbulence this law is now written as

〈�2〉 = gεt3, (1.1)

with ε the dissipation rate of kinetic energy and where the Richardson constant is equal
to g = 0.55 (Richardson 1922; Salazar & Collins 2009; Buaria, Sawford & Yeung 2015).
This behaviour is valid when the flow is rough, i.e. when the distance is larger than the
Kolmogorov length scale (see, e.g. Falkovich et al. (2001) for this terminology). Below the
Kolmogorov length scale (the smooth region of the flow), the distance between particles
increases exponentially as classically obtained in chaotic flows (Aref 1984; Ottino 1989)
and can be written as (Salazar & Collins 2009)

〈�2〉 ∼ e2Bt/τK , (1.2)

where τK = ν/ε is the Kolmogorov time. The Batchelor constant B was initially predicted
to be equal to 0.4. In fact, it is smaller because of the finite correlation time of the
flow. Using the assumption of a small correlation time suggested by Lundgren (1981),
the Batchelor constant is B = √

5/15 ≈ 0.15 in good agreement with the value B = 0.13
found by DNS (Girimaji & Pope 1990). The p.d.f. of stretching rates is log normal as
predicted by Kraichnan (1974) for a flow delta correlated in time and as measured in direct
numerical simulations (DNS) (Girimaji & Pope 1990) in a real turbulent flow. Most of
these studies focused on the stretching of line elements, but Girimaji & Pope (1990) also
focused on the stretching of material surfaces. They found that the p.d.f. of the surface
stretching rate is log normal with a mean Lyapunov exponent equal to 0.17/τK .

However, these studies do not address primarily the connection between scalar diffusion
and the stretching properties of the flow. Experimentally, this is due to the difficulty
to measure simultaneously the Lagrangian pair dispersion and the scalar concentration.
Numerically, this is due to the very different nature of Lagrangian and Eulerian numerical
methods. On one hand, Lagrangian methods consisting in following particles along their
trajectory in the flow (Yeung 2002) do not consider the diffusion of the scalar. Brownian
motion (Öttinger 1996) can be added to represent diffusion but it requires an enormous
number of tracers that can be extremely costly (Götzfried et al. 2019). On the other hand,
Eulerian methods cannot deal with weakly diffusing species in multiscale flows at high
Reynolds and Schmidt numbers (Yeung, Donzis & Sreenivasan 2005; Schwertfirm &
Manhart 2007) because of the refined resolution (spatial grid in particular) capabilities
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it requires. However, the gap between these two techniques has been filled recently with
the diffusive strip method (DSM) which advects small line elements in two dimensions
(Meunier & Villermaux 2010). Diffusion is built-in analytically in this method based on
the Ranz (1979) transform. This method has been extended to small surface elements
by Martínez-Ruiz et al. (2018). We will show in this paper that these methods are very
similar to the theoretical model of Balkovsky & Fouxon (1999), but simpler to implement
numerically.

The present work is both a generalization of this method and an improvement of it to
encode in an even more direct way the kinematics of the flow. Central to the concept of
the diffuselet introduced here is the fact that what matters dynamically for the evolution
of the scalar is the compression rate normal to material surfaces in the flow. Once it is
known, all the properties of the scalar field (concentration profile, maximal concentration,
gradient steepness) are known. Following a set of diffuselets in a flow or in a subset of
the flow thus allows us to study their mixing capabilities and dynamics (distribution of
elongation, of concentrations etc). In that sense, the diffuselet concept has some proximity
with the flamelet representation of reactive mixtures in the combustion context (Peters
1984).

We describe first the roots of the diffuselet concept in the flow kinematics and
explain their analogy with the dynamics of scalar gradients in deformable media
(Corrsin 1953), then derive the essential formulae to compute from this method the
distribution of elongations and concentrations, in any flow. In particular, we show how
this method is, from its principle, equally capable to process two-dimensional (2-D) and
three-dimensional (3-D) flows. We provide in this respect an explicit treatment of the 2-D
and 3-D sine flows.

2. Definition of a diffuselet

2.1. From DNS to independent diffuselets
In order to characterize the mixing properties of a flow, it is convenient to introduce
a blob of scalar and to follow its advection, diffusion and mixing, a procedure easily
carried out experimentally leading to global measures such as scalar variance, p.d.f.s of
scalar, spectra, correlation functions and so on, and also to quantify the transient evolution
of these quantities as a function of the flow structure, or location of deposition of the
blob in heterogeneous flows. Numerically, this procedure is also possible by solving the
diffusion–advection equation

∂c
∂t

+ u · ∇c = D∇2c (2.1)

using DNS. An example is given in figure 1(a,b) where a strip of scalar is advected in a
sine flow with random phases for a very small diffusivity D = 10−6 (see Appendix A
for further information on the numerical scheme). In some places, the strip is highly
stretched such that its thickness decreases until it reaches the Batchelor scale

√
D/γ at

which diffusion starts to operate (γ being the stretching rate). For small diffusivities, the
thicknesses are extremely small and require a very fine mesh. In this example, 8192 Fourier
modes have been used in each direction, which requires a memory of 500 Mo. The CFD
condition then imposes that the time step must also be very small. Such 2-D DNS are
extremely expensive in terms of CPU time for small diffusivities. In three dimensions this
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Figure 1. Different numerical methods used to quantify the mixing properties of a 2-D sine flow of period
1 with U = 0.3 and D = 10−6 from t = 0 (a,c,e) to t = 15 (b,d, f ). (a,b) Direct numerical simulation with
8192 Fourier modes in each direction. In (c,d) the initial concentration field is modelled as a strip defined by
1000 tracers advected using the DSM (Meunier & Villermaux 2010). In (e, f ) nine independent diffuselets with
initial orientation θi are advected as described in § 2.2.

method is extremely demanding even for moderate diffusivities and nearly impossible for
small diffusivities.

In order to treat numerically the case of small diffusivities, the DSM has been proposed
by Meunier & Villermaux (2010). The blob of scalar is modelled as a strip containing
Lagrangian tracers which are advected by the flow

dxi

dt
= u(xi). (2.2)
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Each element of the strip [xi xi+1] has a length δ�i = |xi+1 − xi| and a striation thickness
si given by the incompressibility

si = s0 δ�0

δ�i
, (2.3)

where s0 and δ�0 are the initial thickness and length of each strip element. In this paper we
will assume that the strip has initially a Gaussian profile (for simplicity) with a maximal
concentration equal to 1 (from dimensionalisation). The characteristics of the strip can
then be calculated easily using the Ranz transform (Ranz 1979) for each tracer. Indeed,
defining a dimensionless time τi(t) given by

dτi

dt
= 4D

s2
i

, with τi(t = 0) = 1, (2.4)

the maximal concentration at xi is equal to Ci = τ
−1/2
i and the diffusive thickness (i.e. the

Batchelor length) is equal to si
√

τi. Indeed, the transverse profile of scalar is governed by
a simple diffusion equation

∂ci

∂τi
= 1

4
∂2ci

∂ξ2
i

(2.5)

for the new variables (ξi = ni/si, τi), where ni is the coordinate normal to the strip element
[xixi+1]. The transverse profile is thus given by

ci(ni) = 1√
τi

exp(−n2
i /(s

2
i τi)). (2.6)

An example is plotted in figure 1(d) after 15 periods of the sine flow. The maximal
concentration and the thickness of the strip indeed corresponds to those found numerically
by DNS. The computation is done with only 1000 tracers such that the computation time is
only three minutes whereas it lasts a few hours for the DNS on the same computer. In this
figure the strip has been plotted as a simple line with a modulated thickness and colour. It
is possible to reconstruct the total scalar field on a mesh, as done in Meunier & Villermaux
(2010). However, as mentioned earlier, the required mesh may become extremely fine when
the diffusivity becomes small. Alternative methods have thus been developed in order
to get the statistics (p.d.f., variance) and the spectra of the scalar field (see Meunier &
Villermaux 2010).

Martínez-Ruiz et al. (2018) have generalized this 2-D method to three dimensions by
considering diffusive surface elements rather than diffusive strip elements. The striation
thickness is simply given by the incompressibility as

si = s0
δA0

δAi
, (2.7)

where δAi is the area of the surface element (being initially equal to δA0). Defining the
dimensionalised time τi(t) in the same way using (2.4) leads to the maximal concentration
Ci = τ

−1/2
i and the diffusive thickness si

√
τi.

However, dealing numerically with a sheet is much more complex than dealing with
a strip since each surface element is connected to its neighbours in physical space,
although this connection is not trivial in the structure of the numerical variables.
Furthermore, refining the surface by adding surface elements, e.g. when the element’s size
or curvature is too large, adds another complexity. These complex techniques are necessary
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to reconstruct the shape of the sheet. Fortunately, they are not necessary to obtain the
p.d.f. and the variance of scalar in the diluted limit, i.e. when there is no self-aggregation
of the folded strip or sheet. Indeed, each element can be solved independently since the
diffusion (2.1) is linear for the concentration. The variance and the p.d.f. are then found as
an ensemble average over all elements. Each element is the response to an initial insertion
of scalar with a given striation thickness and an infinitely small area. This surface element
may be called the diffuselet. It corresponds to the Green function of a surface rather than
a point.

For independent diffuselets, the main problem is to calculate the striation thickness
of each element without knowing the position of the neighbours. Indeed, the stretching
between neighbouring points was used previously to calculate the length (in two
dimensions) or the area (in three dimensions) of the diffuselet. This is what we propose in
the next section.

2.2. General equations for a diffuselet
We first illustrate the concepts and the kinematic construction of the relevant quantities
involved in the general discussion in two dimensions. We then extend this construction to
the 3-D case. We finally apply the Ranz transform to incorporate diffusion with kinematics.

2.2.1. Concepts and kinematic construction in two dimensions
Let δ� = (δ�x, δ�y) be a vector of the plane {x, y} between two material particles xi and
xi + δ� advected by a velocity field u(x, t) = (u, v), as sketched in figure 2. The kinematic
transport of δ� in (2.2) is such that δ̇� = u(x + δ�) − u(x) so that

˙δ�x = δ�x∂xu + δ�y∂yu, (2.8)

˙δ�y = δ�x∂xv + δ�y∂yv (2.9)

or, in compact form (Batchelor 1952; Cocke 1969), �̇ = (� · ∇)u, also equivalently written
in terms of the velocity gradient tensor δ̇� = (𝞩u) δ�, where

𝞩u =
[
∂xu ∂yu
∂xv ∂yv

]
, with transpose 𝞩u

� =
[
∂xu ∂xv
∂yu ∂yv

]
. (2.10)

The stretching factor of the segment δ� or the pair dispersion rate of its extremities
measured by δ�2 = δ�2

x + δ�2
y = δ��δ� involves the operator 𝞩u.

We now define a vector δ�⊥ normal to δ� with the same norm. This vector is simply
δ�⊥ = (δ�y, −δ�x) and its dynamics obeys

dδ�⊥

dt
= −(𝞩u

�
)δ�⊥ + (∇ · u)δ�⊥, (2.11)

where ∇ · u = (∂xu, ∂yv) is the flow divergence. For incompressible motions with ∇ · u =
0, we simply have ˙δ�⊥ = −(𝞩u

�
)δ�⊥.

The norm of δ�⊥ intensifies when the length δ� of the segment increases. In an
incompressible flow this stretching of δ� implies that the lines parallel to the stripe get
closer (as depicted by blue lines in figure 2). It leads to an intensification of the gradient
of a passive substance in the direction normal to it, that is, in the direction of δ�⊥. For
instance, if a blob with area δ�0s0 and concentration c elongates into a stripe of length δ�
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s
s0

ss0

u(x)

u(x)

u(x + δ�)

u(x + t1)

t1
t2

δ�⊥
0

δ�⊥

δA⊥

δA0
⊥

δ�

δ�

δ�x

δ�y δ�0

(a)

(b)

Figure 2. Schematic of the evolution of a segment (a) and a surface (b) elongated by a flow u(x). In two
dimensions a blob with area s0δ�0 is elongated into a stripe of length δ� and transverse size s so that sδ� ∼
s0δ�0. The iso-values of scalar denoted as blue lines are compressed. The concentration gradient across the
stripe increases proportionally to 1/s, i.e. to δ�. the concentration gradient vector is thus proportional to δ�⊥.
In three dimensions the same construction is valid for a blob of volume s0δA0 such that the concentration
gradient is proportional to δA⊥.

and transverse size s so that δ� ∼ δ�0 s0/s, as in figure 2, the concentration gradient across
the stripe c/s first increases proportionally to the norm δ� of the vector δ�⊥, before being
smeared out by diffusion. It is therefore natural, as first underlined by Corrsin (1953) and

later Brethouwer, Hunt & Nieuwstadt (2003), to find the operator −𝞩u
�

instead of 𝞩u
in the evolution equation of scalar gradients (see also Batchelor & Townsend (1956) and
Ertel (1942) in related contexts),

d ∇c
dt

= −𝞩u
�
(∇c) + D∇2(∇c). (2.12)

As also noted by Corrsin (1953), this equation differs from the vorticity equation since the
scalar gradient is a lamellar vector (i.e. ∇ × (∇c) = 0) whereas the vorticity is solenoidal
(i.e. ∇ · ω = 0). In a Fourier decomposition of the scalar concentration field this operator
also governs the wavevectors norm (see equation (2.5) in Kraichnan 1974).

2.2.2. Extension to three dimensions
Let us consider a surface element of area δAi normal to the unit vector ni at a position xi
and at time t (see figure 2). We define, as above, the surface vector δAi = δAini, initially
equal to δA0. The norm of δAi is proportional to the surface area δAi. Since δAi is normal
to the surface, it follows the same evolution as δ� in two dimensions that was governed by
(2.11). Indeed, it can be shown by assuming that δAi is the cross-product of two tangential
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vectors t1 × t2 that

d δAi

dt
= dt1

dt
× t2 + t1 × dt2

dt
(2.13)

= (𝞩u t1) × t2 + t1 × (𝞩u t2) (2.14)

= −𝞩u
�
(t1 × t2) + (∇ · u)(t1 × t2) (2.15)

= −𝞩u
�
δAi + (∇ · u) δAi, (2.16)

where 𝞩u
�
(xi, t) is the transpose of the velocity gradient tensor 𝞩u(xi, t) such that

𝞩u =
⎡
⎣∂xu ∂yu ∂zu

∂xv ∂yv ∂zv
∂xw ∂yw ∂zw

⎤
⎦ , giving 𝞩u

� =
⎡
⎣∂xu ∂xv ∂xw

∂yu ∂yv ∂yw
∂zu ∂zv ∂zw

⎤
⎦ . (2.17)

For an incompressible flow with ∇ · u = 0, the surface vector evolves according to the
linear equation

d δAi

dt
= −𝞩u

�
δAi. (2.18)

As classically done for the study of pair dispersion, it is convenient to define the tensor
Li(t) by

dLi

dt
= −𝞩u

�
Li, with Li(t = 0) = I, (2.19)

where 𝞩u
�

is calculated at position xi(t) and with I the diagonal unit matrix. At time t, the
surface vector is then equal to

δAi(t) = Li(t)δA0. (2.20)

The same solution holds in two dimensions for δ�⊥(t).

2.2.3. Ranz transform
The striation thickness si is explicit from (2.7) by replacing δA2

i = δA�
i δAi with its solution

(2.20),

si = s0(n�
0L�Ln0)

−1/2, (2.21)

whereas the time τi is given explicitly by introducing this formula into (2.4),

τi = n�
0T in0, (2.22)

where we have defined the operator

T i = I + 4D

s2
0

∫ t

0
L�

i Li dt. (2.23)

As before, the concentration profile across a diffuselet initially perpendicular to n0 is a
Gaussian profile given by (2.6) with si and τi given above. These formulae are obviously
also valid in two dimensions with n0 being the unit vector perpendicular to the filamentary
strip element.

Consider the 2-D sine flow as an example. The result is exactly similar to the one
plotted in figure 1(d) when taking initially the diffuselets along the filament of figure 1(c).
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However, this method also works for independent diffuselets with arbitrary orientations
θi, as shown in figure 1(e). Defining the normal vector ni = (− sin θi, cos θi) leads to the
position, orientation, diffusive thickness and maximal concentration of the diffuselet after
15 iterations, as plotted in figure 1(e).

The final result so obtained is exactly the same as that given by Balkovsky & Fouxon
(1999) using the second momentum of scalar for an ellipsoidal blob with axes of initial
length 2eρ01 , 2eρ02 and 2eρ03 . Assuming that the axis eρ3 is much smaller than the two
other axes, i.e. that the blob is a surface element, they find that the diffusive length is
equal to 2eρ3 with ρ3 given in their formula (2.5), where σ̃33 is the compression rate along
the smallest axis ρ3. Although very different at first glance, their formula can be simplified
into our formula by noting that 2eρ03 = s0 and that

∫
σ̃33 dt = log(si/s0). From their result,

the diffusive thickness is equal to

2eρ3 = si

√
1 +

∫ t

0

4D

s2
i

, (2.24)

which is identical to our result si
√

τi (see also de Rivas & Villermaux 2016). The main
problem in their derivation is that the compression rate σ̃33 must be calculated in the local
frame of reference aligned with the ellipsoid. Although theoretically possible, this rotation
of the basis is difficult to do numerically. This is why our technique is simpler since the
orientation of the surface is not required at each time.

It should be noted that the use of the tensors Li and T i is not required if each diffuselet
is chosen with a unique initial orientation. Indeed, it would be possible to integrate (2.18)
in time to get the surface vector δAi from which si and τi can be obtained. This would
require the storage of seven variables (for xi, δAi and τi) instead of 18 (for xi, Li and the
symmetric tensor τi). However, using the tensors Li and T i permits us to vary a posteriori
the orientation of the diffuselet. This helps to converge the statistics when calculating the
p.d.f. of the scalar, as will be shown in the next section.

2.3. Statistics over the initial orientation of the diffuselet
Several quantities have been extensively studied in the context of mixing. In the absence
of diffusion (i.e. for D = 0), the stretching factor or the Lyapunov exponent are known
to characaterize the properties of the flow. Generally, it is the stretching factor between
two points which is calculated from the eigenvalues of the tensor L�

pLp, where Lp is the

pair dispersion tensor solution of dLp/dt = 𝞩u Lp. In our case we are more interested by
the stretching factor of the surfaces since it corresponds to the compression factor of the
striation thickness, which governs the diffusion problem. As shown above, the stretching
factor ρ = δAi/δA0 of a diffuselet is simply given by

ρ = (n�
0L�

i Lin0)
1/2, (2.25)

where n0 is the unit vector normal to the initial diffuselet. We now describe the 2-D and
3-D cases sequentially, in order to obtain concrete analytical formulae in each case.

2.3.1. Two-dimensional case
In two dimensions and for a given diffuselet i at time t, the tensor L�

i Li is symmetric and its
two eigenvalues are inverse because of the incompressibility. They are called μi and μ−1

i
with μi > 1. On the basis of the tensor L�

i Li the unit vector is taken as n0 = (cos θ, sin θ),
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with θ varying from 0 to π/2. The stretching factor ρi = δ�i/δ�0 of the diffuselet is given
by

ρ2
i = μi cos2 θ + μ−1

i sin2 θ. (2.26)

The mean Lyapunov exponent λ̄i = 〈log ρi〉/t over all initial orientations can be calculated
by averaging over θ ,

λ̄ = 1
t

1
π/2

∫ π/2

θ=0

1
2

log(μi cos2 θ + μ−1
i sin2 θ) dθ. (2.27)

The integral can be calculated analytically, which leads to a simple expression for the mean
Lyapunov exponent of all diffuselets

λ̄ = 〈log ρ〉
t

= 1
Nt

N∑
i=1

log
(

1 + μi

2
√

μi

)
. (2.28)

Nevertheless, it is possible to get more information from the eigenvalues of the tensor
Li. Indeed, the p.d.f. of the stretching factor for this diffuselet satisfies

Pi(ρ) dρ = dθ

π/2
, (2.29)

which can be written as Pi(ρ) = 2/(π dρ/dθ). Calculating dρ/dθ and using the fact that
cos2 θ = (ρ2 − μ−1

i )/(μi − μ−1
i ) and sin2 θ = (μi − ρ2)/(μi − μ−1

i ) leads to

Pi(ρ) = 2ρ

π
√

μi − ρ2
√

ρ2 − μ−1
i

, (2.30)

with ρ varying between μ−1
i and μi. Because the stretching factors often increase

exponentially in time, it is more convenient to calculate the p.d.f. of log ρ using the fact
that Pi(log ρ) = ρPi(ρ). This formula can then be averaged over the N diffuselets to get
the statistics of the stretching factor,

P(log ρ) = 1
N

N∑
i=1

2ρ2

π
√

μi − ρ2
√

ρ2 − μ−1
i

. (2.31)

This p.d.f. of log ρ is plotted in figure 3(a) as red symbols for a 2-D sine flow. It is already
well converged for only N = 1000 diffuselets homogeneously distributed for x and y in
[0; 1]. This comes from the fact that each diffuselet incorporates all the orientations n0 at
the same time thanks to the tensor Li. If the calculation was done for a single orientation
(i.e. by solving an equation for δAi rather than for Li), the p.d.f. would be obtained as the
histogram of stretching factors ρi. This is what is plotted in figure 3(a) as blue symbols. It
is clear that the number of diffuselets is not sufficient for the convergence of the p.d.f. It
indicates that the use of the tensor Li is extremely efficient despite a slightly larger memory
usage. The parabolic shape of the p.d.f. will be studied in detail in § 3 and compared with
theoretical predictions.

The strength of the diffuselet method is that the scalar field around each tracer is
known quantitatively. The variance of concentration can be calculated analytically for
each diffuselet and then averaged when the initial orientation is varied. As a first step,
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Figure 3. Probability distribution function of the stretching rate (a) and scalar concentration (b) obtained for
1000 diffuselets in a 2-D sine flow after 50 iterations. The blue symbols correspond to a single initial orientation
n0 along the y axis whereas red symbols correspond to an ensemble average with n0 taking all orientations, as
given by (2.31) and (2.38).

it is interesting to model the Gaussian transverse profile by a top-hat profile with maximal
concentration Ci = 1/

√
τi, diffusive thickness si

√
τi and length δ�0s0/si. Thus, this

rectangular diffuselet has an area δ�0s0
√

τi that is equal to δ�0s0/Ci. We can check here
that the total quantity of scalar (Ci × initial area) is conserved with time. Each diffuselet
has a variance

∫
c2(x, y) dx dy equal to C2

i multiplied by its area. This variance is thus
simply equal to Ciδ�0s0. The maximal concentration Ci = 1/

√
τi can be written using

(2.22),

Ci = (ηi cos2 θ + η′
i sin2 θ)−1/2, (2.32)

where ηi > η′
i are the two positive eigenvalues of the symmetric tensor T i (by writing

n0 = (cos θ, sin θ) on the basis of the eigenvectors). The mean variance is thus equal to

〈c2〉top-hat = δ�0s0

π/2

∫ π/2

θ=0

dθ

[ηi cos2(θ) + η′
i sin2(θ)]1/2

. (2.33)

The integral can be computed analytically leading to a simple formula for the variance,

〈c2〉top-hat = 2δ�0s0K(1 − ηi/η
′
i)

π

√
η′

i

, (2.34)

with K the complete elliptic integral of the first kind.
The variance

∫
c2(x, y) dx dy for a Gaussian profile as in (2.6) can then be calculated

easily since for each θ it is equal to the variance of the top-hat profile multiplied by
√

π/2.
Summing over all diffuselets, the total variance reads

〈c2〉 =
√

2δ�0s0√
π

N∑
i=1

K(1 − ηi/η
′
i)√

η′
i

. (2.35)

For each diffuselet, the p.d.f. of concentration can also be calculated when varying the
initial orientation of the diffuselet. As a first step, the top-hat profile is considered such
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that the contribution of each diffuselet to the p.d.f. at C = Ci is proportional to its area
δ�0s0/Ci. The p.d.f. of maximal concentration thus contains two peaks at C = 0 and C =
Ci for a single diffuselet with a single initial orientation. However, Ci depends on the initial
orientation according to (2.32). For each diffuselet, the p.d.f. of maximal concentration is
given by

Qi(C) dC = s0δ�0

C
dθ

π/2
, (2.36)

with θ varying uniformly from 0 to π/2. Indeed, the initial orientation of the diffuselets is
a priori random, with no privileged direction. This does not mean that the diffuselts will
not align in the flow, they will in, for instance, the presence of a sustained, persistent shear
in the flow, or can remain randomly oriented if the flow is itself random.

Using the fact that cos2 θ = (C−2 − η′
i)/(ηi − η′

i) and sin2 θ = (ηi − C−2)/(ηi − η′
i),

we can calculate dC/dθ = C3
√

C−2 − η′
i

√
ηi − C−2. The p.d.f. of maximal concentration

reads

Qi(C) = 2δ�0s0

πC4
√

C−2 − η′
i

√
ηi − C−2

, (2.37)

with C varying from 1/
√

ηi to 1/

√
η′

i.

Replacing the top-hat profile by a Gaussian profile is easily done by convolution with
the p.d.f. of a Gaussian profile with maximal concentration C (see, e.g. Villermaux 2019),
1/(c

√
log(C/c)). The p.d.f. of concentration is thus equal to

Pi(c) = 2δ�0s0

πc

∫ C=1/
√

η′
i

C=1/
√

ηi

dC

C4
√

C−2 − η′
i

√
ηi − C−2

√
log(C/c)

. (2.38)

This formula can then be averaged over all diffuselets to get the total p.d.f. of
concentration P(c) = ∑

Pi(c). It is plotted in figure 3(b) as red symbols. It is converged
over eight decades although only 1000 diffuselets are used. As before, this convergence is
not possible without the use of the tensor T i. Indeed, when fixing the initial orientation of
the diffuselet along the x axis, the p.d.f. (plotted as blue symbols) in figure 3(b) is only
converged over three decades from 10−2 to 10. This clearly highlights the efficiency of the
tensor calculation.

It should be noted that this p.d.f. is normalised such that its first moment
∫

cPi(c) dc
is equal to the total quantity of scalar of the ith diffuselet δ�0s0/

√
π. The first moment

of the maximum concentration
∫

Qi(C)dC is also equal to the total quantity of scalar
δ�0s0 for a top-hat profile. This choice of normalisation is not classical but it prevents
the well-known technically annoying, although physically harmless, ambiguity caused by
the divergence of Pi(c) in unbounded domains (Villermaux 2019). Indeed, the Gaussian
profile of concentration induces a singularity as 1/c for vanishing c that prevents a
normalisation satisfying

∫
Pi(c) dc = 1. This choice also allows us to recover the variance

of concentration 〈c2〉 found in (2.35) as the second moment of the p.d.f. of concentration∫
c2P(c) dc.

2.3.2. Three-dimensional case
The same formulae are provided in three dimensions, although they are slightly more
complex. The p.d.f. of surface stretching is still governed by the eigenvalues of the

951 A33-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.771


P. Meunier and E. Villermaux

symmetric tensor L�
i Li. They are positive and can be ordered as μi > μ′

i > μ′′
i . We can

choose a basis aligned with the eigenvectors, such that the tensor L�
i Li is diagonal with its

diagonal being (μ′′
i , μ

′
i, μi). We choose the initial normal vector of the diffuselet to be

n0 = (sin θ cos φ, sin θ sin φ, cos θ). (2.39)

Using (2.25), the surface stretching ρi = δAi/δA0 is thus equal to

ρi = [sin2 θ(μ′′
i cos2 φ + μ′

i sin2 φ) + μi cos2 θ ]1/2. (2.40)

The mean Lyapunov exponent 〈log ρ〉/t can thus be obtained easily by averaging over θ

and φ and over all (initially randomly oriented) diffuselets,

λ̄ = 1
N

N∑
i=1

∫ π/2

φ=0

∫ π/2

θ=0

log(ρi)

t
sin θ dθ dφ

π/2
, (2.41)

where ρi is given by (2.40). This simple formula gives the mean Lyapunov exponent of
small surface elements with a random initial position and orientation.

As in two dimensions, it is possible to get more information from the eigenvalues of the
tensor Li. Indeed, the p.d.f. of stretching factor ρ is given by

Pi(ρ) dρ = sin θ dθ dφ

π/2
, (2.42)

with φ varying from 0 to π/2 and θ varying from 0 to π/2 due to the symmetry of ρ

across the equatorial plane and the symmetry of ρ when φ is changed in −φ or in φ + π.
In these conditions, the p.d.f. of ρ is simply

Pi(ρ) =
∫ π/2

θ=0

2 sin θ dθ

π
∂ρ

∂φ

, (2.43)

with the denominator computed as

∂ρ

∂φ
= 1

ρ
[sin2 θ(μi − μ′′

i ) − (μi − ρ2)]1/2[(μi − ρ2) − sin2 θ(μi − μ′
i)]

1/2, (2.44)

which leads, with the change of variable x = sin2 θ , to

Pi(ρ) = ρ

π

√
μi − μ′′

i

√
μi − μ′

i

∫ min(1,x2)

x=x1

dx√
1 − x

√
x − x1

√
x2 − x

, (2.45)

with x1 = (μi − ρ2)/(μi − μ′′
i ) and x2 = (μi − ρ2)/(μi − μ′

i). The numerical integration
becomes difficult when ρ2 is close to μ′

i because of a logarithmic divergence. It may be
removed by doing the change of variable x = (x1 + x2)/2 + x′(x2 − x1)/2 if ρ2 > μ′

i and
the change of variable x = (x1 + 1)/2 + x′(1 − x1)/2 if ρ2 < μ′

i. This leads to the general
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formulae

Pi(ρ) = ρ

π
√

μi − ρ2
√

μ′
i − μ′′

i

F

[
2(ρ2 − μ′

i)(μi − μ′′
i )

(μi − ρ2)(μ′
i − μ′′

i )

]
for μ′

i < ρ2 < μi (2.46)

and

Pi(ρ) = ρ

π

√
μi − μ′

i

√
ρ2 − μ′′

i

F

[
2(μ′

i − ρ2)(μi − μ′′
i )

(ρ2 − μ′′
i )(μi − μ′

i)

]
for μ′′

i < ρ2 < μ′
i, (2.47)

where the function F is defined as

F(a) =
∫ 1

−1

√
2 dx√

1 − x2
√

1 + a − x
=
√

8
a

K
(

−2
a

)
+ log

(
4 + a + √

16 + 8a

(
√

2 + √
2 + a)2

)
,

(2.48)

with K the complete elliptic integral of the first kind. This function diverges as − log a
when a tends to 0 and is thus hardly computed using this formula. It can be replaced by
adding and removing

√
1 + x to the numerator, leading to an approximate (within 1 %)

formula

F(a) ≈ log

∣∣∣∣∣∣
(

4
a

+ 1
)

+
√(

4
a

+ 1
)2

− 1

∣∣∣∣∣∣−
1.60√

a + 1.40
(2.49)

that is computed 10 000 times faster than with the exact formula. This approximation has
been used in the paper. These formulae can then be averaged to get the total p.d.f. P(ρ) =∑

Pi(ρ)/N and the total p.d.f. P(log ρ) = ∑
ρPi(ρ)/N.

As in two dimensions, the concentration variance can be calculated analytically. As a
first step, the Gaussian transverse profile is modelled by a top-hat profile with maximal
concentration Ci = 1/

√
τi, diffusive thickness si

√
τi and surface δA0s0/si. This diffuselet

is rectangular parallelepiped with volume δA0s0
√

τi = δA0s0/Ci. Once again, the total
quantity of scalar is conserved. The variance

∫
c2(x, y, z) dx dy dz is equal to C2

i times
its volume with Ci = 1/

√
τi given by (2.22),

Ci = [sin2 θ(η′′
i cos2 φ + η′

i sin2 φ) + ηi cos2 θ ]−1/2, (2.50)

where ηi > η′
i > η′′

i are the three positive eigenvalues of the symmetric tensor T i and
where the initial orientation is taken equal to

n0 = (sin θ cos φ, sin θ sin φ, cos θ) (2.51)

on the basis of the eigenvectors. Averaging over all uniformly distributed initial
orientations, we find that

〈c2〉top-hat =
∫ π/2

φ=0

∫ π/2

θ=0

δA0 s0

[sin2 θ(η′′
i cos2 φ + η′

i sin2 φ) + ηi cos2 θ ]−1/2

sin θ dθ dφ

π/2
.

(2.52)

The integral over θ can be calculated analytically. The total variance for a Gaussian profile
is then obtained by multiplying by

√
π/2 and by summing over i,

〈c2〉 =
√

2 δA0s0√
π

N∑
i=1

∫ π/2

0

asinh
(√

ηi/Gi(φ) − 1
)

dφ√
ηi − Gi(φ)

, (2.53)
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with Gi(φ) = η′′
i cos2(φ) + η′

i sin2(φ). This formula is extremely useful to get a quick
characterization of the mixing rate of the flow. Indeed, it is easily computed numerically
by advecting tracers in the flow and calculating the tensors Li from (2.19) and T i from
(2.23), leading immediately to the eigenvalues ηi, η′

i and η′′
i .

As in two dimensions, the final step consists in calculating the p.d.f. of concentration
analytically. For a top-hat profile, each diffuselet of volume δA0s0/Ci contributes to the
p.d.f. at C = Ci with a weight δA0s0/Ci. When varying the initial orientation of the
diffuselet, the p.d.f. of maximal concentration is given by

Qi(C) dC = δA0s0

C
sin θ dθ dφ

π/2
, (2.54)

with φ varying from 0 to π/2 and θ varying from 0 to π/2. It can be written as

Qi(C) = δA0s0

πC

∫ π/2

θ=0

2 sin θ dθ

∂C
∂φ

. (2.55)

Inside the integral, the denominator can be calculated as
∂C
∂φ

= C3[sin2 θ(ηi − η′′
i ) − (ηi − C−2)]1/2[(ηi − C−2) − sin2 θ(ηi − η′

i)]
1/2. (2.56)

Doing the change of variable x = sin2 θ leads to the formula

Qi(C) = 2δA0 s0

πC4
√

ηi − η′′
i

√
ηi − η′

i

∫ min(1,x2)

x=x1

dx√
1 − x

√
x − x1

√
x2 − x

, (2.57)

with x1 = (ηi − C−2)/(ηi − η′′
i ) and x2 = (ηi − C−2)/(ηi − η′

i). Doing the final change
of variable x = (x1 + x2)/2 + x′(x2 − x1)/2 if C−2 > μ′

i and the change of variable x =
(x1 + 1)/2 + x′(1 − x1)/2 if C−2 < μ′

i. This leads to the general formulae

Qi(C) = δA0 s0

πC4
√

ηi − η′
i

√
C−2 − η′′

i

F

[
2(η′

i − C−2)(ηi − η′′
i )

(C−2 − η′′
i )(ηi − η′

i)

]
for η′′

i < C−2 < η′
i

(2.58)
and

Qi(C) = δA0 s0

πC4
√

ηi − C−2
√

η′
i − η′′

i

F

[
2(C−2 − η′

i)(ηi − η′′
i )

(ηi − C−2)(η′
i − η′′

i )

]
for η′

i < C−2 < ηi,

(2.59)
where the function F is defined by (2.48).

Replacing the top-hat profile by a Gaussian profile is easily done by convolution with
the p.d.f. of a Gaussian profile 1/(c

√
log(C/c)). This formula can then be summed over

all diffuselets to get the total p.d.f. of concentration,

P(c) =
∫ C=1

C=c

∑N
i=1 Qi(C)

c
√

log(C/c)
dC. (2.60)

As in two dimensions, this p.d.f. is normalized such that its first moment
∫

cP(c) dc is
equal to the total quantity of scalar of all diffuselets

∑
δA0s0/

√
π. We also recover the

fact that the variance of concentration 〈c2〉, previously calculated in (2.53), is equal to∫
c2P(c) dc but also to

√
π/2

∫
C2Q(C) dC.
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The diffuselet concept for scalar mixing

3. Two-dimensional sine flow

3.1. Analytical formulae for the trajectories and the tensors of the diffuselets
We apply the technique developed above to the case of a two-dimensional random sine
flow with a wavelength equal to 1. It is defined for the nth time interval by

Step 1: u = U
[

0
sin[2πx + χ1(n)]

]
if t ∈

[
n; n + 1

2

]
, (3.1)

Step 2: u = U
[

sin[2πy + χ2(n)]
0

]
if t ∈

[
n + 1

2
; n + 1

]
. (3.2)

Here, U corresponds to the amplitude of the flow, χ1 and χ2 are random phases between 0
and 2π (see table 1 for the first ten values) and n is an integer. The trajectory xi of a tracer
initially at (x0, y0) can be integrated analytically during each time interval. For example,
for the nth time interval, xi is constant during step 1 (i.e. for t ∈ [n; n + 1/2]) because the
x velocity vanishes; xi(t) is thus equal to xi(n) such that the y velocity is constant. The y
position is thus linear in time yi(t) = yi(n) + U(t − n) sin[2πxi(n) + χ1(n)]. Similarly, yi
is constant during step 2 such that its x velocity is constant and xi(t) = xi(n) + U(t − n −
1/2) sin[2πyi(n + 1/2) + χ2(n)], where we have used the fact that xi(n + 1/2) = xi(n).
It should be noted that yi is constant during step 2 such that yi(n + 1/2) = yi(n + 1). To
conclude, the positions at time t = n are simply obtained by applying

yi(n + 1) = yi(n) + U
2

sin[2πxi(n) + χ1(n)], (3.3)

xi(n + 1) = xi(n) + U
2

sin[2πyi(n + 1) + χ2(n)], (3.4)

for n = 0, 1, 2, . . . , Tmax.
We now calculate the tensors Li and T i analytically. We first focus on the first step.

During step 1, xi is constant such that the velocity gradient is constant and equal to

𝞩u =
[

0 0
γ 0

]
, with γ = 2πU cos[2πxi(n) + χ1(n)]. (3.5)

The tensor Li(t) is given by an exponential matrix exp[− ∫ 𝞩u
�

dt]Li(n) that is simply

equal to [I − (t − n)𝞩u
�
]Li(n) since 𝞩u

∗2
vanishes (using the Taylor expansion of the

exponential). During step 1, the tensor reads

Li(t) =
[

1 −γ (t − n)

0 1

]
Li(n), with γ = 2πU cos[2πxi(n) + χ1(n)]. (3.6)

It is then easy to compute the tensor T i from (2.23). At time t = n + 1/2 it reads

T i

(
n + 1

2

)
= T i(n) + 4D

s2
0

L�
i (n)

⎡
⎢⎣

1
2

−γ

8

−γ

8
1
2

+ γ 2

24

⎤
⎥⎦ Li(n). (3.7)

For the second step, the technique is similar although the formulae are slightly different.
We find that

Li(t) =
⎡
⎣ 1 0

−γ

(
t − n − 1

2

)
1

⎤
⎦ Li

(
n + 1

2

)
, (3.8)
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P. Meunier and E. Villermaux

with γ = 2πU cos[2πyi(n + 1) + χ2(n)] and

T i(n + 1) = T i

(
n + 1

2

)
+ 4D

s2
0

L�
i

(
n + 1

2

)⎡⎢⎣
1
2

+ γ 2

24
−γ

8−γ

8
1
2

⎤
⎥⎦ Li

(
n + 1

2

)
. (3.9)

To conclude, the tensors can be calculated from time n to time n + 1 by applying
successively (3.6) at time t = n + 1/2, (3.7), (3.8) at time t = n + 1 and (3.9). The initial
values are simply L(0) = T (0) = I . This procedure is extremely fast because there is no
temporal integration of the Lagrangian trajectories in each time interval as used previously
by Meunier & Villermaux (2010). It is thus possible to obtain the trajectories of 1000
diffuselet over 15 periods in only 0.8 s whereas it takes 192 s using a temporal integration
in each time interval. This central processing unit (CPU) time is four orders of magnitude
faster than that for a DNS. It took a few hours to get a DNS with 81922 Fourier modes
despite its acceleration due to the property of the sine flow (see Appendix A). This
theoretical implementation will be used in the following with a number of diffusers fixed
to N = 104 for a good convergence (although convergence is correct for N = 103, as shown
in figure 3).

3.2. Probability distribution function of stretching
As shown previously, the stretching factor ρ = δ�i/δ�0 for each diffuselet is simply given
by the square root of n�

0L�
i Lin0. When averaging over all initial orientations n0 and all

diffuselets, the p.d.f. of stretching factors is given in two dimensions by (2.31), where
μi is the maximal eigenvalue of L�

i Li. This p.d.f. is plotted as dotted symbols in figure 4
at different times for a small velocity U = 0.3. After half a period, the p.d.f. has a cusp
around 0. This singularity is due to the diffuselets that have not been stretched (whatever
their initial orientation) since they are at a position where the shear γ = ∂v/∂x vanishes.
After one period, the probability that a diffuselet has experienced no shear at the first
and at the second half-period is small such that this singularity has disappeared (green
symbols). As time evolves, the p.d.f. becomes more rounded. At late times the p.d.f.s are
parabolic with a maximum located at a position increasing linearly in time. It indicates
that the mean Lyapunov exponent

λ̄ = 〈log ρ/t〉 (3.10)

is constant in time as classically obtained for chaotic flows. The variance of these
distributions

V = 〈(log ρ − λ̄t)2〉 (3.11)

also increases linearly in time. This can be understood by decomposing the n periods into
2n independent stretching processes with the same mean stretching factor and the same
variance. Here log ρ is obtained as the sum of 2n random processes, such that its average
and its variance increase linearly in time due to the central limit theorem.

Interestingly, the average and the variance can be calculated analytically at t = 1/2 by
doing an ensemble average over all diffuselets. Indeed, the tensor

L�L =

⎡
⎢⎣ 1 −γ

2

−γ

2
1 + γ 2

4

⎤
⎥⎦ (3.12)
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Figure 4. Probability distribution function of the stretching rate for U = 0.3. In (a) times are equal to t = 0.5
(red), t = 1 (green) and t = 2 (blue). In (b) times are equal to t = 5 (red), t = 10 (green), t = 20 (blue) and
t = 50 (black). Symbols correspond to the diffuselet method given by (2.31). The solid lines correspond to the
exact calculation (3.16) at t = 0.5 and to the normal law (3.19) at late times with the mean Lyapunov exponent
and the variance given analytically by (3.17) and (3.18).

has a maximal eigenvalue

μi = 1 + γ 2

8

(
1 +

√
1 + 16γ −2

)
, with γ = 2πU cos[2πxi(0) + χ1(0)]. (3.13)

By varying the position of the diffuselet xi(0) from −χ1(0)/(2π) to 1/2 − χ1(0)/(2π),
we find that

P(μi) = |dxi/dμi|
1/2

. (3.14)

Using the fact that xi = acos[(μi − 1)/(π
√

μi)]/(2π), the p.d.f. reads

P(μi) = 1 + μ−1
i

π
√

π2U2μi − (μi − 1)2
. (3.15)

Replacing in (2.31) the discrete sum over the N diffusers by
∫

P(μi) dμi, we find the p.d.f.
of the stretching factor

P1/2(log ρ) =
∫ μi=μM

μi=ρ2

2(1 + μ−1
i )ρ2 dμi

π2
√

π2U2μi − (μi − 1)2
√

μi − ρ2
√

ρ2 − μ−1
i

, (3.16)

with μM = 1 + π2U2/2 +
√

π4U4/4 + π2U2. This analytical prediction at time t = 1/2
is plotted in figure 4(a) as a red line for U = 0.3. There is an excellent agreement with the
numerical p.d.f.s plotted as red dots. From this analytical p.d.f. it is possible to calculate
numerically the mean Lyapunov exponent from the first moment of P1/2(log ρ). However,
it is easier to use the general formula (2.28) for the Lyapunov exponent and to replace the
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Figure 5. Probability distribution function of the stretching rate for U = 3. In (a) times are equal to t = 0.5
(red), t = 1 (green) and t = 2 (blue). In (b) times are equal to t = 5 (red), t = 10 (green), t = 20 (blue) and
t = 50 (black). Symbols correspond to the diffuselet method given by (2.31). The solid lines correspond to the
exact calculation (3.16) at t = 0.5 and to the normal law (3.19) at late times with the mean Lyapunov exponent
and the variance given analytically by (3.17) and (3.18).

discrete sum by
∫

P(μi) dμi. It leads to a simple integral for the mean Lyapunov exponent,

λ̄th =
∫ μM

1
log

(
1 + μi

2
√

μi

)
2(1 + μ−1

i )

π
√

π2U2μi − (μi − 1)2
dμi. (3.17)

Similarly, the variance of the distribution can be calculated as

V1/2 =
∫ π/2

θ=0

∫ μM

μi=1

log2(μi cos2 θ + μ−1
i sin2 θ)(1 + μ−1

i )

4π
√

π2U2μi − (μi − 1)2
dμi − λ̄

2
th
4

(3.18)

at time t = 1/2. These theoretical results can then be used to infer the p.d.f. of stretching
rates at late times. After n periods, if the 2n stretching steps are independent random
processes, the p.d.f. of log ρ must be, according to the central limit theorem, a normal law
(see, e.g. equation (2.7) of Balkovsky & Fouxon 1999),

Pth(log ρ) = 1√
2πVth(t)

exp
[
−(log ρ − λ̄tht)2

2Vth(t)

]
, with Vth(t) = t

1/2
V1/2. (3.19)

This prediction is plotted as solid lines in figure 4 at late times. There is an excellent
agreement with the numerical results for this small velocity amplitude U = 0.3. The
position and width of the parabola are exactly similar between the numerics and the theory.
However, when the amplitude of the velocity is increased to U = 3, figure 5 shows that
there is a clear discrepancy by approximately 30 % on the position of the parabola at
late times although the prediction is correct for t = 1/2. It indicates that the Lyapunov
exponent obtained at t = 1/2 is smaller than that obtained at late times. This can be
explained by the fact that the stretching steps are not independent random processes for
this large velocity amplitude.

In order to analyse this discrepancy, the mean Lyapunov exponent is plotted in blue as a
function of U in figure 6. The Lyapunov exponent increases quadratically for small velocity
U and tends to saturate for a large velocity amplitude. For a small velocity amplitude U,
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101

100

10–1

10–2

10–1 100 101

U

λ̄
V/
t

Figure 6. Mean Lyapunov exponent λ̄ = 〈log ρ〉/t (blue) and variance V = 〈(log ρ − λ̄t)2〉 (red) as a function
of the velocity of the sine flow U. Solid lines correspond to the theoretical predictions calculated at t = 0.5
using (3.17) and (3.18). Numerical results averaged between t = 20 and t = 50 are plotted as symbols.
Kraichnan’s theoretical prediction (3.22) for a flow decorrelated in time is plotted as a black solid line. The
Lyapunov exponent for large velocity amplitude (3.20) is plotted as a black dashed line.

there is an excellent agreement between the numerical values (plotted as blue symbols)
and the theoretical values (plotted as a blue line). It means that the assumption of random
independent stretching steps is correct. For a velocity amplitude of order 1, the Lyapunov
exponent is larger by approximately 30 % in the numerics than in the theory, as noticed in
the previous figure for U = 3. This is possibly due to the fact that at t = 1/2 the diffuselets
are oriented along the y axis (whatever their initial orientation), which is optimal for the
next step. They are more stretched by the shear in the second step than if they had a
random orientation at t = 1/2 (as assumed in the theory). However, this effect seems to be
rather limited: at a large velocity amplitude, the agreement between the numerics and the
theory is again very good. This is because the stretching of the diffuselet at late times is
independent of its initial orientation since it will be aligned with the direction of the shear.

It is commonly assumed that the diffuselets are aligned with the direction of maximum
stretching rate at late times. Under this alignment assumption, the mean Lyapunov
exponent λ̄ must be equal to the spatial average of the positive stretching rate (Monin &
Yaglom 1975). This would mean that λ̄ is proportional to the amplitude U of the flow for
large U, which is clearly not the case here. In fact, Girimaji & Pope (1990) showed that,
for a turbulent flow, the mean Lyapunov exponent is three times smaller than the mean
positive stretching rate because of two effects. The first effect is due to the presence of
the vorticity, which tends to rotate the diffuselet away from the direction of maximum
stretching, as already apparent from the analysis in Corrsin & Karweit (1969). In our
case, the vorticity is equal to the stretching rate since it is a pure shear. The stretching
factor ρ can be calculated at late times (or at large U for a given time step �t = 1/2) as√

1 + γ 2�t2 ≈ |γ |�t. Averaging over a quarter of a wavelength gives 〈ρ〉 = 2U�t from
which the mean Lyapunov exponent can be deduced,

λ̄ = log(2U�t)
�t

. (3.20)

951 A33-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.771


P. Meunier and E. Villermaux

This asymptotic prediction for a large velocity amplitude is plotted in figure 6 as a dashed
line for �t = 1/2. It is very close to the numerical and theoretical results despite the
absence of averaging over the initial orientation. It proves that the logarithmic (rather than
linear) dependence of the Lyapunov exponent with U at large velocity amplitudes clearly
comes from the presence of the vorticity.

Girimaji & Pope (1990) found that there is a second effect contributing to the decreases
of the Lyapunov exponent in turbulent flows: the finiteness of the persistent time. As a
basic example, Duplat & Villermaux (2000) analysed the case of a stagnation point flow
with amplitude γ . After a finite persistent time �t the Lyapunov exponent averaged over
all initial orientations is given by λ̄/γ = ln(cosh(γ�t))/γ�t. For a large time step �t,
the Lyapunov exponent is exactly equal to the stretching rate γ . However, for a small time
step, the ratio λ̄ is proportional to (γ�t)γ ∼ γ 2. It indicates that at first order in γ�t a
stagnation point flow does not stretch material lines in the mean because there are as many
lines that are stretched than are compressed. After a finite time, the lines tend to align with
the stretching direction such that there is more stretching than compression. In our case,
we recover exactly the same scaling law (U�t)U for small amplitudes since λ̄ scales as
U2. In fact, this limit of small U�t corresponds to a flow delta correlated in time, also
known as the Kraichnan flow. Kraichnan (1974) showed that the asymptotic value of the
Lyapounov exponent is then

λ(t) = 1
d + 2

∫ t

−∞
〈𝞩uij(t)𝞩uij(t′)〉 dt′, (3.21)

where d is the dimension of space. For the sine flow, the velocity tensor is given by (3.5)
for t between 0 and 1/2 and t′ varying between 0 and t. Averaging over the position xi, the
Lyapunov exponent is thus equal to π2U2t/2. The linear increase with time means that
the flow must be applied during a finite time in order for the stretching to be efficient.
Averaging for 0 < t < 1/2 leads to a mean Lyapunov exponent

λ̄K = π2U2

8
. (3.22)

This prediction is plotted as a black solid line in figure 6 and is in excellent agreement for
small velocity amplitudes.

The variance is also plotted in figure 6 in red as a function of U. There is a very good
agreement between the theory and the numerics at small velocity. At large U, the variance
is slightly smaller than in the theory. It is striking to see that there is an exact relation
between the Lyapunov exponent and the variance at small U,

V(t) = λ̄t. (3.23)

This result is classical for the stretching factor of line elements in a Kraichnan flow. Indeed,
Kraichnan (1974) states in his equation (2.33) that the ratio of the mean stretching factor
λ̄t divided by half the variance V/2 is equal to the dimension of space (see also Balkovsky
& Fouxon 1999; Meunier & Villermaux 2010). This property can be shown for a single
diffuselet which experiences a small stretching (i.e. with μi close to 1). By noting that
(2.31) can be rewritten as P(log ρ) = exp(log ρ)f (log ρ) with f an even function, it can be
shown that ∫ log(μi)/2

− log(μi)/2
ueuf (u) du =

∫ log(μi)/2

− log(μi)/2
u2euf (u) du (3.24)

in the limit of small log μi (replacing eu by its Taylor expansion 1 + u). As a consequence,
the average and variance of log ρ are equal for small stretching rates. However, it is clear
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Figure 7. Probability distribution function of the scalar concentration for U = 0.3. The diffusivity is equal to
D = 10−6 for (a) and D = 10−10 for (b). Times are equal to t = 0.5 (red), t = 5 (green) and t = 50 (blue). Solid
lines correspond to the analytical formula (3.26) based on the log normal law (3.19) with the mean Lyapunov
exponent and the variance given analytically by (3.17) and (3.18). Circles correspond to the numerical result
using the diffuselet method given by (2.38). In (a) dots correspond to the numerical result averaged over five
DNS simulations where the initial y position of the filament is varied between π − 0.4 and π + 0.4. The power
law 1/c3 is plotted as a blue dashed line in the inset.

that this relation does not hold when U is larger than one. It corresponds to the case when
the stretching is persistent on a longer time than the characteristic shear time 1/γ , i.e. that
the flow is no more delta correlated in time. In this regime, the variance saturates at a
value close to 2 whereas the Lyapunov exponent increases logarithmically. The p.d.f. of
stretching rates become thinner as U increases because all diffuselets are aligned with the
shear (and, thus, within each other) at the end of each step.

3.3. Probability distribution function of concentration
The main advantage of the diffuselet technique is that it gives the concentration field in the
presence of diffusion. We first focus on the p.d.f. of concentration that can be calculated
without the reconstruction of the overall concentration field as long as the strip does not
overlap with itself; this holds in the diluted limit, when aggregation phenomena can be
neglected (see, e.g. § 6 in Meunier & Villermaux (2010) and Villermaux (2019)).

As mentioned at the end of § 3.1, the tensor T i can be obtained numerically using
recurrence relations. Let ηi > η′

i be its eigenvalues. The p.d.f. of concentration is given
by (2.38) for each diffuselet and then averaged over all diffuselets. The resulting p.d.f.
is plotted in figure 7 for different diffusivities for small velocity U = 0.3. The general
features of the p.d.f. are classical. They are initially U-shaped corresponding to the
Gaussian profile of the diffuselets. At later times, they become a decreasing function of
the concentration in a time laps that depends on the diffusivity and on the stretching rate
(i.e. the amplitude U). As time evolves, the p.d.f. becomes narrower since the maximal
concentrations of the diffuselets decrease toward 0.

For the moderate diffusivity D = 10−6 (see figure 7a), the numerical p.d.f. using
diffuselets (plotted as open symbols) is compared with the result of the DNS (plotted
as dots). For the comparison to be meaningful, we have chosen in the DNS a filament of
thickness s0 = 0.01 between x = 0 and x = 1 and in the diffuselet method 104 diffuselets
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of thickness s0 = 0.01 and of length δ�0 = 10−4 (for the total length of all diffuselets to
be equal to 1). There is an excellent agreement for the smallest velocity U = 0.3 except
at late times for the largest concentrations. It should be noted that in the DNS, the final
p.d.f. slightly fluctuates when the initial position of the filament is varied. This is why it is
not clear that the DNS gives a universal result unless an ensemble average is done over all
initial positions of the filament. Overall, the agreement between the two methods is very
good over three decades.

As in Meunier & Villermaux (2010), it is possible to predict the concentration p.d.f.
from the normal law of stretching factors (3.19). Indeed, if a diffuselet experiences a
constant stretching rate, its striation thickness decreases exponentially in time such that
its dimensionalised time τi only depends on the final stretching factor ρ,

τth(ρ) = 1 + 2Dt

s2
0

ρ2 − 1
log ρ

. (3.25)

By doing so, we assume that the history of stretching (there are many ways to build a
given ρ within a time t) has no effect. For a given stretching factor ρ, the diffuselet
has thus a p.d.f. of concentration corresponding to the already used Gaussian profile
1/(c

√
− log(c

√
τ)) weighted by a factor s0δ�0

√
τ corresponding to the surface of the

diffuselet. The total p.d.f. of concentration is then obtained by convolution with the p.d.f.
of stretching factors (3.19). It leads to a theoretical prediction of the p.d.f.,

Pth(c) = s0Nδ�0

c
√

2πVth(t)

∫
τth(ρ)<c−2

exp
[−(log ρ − λ̄t)2

2Vth(t)

] √
τth(ρ) d log ρ√

− log(c
√

τth(ρ))
. (3.26)

The factor N comes from the sum over the N diffuselets; it ensures that
∫

cPth(c) dc is
equal to the total quantity of the scalar. In Meunier & Villermaux (2010) the Lyapunov
exponent λ̄ was measured numerically from the stretching rate of the filament. Here,
it is known theoretically from (3.17) and the variance is equal to Vth(t) = 2tV1/2, with
V1/2 given by (3.18). This prediction is plotted in figure 7 as solid lines. It is in good
agreement with the numerical results for U = 0.3 especially at early times where the
difference between the diffuselet method and the theory is hardly visible. At late times, the
maximum concentration C = τth(ρ)−1/2 scales as 1/ρ such that the p.d.f. of maximum
concentration is equal to Q(C) = Pth(log ρ)/C2, with log ρ = − log C. Using the log
normal form of the p.d.f. of stretching factor (3.19) leads to a power law for the p.d.f.
of maximal concentration,

Q(c) ∼ c−2−λ̄t/(2V). (3.27)

In two dimensions the ratio λ̄t/(2V) is close to 1 such that the p.d.f. of concentration scales
as c−3. This is very well confirmed in the inset of figure 7.

Figure 8 shows the p.d.f. of concentation for a larger velocity U = 3. It is clear that
the analytical model does not work at all. This is due to the discrepancy between the
theoretical and numerical Lyapunov exponent, which has been explained in the previous
subsection. However, the agreement between the DNS and diffuselet method is correct
over two decades. At late times, the p.d.f. is again very close to the power law c−3.
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Figure 8. Probability distribution function of the scalar concentration for U = 3. The diffusivity is equal to
D = 10−6 for (a) and D = 10−10 for (b). Times are equal to t = 0.5 (red), t = 1 (green) and t = 4 (blue). Solid
lines correspond to the analytical formula (3.26) based on the log normal law (3.19) with the mean Lyapunov
exponent and the variance given analytically by (3.17) and (3.18). Circles correspond to the numerical result
using the diffuselet method given by (2.38). In (a) dots correspond to the numerical result averaged over four
DNS where the initial filament is oriented at 0◦, 45◦, 90◦ and 135◦ with respect to the x axis. The power law
1/c3 is plotted as a blue dashed line in the inset.

Finally, it is possible to get theoretically the variance of concentration by integrating∫
c2Pth(c) dc. It can be written as a simple integral

〈c2〉 = s0Nδ�0

2
√

Vth(t)

∫ ∞

−∞
exp

[−(log ρ − λ̄t)2

2Vth(t)

]
d log ρ√
τth(ρ)

. (3.28)

This prediction is plotted in figure 9 and compared with the numerical results. The overall
features of the curves are classical. The variance of concentration remains constant until
the mixing time that scales as log(Us0/D). It then decreases exponentially with a decay
rate equal to −(λ̄− V/(2t)). Indeed, it can be shown (by splitting the integral at ρ =
(λ̄t)1/5) that the theoretical variance is asymptotically equal to

〈c2〉 ∼ I
s2

0Nδ�0V1/4

23/4
√

Dt
exp

(
−
(
λ̄t − V

2

))
(3.29)

at late times. The integral I is equal to
∫∞

0
√

xe−x2
dx = 0.6127 if V = λ̄t and equal to√

π(λ̄t − V)(2V)−1/4 if V < λ̄t.
For U = 0.3, there is a good agreement between the numerics and the theory despite a

small overestimation of the theory. At large velocity U = 3, the theoretical prediction is
very far from the numerics due to the wrong value of the Lyapunov exponent λ̄th. It should
be noted that the variance calculated by the DNS at D = 10−6 is in good agreement with
the diffuselet method at early times. At late times, it is either larger (for U = 0.3) or smaller
(for U = 3) than the diffuselet method. It indicates that the DNS result is sensitive to the
initial position of the filament such that an ensemble average over all positions would be
necessary to get the ‘universal’ evolution of the variance for this sine flow.

This new numerical method gives the exact p.d.f. of Lyapunov exponents and of
concentration in only a few seconds on a standard computer for any diffusivity. It has
been compared with a new analytical prediction which works only for small velocity
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Figure 9. Variance of scalar concentration as a function of time for U = 0.3 (a) and U = 3 (b) and for
D = 10−6 (red) and D = 10−10 (blue). Circles correspond to the numerical result using the diffuselet method
whereas dots correspond to DNS simulations. Solid lines correspond to the analytical prediction (3.28) with λ̄
given by (3.17) and Vth(t) = 2tV1/2 given by (3.18).

amplitudes – corresponding to a Kraichnan flow, i.e. delta correlated in time – and for
large velocity amplitudes – corresponding to a long persistent time.

4. Three-dimensional sine flow

4.1. Analytical formulae for the trajectories and the tensors of the diffuselets
In this section we apply the same technique developed above to the case of a 3-D random
sine flow with a wavelength equal to 1. It is defined for the nth time interval by

Step 1: u = U

⎡
⎣ 0

sin[2πx + χ1(n)]
0

⎤
⎦ if t ∈

[
n; n + 1

3

]
, (4.1)

Step 2: u = U

⎡
⎣ 0

0
sin[2πy + χ2(n)]

⎤
⎦ if t ∈

[
n + 1

3
; n + 2

3

]
, (4.2)

Step 3: u = U

⎡
⎣sin[2πz + χ3(n)]

0
0

⎤
⎦ if t ∈

[
n + 2

3
; n + 1

]
. (4.3)

The random phases χ1, χ2 and χ3 are fixed for all numerical simulations (see table 1 for the
first ten values). The trajectory xi of a tracer initially at (x0, y0, z0) can be easily integrated.
Indeed, xi is constant during step 1 (equal to xi(n)) such that the y velocity is constant
and yi(t) = yi(n) + U(t − n) sin[2πxi(n) + χ1(n)]. Similarly, yi is constant during step
2 such that the z velocity is constant and zi(t) = zi(n) + U(t − n − 1/3) sin[2πyi(n +
1/3) + χ2(n)], where we have used the fact that xi(n + 1/3) = xi(n). It should be noted
that yi is constant during steps 2 and 3 such that yi(n + 1/3) = yi(n + 1). Finally, zi is
constant during step 3 such that its x velocity is constant and xi(t) = xi(n) + U(t − n −
2/3) sin[2πzi(n + 2/3) + χ3(n)], where we have used the fact that xi(n + 2/3) = xi(n).
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n 1 2 3 4 5 6 7 7 8 9

χ1 3.6721 5.6535 4.7744 1.8854 5.8522 2.5802 4.2842 4.7991 4.0560 3.9965
χ2 0.9283 5.9748 0.2954 5.0034 1.5375 4.3288 1.1735 4.2946 5.4568 0.7893
χ3 5.1191 5.6913 0.7979 5.7389 3.9732 0.6129 1.7499 3.4362 6.0162 6.0626

Table 1. Phases for the 2-D and 3-D sine flow.

To conclude, the positions at time t = n are simply obtained numerically by applying the
formulae

yi(n + 1) = yi(n) + U
3

sin[2πxi(n) + χ1(n)], (4.4)

zi(n + 1) = zi(n) + U
3

sin[2πyi(n + 1) + χ2(n)], (4.5)

xi(n + 1) = xi(n) + U
3

sin[2πzi(n + 1) + χ3(n)], (4.6)

for n = 0, 1, 2, . . . , Tmax.
We now calculate the tensors Li and T i analytically. We first focus on the first step.

During step 1, xi is constant such that the velocity gradient is constant and equal to

𝞩u =
⎡
⎣0 0 0

γ 0 0
0 0 0

⎤
⎦ , with γ = 2πU cos[2πxi(n) + χ1(n)]. (4.7)

The tensor Li(t) is given by an exponential matrix exp[− ∫ 𝞩u
�

dt]Li(n) that is simply

equal to [I − (t − n)𝞩u
�
]Li(n) since 𝞩u

∗2
vanishes. During step 1, the tensor reads

Li(t) =
⎡
⎣1 −γ (t − n) 0

0 1 0
0 0 1

⎤
⎦ Li(n), with γ = 2πU cos[2πxi(n) + χ1(n)]. (4.8)

It is then easy to compute the tensor T i from (2.23). At time t = n + 1/3 it reads

T i

(
n + 1

3

)
= T i(n) + 4D

s2
0

L�
i (n)

⎡
⎢⎢⎢⎢⎢⎣

1
3

− γ

18
0

− γ

18
1
3

+ γ 2

81
0

0 0
1
3

⎤
⎥⎥⎥⎥⎥⎦ Li(n). (4.9)

For the second step, the technique is similar although the formulae are slightly different.
We find that

Li(t) =

⎡
⎢⎣

1 0 0

0 1 −γ

(
t − n − 1

3

)
0 0 1

⎤
⎥⎦ Li

(
n + 1

3

)
, (4.10)
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Figure 10. Three-dimensional plot of a scalar sheet initially located along the (x, z) plane (a) and advected
until t = 15 (b) by a 3-D sine flow with U = 0.3 and D = 10−6. The initial thickness of the sheet is s0 = 0.01.

with γ = 2πU cos[2πyi(n + 1) + χ2(n)] and

T i

(
n + 2

3

)
= T i

(
n + 1

3

)
+ 4D

s2
0

L�
i

(
n + 1

3

)
⎡
⎢⎢⎢⎢⎢⎣

1
3

0 0

0
1
3

− γ

18

0 − γ

18
1
3

+ γ 2

81

⎤
⎥⎥⎥⎥⎥⎦ Li

(
n + 1

3

)
.

(4.11)
For the third step, we find that

Li(t) =

⎡
⎢⎣

1 0 0
0 1 0

−γ

(
t − n − 2

3

)
0 1

⎤
⎥⎦ Li

(
n + 2

3

)
, (4.12)

with γ = 2πU cos[2πyi(n + 1) + χ2(n)] and

T i(n + 1) = T i

(
n + 2

3

)
+ 4D

s2
0

L�
i

(
n + 2

3

)
⎡
⎢⎢⎢⎢⎢⎣

1
3

+ γ 2

81
0 − γ

18
0

1
3

0

− γ

18
0

1
3

⎤
⎥⎥⎥⎥⎥⎦ Li

(
n + 2

3

)
.

(4.13)

To conclude, the tensors can be calculated from time n to time n + 1 by applying
successively (4.8) at time t = n + 1/3, (4.9), (4.10) at time t = n + 2/3, (4.11), (4.12) at
time t = n + 1 and (4.13). The initial values are simply L(0) = T (0) = I . This procedure
is extremely fast because there is no temporal integration in each time interval. It is thus
possible to obtain the trajectories of 8000 diffuselets over 15 periods in only 5 s. If the
diffuselets are initially located in an (x, z) plane, it permits us to reconstruct the evolution
of a diffusive sheet. An example is plotted in figure 10 for a moderate diffusivity D = 10−6.
The sheet is folded and stretched, enhancing its diffusion. The concentration along the
sheet has decreased by a factor two after only 15 periods.

The concentration field is compared with the result of DNS computed for a 10243 mesh
and with a time interval of 1/30th of a period. The CPU time for this simulation is equal to
approximately 70 h that is 50 000 times slower than the diffuselet method. The comparison
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Figure 11. Two-dimensional concentration field in the (x, y) plane at z = π obtained (a) by the diffuselet
method and (b) by DNS. The scalar initially at y = π with (x, z) ∈ [π − 0.5 π + 0.5]2 is advected until t = 15
by the 3-D sine flow with U = 0.3, D = 10−6 and s0 = 0.01 as in figure 10.

between the two methods is plotted in figure 11. The position of the sheet is well captured
by the diffuselet method. However, the concentration seems to be slightly smaller in the
DNS than in the diffuselet method. It probably comes from numerical diffusion in the
DNS due to the under-resolved mesh. Indeed, applying the convergence criterion obtained
in two dimensions (see figure 18a), the error for this DNS can be assumed to be of the
order 50 % despite the large memory used (equal to 16GB for N = 1024).

4.2. Probability distribution function of stretching
As shown previously, the stretching factor ρ = δAi/δA0 for each diffuselet is simply
given by the square root of n�

0L�
i Lin0. When averaging over all initial orientations n0

and all diffuselets, the p.d.f. of stretching factors is given in three dimensions by ((2.46)
and (2.47)), where μi > μ′

i > μ′′
i are the three eigenvalues of L�

i Li. This p.d.f. is plotted
as dotted symbols in figure 12 at different times for a small velocity U = 0.3 (top plots)
and a large velocity U = 3 (bottom plots). After a third of a period, the p.d.f. has a cusp
around 0. This singularity is due to the diffuselets which have not been stretched (whatever
their initial orientation) since they are at a position where the shear γ = ∂v/∂x vanishes.
After one period, the probability that a diffuselet has experienced no shear is small such
that this singularity has disappeared (green symbols). As time evolves the p.d.f.s become
more and more round. At late times the p.d.f.s are parabolic with a maximum located at
a position increasing linearly in time. This is exactly similar to the 2-D case with a mean
Lyapunov exponent λ̄ = 〈log ρ〉/t constant in time as classically obtained for chaotic flows.
The variance of these distributions V = 〈(log ρ − λ̄t)2〉 also increases linearly in time as
obtained by 3n independent stretching processes.

It is possible to calculate analytically the p.d.f. of stretching factors at the end of the first
step. Indeed, (4.8) gives at time t = 1/3,

L∗
i Li =

⎡
⎢⎢⎢⎣

1 −γ

3
0

−γ

3
1 + γ 2

9
0

0 0 1

⎤
⎥⎥⎥⎦ , with γ = 2πU cos[2πx0 + χ1(1)], (4.14)
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Figure 12. Probability distribution function of the stretching rate for U = 0.3 at times t = 0.5 (red), t = 1
(green) and t = 2 (blue) in (a); and at times t = 5 (red), t = 10 (green), t = 20 (blue) and t = 50 (black) in (b).
Solid lines correspond to the exact calculation ((4.17) and (4.18)) at t = 1/3 and to the normal law (4.21) at late
times with the mean Lyapunov exponent and the variance given analytically by (4.19) and (4.20).

which has eigenvalues equal to μ = 1 + γ 2(1 +
√

1 + 36/γ 2)/18 larger than 1, μ′ = 1
and μ′′ = 1/μ. This expression can be inverted to find the initial position x0 corresponding
to an eigenvalue μ,

x0 = 1
2π

acos
(

3(μ − 1)

2πU
√

μ

)
− χ1(1)

2π
. (4.15)

The probability to have an eigenvalue μ is given by P(μ) dμ = dx0/(1/4) with
x0 uniformly distributed over a fourth of a wavelength (between −(χ1(1)/2π) and
−(χ1(1)/2π) + 1/4). Differentiating (4.15) with respect to μ leads to the p.d.f. of
eigenvalue

P(μ) = μ + 1

πμ
√

4π2U2μ/9 − (μ − 1)2
. (4.16)

Convolving this formula with the probability to have a stretching factor ((2.46) and (2.47))
and multiplying by ρ (to get the p.d.f. of log ρ) leads to an analytic formula at t = 1/3,

P1/3(log ρ) =
∫ μM

μ=ρ2

(μ + 1)ρ2 F
[
2(ρ2 − 1)(μ + 1)/(μ − ρ2)

]
π2μ

√
4π2U2μ/9 − (μ − 1)2

√
μ − ρ2

√
1 − μ−1

for ρ > 1,

(4.17)

P1/3(log ρ) =
∫ μM

μ=ρ−2

(μ + 1)ρ2 F
[
2(1 − ρ2)(μ + 1)/(ρ2μ − 1)

]
π2μ

√
4π2U2μ/9 − (μ − 1)2

√
μ − 1

√
ρ2 − μ−1

for ρ < 1,

(4.18)

with μM = 1 + 4π2U2(1 +
√

1 + 36/(4π2U2))/18. This analytical prediction at time t =
1/3 is plotted in figure 12(a) as a red line for U = 0.3. There is an excellent agreement
with the numerical p.d.f. plotted as red dots.

From this analytical p.d.f. it is possible to calculate the mean Lyapunov exponent as the
first moment of the p.d.f. However, it is easier to use (2.41) and to replace the discrete sum
over the diffuselets by an integral

∫
P(μ) dμ. Since the eigenvalues at t = 1/3 are equal
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Figure 13. Probability distribution function of the stretching rate for U = 3 at times t = 0.5 (red), t = 1
(green) and t = 2 (blue) in (a); and at times t = 5 (red), t = 10 (green), t = 20 (blue) and t = 50 (black)
in (b). Solid lines correspond to the exact calculation ((4.17) and (4.18)) at t = 1/3 and to the normal law (4.21)
at late times with the mean Lyapunov exponent and the variance given analytically by (4.19) and (4.20).

to μ, 1 and 1/μ, it takes the simple form

λ̄th =
∫ μM

μ=1

∫ π/2

φ=0

∫ π/2

θ=0
P(μ)

log
[
μ + (1 − μ)(μ + sin2 φ) sin2 θ/μ

]
2/3

sin θ dθ dφ dμ

π/2
.

(4.19)
The variance of the distribution can also be calculated numerically as

V1/3 =
∫ μM

μ=1

∫ π/2

φ=0

∫ π/2

θ=0
P(μ)

log
[
μ + (1 − μ)(μ + sin2 φ) sin2 θ/μ

]2

4
sin θ dθ dφ dμ

π/2
− λ̄

2
th

9
(4.20)

at time t = 1/3. These theoretical results can then be used to infer the p.d.f. of stretching
rates at late times. After n periods, if the 3n stretching steps are independent random
processes, the p.d.f. of log ρ must be a normal law,

Pth(log ρ) = 1√
2πVth(t)

exp
[
−(log ρ − λ̄tht)2

2Vth(t)

]
, with Vth(t) = 3tV1/3, (4.21)

which is the same formula as in two dimensions. This prediction is plotted as a solid line in
figure 12(b). There is an excellent agreement with the numerical results for U = 0.3. The
position and width of the parabola are similar between the numerics and theory. However,
when the amplitude of the velocity is increased to U = 3, figure 13 shows that there is
a clear discrepancy by a factor two at late times although the prediction is correct for
t = 1/3. It indicates that the stretching steps are not independent random processes.

In order to analyse this discrepancy, the mean Lyapunov exponent is plotted in blue
as a function of U in figure 14. The numerical values (plotted as symbols) are in good
agreement with the theory (plotted as a black line) despite the saturation found for U
larger than 1.

Kraichnan’s prediction (3.21) for small velocity U can be applied for t between 0 and
1/3 and t′ varying between 0 and t. Averaging over the position xi, the Lyapunov exponent
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Figure 14. Mean Lyapunov exponent λ̄ = 〈log ρ〉/t (blue) and variance V = 〈(log ρ − λ̄t)2〉 (red) as a function
of the velocity of the sine flow U. Solid lines correspond to the theoretical predictions calculated at t = 0.5
using (4.19) and (4.20). Numerical results averaged between t = 20 and t = 50 are plotted as symbols. The
black line corresponds to Kraichnan’s prediction (4.22).

is thus equal to 2π2U2t/5. Averaging for 0 < t < 1/3 leads to a mean Lyapunov exponent

λ̄K = π2U2

15
, (4.22)

which is plotted as a black solid line in figure 6. There is an excellent agreement for small
velocity amplitudes.

For a large velocity amplitude, the stretching rate decays at the end of each step due to
the alignment of the diffuselets with the shear. The mean Lyapunov exponent increases
logarithmically with U as in two dimensions. The prediction (3.20) is plotted in figure 14
for �t = 1/3. There is a fair agreement, proving the logarithmic dependence on U.

The variance is also plotted in figure 14 in red as a function of U. There is a very good
agreement between the theory and numerics at small velocity. At large U, the variance is
smaller than in the theory. As in two dimensions, there is an exact relation between the
Lyapunov exponent and the variance at small U,

λ̄t = 3
2

V(t). (4.23)

This result is similar to the result by Kraichnan (1974) stating in his equation (2.33) that
the ratio λ̄t divided by half the variance V/2 is equal to the dimension of space (see
also Balkovsky & Fouxon 1999; Meunier & Villermaux 2010). However, this relation is
obtained here for the stretching factor of surface elements rather than the stretching factor
of line elements as in Kraichnan (1974).

Figure 14 indicates that this relation does not hold when U is larger than one: the
numerical variance tends to saturate at a value close to 1 while the theoretical variance
calculated at t = 1/3 increases logarithmically. It corresponds to the case when the
stretching is persistent on a longer time than the characteristic stretching time, i.e. that the
flow is no more delta correlated in time. In this regime all the diffuselets are aligned with
each other at the end of each step such that the variance of the p.d.f. strongly decreases.
This effect is probably cumulative which could explain the difference between the theory
and numerics.
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Figure 15. Probability distribution function of the scalar concentration for U = 0.3. The diffusivity is equal
to (a) D = 10−5 and (b) D = 10−10. Times are equal to t = 1/3 (red), t = 5 (green), t = 50 (blue) and t = 100
(back). Solid lines correspond to the analytical formula (3.26) based on the log normal law (3.19) with the
mean Lyapunov exponent and the variance given analytically by (4.19) and (4.20). Circles correspond to the
numerical result using the diffuselet method given by (2.60). In (a) dots correspond to the numerical result
obtained by DNS and the power law 1/c3.5 is plotted as a blue dashed line in the inset.

This result is in fact very similar to the 2-D case. For small U, the Lyapunov exponent
λ̄ and the variance divided by t both increase quadratically with U, and their ratio equals
d/2 (where d is the dimension of space). For large U, the Lyapunov exponent increases
logarithmically whereas the variance divided by t seems to saturate at a value close to
unity. The only difference is that the theory works fairly in two dimensions (within 50 %)
but strongly fails in three dimensions.

4.3. Probability distribution function of concentration
As in two dimensions, the p.d.f. of concentration can be calculated from the eigenvalues
ηi > η′

i > η′′
i of the tensor T i, which is obtained from the recurrence relations of

subsection 4.1. The p.d.f. of concentration is given by (2.60) for each diffuselet and
then averaged over all diffuselets. The resulting p.d.f. is plotted in figure 15 for different
diffusivities for small velocity U = 0.3 as symbols. At early times, the p.d.f.s are U-shaped
corresponding to the Gaussian profile of the diffuselets. At later times they become a
decreasing function of the concentration in a time laps that depends on the diffusivity.
As time evolves, the p.d.f. becomes narrower since the maximal concentrations of the
diffuselets decrease toward 0.

For the moderate diffusivity D = 10−6 (see figure 15a), the numerical p.d.f. using
diffuselets (plotted as open symbols) is compared with the result of the DNS (plotted as
dots). For the comparison to be meaningful, we have chosen in the DNS an initial Gaussian
sheet of thickness s0 = 0.01 located at y = π for x and z varying between π − 0.5 and
π + 0.5, and in the diffuselet method 104 diffuselets of thickness s0 = 0.01 and of area
δA0 = 10−4 are taken (for the total area of all diffuselets to be equal to 1 as in the DNS).
There is a fair agreement despite fluctuations of the DNS values around the diffuselet
values. This could be due to the particular case considered in the DNS by contrast to
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Figure 16. Probability distribution function of the scalar concentration for U = 3. The diffusivity is equal
to D = 10−6 (a) and D = 10−10 (b). Times are equal to t = 1/3 (red), t = 2 (green) and t = 5 (blue). Solid
lines correspond to the analytical formula (3.26) based on the log normal law (3.19) with the mean Lyapunov
exponent and the variance given analytically by (3.17) and (3.18). Circles correspond to the numerical result
using the diffuselet method given by (2.60). In (a) the power law 1/c3.5 is plotted as a blue dashed line in the
inset.

the ensemble-averaged (over initial injection) case considered in the diffuselet method.
The case of a larger velocity U = 3 is plotted in figure 16 for two different diffusivities.
The same trend is observed although they are obtained much faster than for U = 0.3.

As in two dimensions, it is possible to give an analytic prediction of the p.d.f. of
concentration since the p.d.f. of stretching factors is log normal. The same formula (3.26)
is thus valid in three dimensions with δ�0 replaced by δA0. Here, the Lyapunov exponent
λ̄ is known theoretically from (4.19) and the variance is equal to Vth(t) = 3tV1/3 with
V1/3 given by (4.20). This prediction is plotted in figures 15 and 16 as solid lines. It is
in excellent agreement with the diffuselet method for U = 0.3 at early times. However,
the agreement is only qualitative at late times. The p.d.f. is algebraic at late times with an
exponent −2 − λ̄t/(2V) that is equal to −2 − 3/2 = −3.5 in three dimensions, whereas it
was equal to −3 in two dimensions. As shown in the inset, this prediction is in excellent
agreement with the results of the diffuselet method.

Finally, the variance of concentration is plotted in figure 17. It is given by (3.28)
theoretically and compared with the diffuselet results. As in two dimensions, the variance
remains constant until it reaches the mixing time which scales as log(Us0/D). It then
decreases exponentially with a decay rate equal to λ̄− V/(2t). For small velocity U = 0.3,
the Lyapunov exponent and the variance are well predicted by Kraichnan through (4.22)
and (4.23), which leads to a very simple expression for the decay rate 2π2U2/45. This
prediction, plotted as a dashed line, is very close to our theoretical prediction, plotted as a
dash-dotted line for U = 0.3. However, the two predictions are very different for a larger
velocity U = 3. Kraichnan’s prediction indeed failed because the Lyapunov exponent
saturates at large U, as explained in the previous subsection. However, the theoretical
prediction (dash-dotted line) also fails since it underestimates the decay rate. This can
be explained since the variance obtained numerically by the diffuselet method is much
smaller than predicted theoretically at t = 1/3. It thus seems that the correct decay rate
should be equal to λ̄ at large U (since V/t is negligible). This final prediction is plotted
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Figure 17. Variance of the scalar concentration as a function of time for U = 0.3 (a) and U = 3 (b) and for
D = 10−6 (red) and D = 10−10 (blue). Circles correspond to the numerical result using diffuselet whereas dots
correspond to DNS simulations. Solid lines correspond to the analytical prediction (3.28) with λ̄ given by (4.19)
and Vth(t) = 3tV1/3 given by (4.20). The dash-dotted line corresponds to a decay rate λ̄th − Vth/t and the dotted
line to a decay rate λ̄th. The dashed line corresponds to a decay rate 2λ̄K/3 with λ̄K given by (4.22) valid for a
Kraichnan flow.

as a dotted line in figure 17. It should be noted that the variance calculated by the DNS at
D = 10−6 is in good agreement with the diffuselet method at early times.

5. Conclusion

The advection–diffusion of a small surface element, called diffuselet, has been solved
explicitly using the Ranz transform. As a first step, the stretching of material surfaces is
calculated from the integrated velocity gradient tensor Li in (2.20), in a way similar to
the calculation of material line stretching. The Lyapunov exponent of material surfaces
can be averaged over all diffuselets and all initial orientations of the surface, leading to a
simple formula (2.41) depending on the three eigenvalues μi, μ′

i and μ′′
i of the tensor L∗

i Li.
Since the stretching of these surfaces corresponds to the compression rate in the normal
direction, the Ranz transform can be applied in a second step. The maximal concentration
and the spatial extent of the diffuselet is obtained analytically as a function of a time tensor
T i easily derived from Li using (2.23). This solution is equal to the Green function given
by Balkovsky & Fouxon (1999) for a point source, but is easier to compute numerically.
These diffuselets can be averaged over all initial orientations to get the variance (2.53) and
the p.d.f. of concentration (2.60) from the three eigenvalues ηi, η′

i and η′′
i of the time tensor

T i.
This method is then applied to a 2-D and a 3-D sine flow, where the positions and the

tensors of the diffuselets can be derived analytically from one step to the other with no
temporal integration. The statistics of Lyapunov exponents and of concentration can thus
be calculated within a few seconds, i.e. orders of magnitude faster than with a DNS. The
p.d.f. of stretching factor ρ is log normal, in agreement with discrete random stretching
steps. The mean and variance of the p.d.f. of log ρ increase linearly in time, as suggested by
the central limit theorem. The Lyapunov exponent can thus be predicted analytically from
the exact calculation at the first step, given by (3.17) in two dimensions and (4.19) in three
dimensions. These predictions are in good agreement with the numerical values (given
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by the diffuselet method) for small and large velocity amplitudes. However, this theory
underestimates the Lyapunov exponent by approximately 30 % for a moderate velocity
amplitude because the diffuselets are not randomly oriented at the beginning of each step,
as assumed in the theory. The variance of log ρ is also predicted analytically from the
exact calculation at the first step, as given by (3.18) in two dimensions and (4.20) in three
dimensions. There is an excellent agreement with the numerical values for a small velocity
amplitude. This regime corresponds to the case of delta-correlated flows described by
Kraichnan (1974) for which the variance is equal to 2λ̄t/d, with d the dimension of space.
This prediction is in excellent agreement with our theoretical and numerical results for
small velocity (displacement) amplitude. However, our numerical results indicate that the
variance of log ρ is much smaller for a large velocity (displacement) amplitude. This is
because all the diffuselets tend to be aligned at the end of each step and so have the same
evolution, thus reducing the variance. From these statistics of stretching, the variance and
the p.d.f. of concentration can be obtained theoretically and numerically. They have been
compared successfully to the DNS results for moderate diffusivities. After a mixing time
scaling as the logarithm of the Péclet number, the variance decays exponentially with a
decay rate equal to λ̄− V/(2t), as shown in (3.29).

For a pure stagnation point flow, the Lyapunov exponent λ is exactly equal to the
stretching rate γ . Here, it is interesting to note that λ is smaller than γ because the material
lines/surfaces are not aligned with the stretching direction. As already noted by Girimaji
& Pope (1990) for a turbulent flow, this comes from (i) the presence of vorticity and (ii)
the fact that the time step �t is finite. When the deformation of each step is small, the ratio
λ/γ is proportional to γ�t, as predicted by Kraichnan (1974). This ratio then saturates for
large γ�t. In a turbulent flow γ�t is intermediate, leading to a ratio λ/γ ≈ 0.3 (Girimaji
& Pope 1990) with a mean stretching rate γ ≈ 0.4/τK , where τK is the Kolmogorov time.
Using this empirical measurement of the Lyapunov exponent in the Batchelor regime, it
is possible to give an analytical formula (3.28) for the variance of concentration and an
analytical formula (3.26) for the p.d.f. of concentration. In these formulae the Lyapunov
exponent λ̄ is empirically taken equal to 0.17/τK and the variance Vth of stretching rate
equal to 0.11t/τK , as given by Girimaji & Pope (1990). It should be noted that the ratio
λ̄t/Vth is very close to d/2 (with d the dimension of space), as predicted by Kraichnan
(1974) for a white noise-like flow.

To close, we need to make two remarks regarding the domain of strict applicability of
this method, and of its interest beyond. First, the above blunt predictions for the variance
and the p.d.f. are only valid for isolated diffuselets, i.e. for small initial blobs of scalar
remaining isolated in the course of their advection by the flow. This excludes, if one
wants to use these raw results, interaction between different diffuselts originating from
different parts of the flow, and self-interacting diffuselets (see our second point below).
Upon interaction, namely when two diffuselets, or parts of them, have been brought by the
flow sufficiently close to each other so that their diffusive boundaries overlap, we know that
the ingredients ruling the concentration field are no more diffusion and stretching, but that
the aggregation of the diffuselets directs the route of the mixture towards uniformity. In
that case, formulae (3.28) for the variance of scalar concentration and (3.26) for the p.d.f.
of scalar concentration are not valid anymore, and are replaced by others accounting for
the convolution of the interacting fields (Duplat, Jouary & Villermaux 2010b). However,
in this aggregated or ‘well-mixed’ regime the total scalar field can still be reconstructed
using the diffuselet concept, and it needs to be. In this respect, the concept of diffusion
line element developed by Wang & Peters (2006) may be useful to describe the spatially
smooth (with no voids) scalar field, made of an aggregation of diffuselets.
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Second, the diffuselet concept described here is only valid for a smooth flow at the scale
of the thickness of the diffuselet. In turbulence, this limits the applicability of the method
to scales below the Kolmogorov scale, in the Batchelor regime. For instance, the length of
a line element increases exponentially in time (like, say eBt/τK , see (1.2)) while the ‘box’ in
which it is embedded has a size increasing only algebraically in time (like εt3 typically, see
(1.1)). Unavoidably, this diffuselet will overlap with itself at some point, filling the space
in a compact fashion (Villermaux 2018), thus forcing self-overlaps and aggregation such as
in confined mixtures (Duplat & Villermaux 2008). This phenomenon occurs in turbulent
flows, but is not restricted to them, as it is a common feature of all random displacement
fields whose small scales have a shorter turnover scale than larger ones (so-called rough
flows), as in porous media (Le Borgne, Dentz & Villermaux 2015; Kree & Villermaux
2017) or dense suspensions (Turuban, Lhuissier & Metzger 2021) for instance. Again, the
knowledge of the diffuselet is necessary, but not sufficient in that case to reconstruct the
whole scalar field.

Finally, since this method is Lagrangian in its principle, it also suits heterogenous or
chaotic flows. The presence of stable islands (see, e.g. Giona et al. 2004), separatrix or
KAM torii is obviously taken into account by the trajectories of the diffuselets, because
these sample all the sub-area of a given flow. This method thus permits us to solve mixing
problems in flows with any degree of heterogeneity. However, the diffusion of scalar across
barriers of transport (or separatrix) is not taken into account by this method. Periodic
re-interpolations onto a regular grid as done in hybrid methods (Santoso et al. 2021; Leer
et al. 2022) could solve this problem.
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Appendix A. Spectral DNS for a sine flow

The diffusion–advection with (2.1) of the concentration field by the sine flow is solved
numerically using a spectral DNS code written on Matlab. The flow, given by (3.2) has a
spatial wavelength equal to 1 and the filament has an initial length equal to 1. However,
the filament is embedded in a 2-D space extending from 0 to 2π in each direction in order
to model a solitary filament. We checked that the filament does not leave this region in
the DNS. The concentration field c(x, y, t) is modelled using its 2-D Fourier transform
c̃(kx, ky).

In the absence of advection, diffusion is easily applied at each time step by multiplying
the concentration in the spectral domain c̃(kx, ky, t) by a factor exp[−Dk2�t], with k2 =
k2

x + k2
y to get the concentration at time t + �t. It should be noted that this solution is exact

and, thus, valid for any �t.
In the presence of advection, the advective term is usually calculated in real space,

N(x, y) = u(x, y)F−1
xy (ikxc̃) + v(x, y)F−1

xy (ikyc̃), (A1)

where F−1
xy corresponds to the 2-D inverse Fourier transform and i is

√−1. This term is
then transformed in Fourier space Ñ(kx, ky) and used to calculate c̃ at time t + dt using a
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temporal scheme. For example, we have used a third-order Adams–Bashforth scheme for
C̃(kx, ky) = c̃(kx, ky)eDk2t which leads to the formula

c̃(t + �t) = [c̃(t) − 23
12

Ñ(t) + 16
12

Ñ(t − �t)e−Dk2�t − 5
12

Ñ(t − 2�t)e−Dk22�t]e−Dk2�t.

(A2)

This classical numerical simulation is used in the following as a reference simulation for
moderate diffusivity D = 10−5 and a small velocity U = 0.3. However, this simulation
requires a very small time step �t since the Courant–Friedrichs–Lewy (CFL) condition
can be as small as 2 × 10−4 for N = 8192 (which is required for small diffusivity).
Furthermore, we found that the scheme becomes rapidly unstable when D decreases. We
have thus improved this classical method.

It is interesting to note that in the case of a sine flow, the velocity is invariant in the
streamwise direction. For example, v is independent of y during the first step. It is thus
convenient to work in a mixed space (x, ky). In the absence of diffusion, the advection
equation for ĉ(x, ky) is written as

∂ ĉ(x, ky, t)
∂t

= v(x)ikyĉ(x, ky, t), (A3)

which can be integrated during each time step as

ĉ(x, ky, t + �t) = ĉ(x, ky, t) exp(i kyv(x)�t). (A4)

The link between ĉ(x, ky) and c̃(kx, ky) is simply obtained by a one-dimensional Fourier
transform in the x direction Fx. Applying the diffusive damping to the final result leads to
the formula

c̃(kx, ky, t + �t) = Fx[ei kyv(x)F−1
x (c̃(kx, ky, t))]e−Dk2�t, (A5)

which is applied for a given ky and for all kx simultaneously in order to calculate the
discrete Fourier transform in kx. It should be noted that this solution is exact in the absence
of diffusion such that �t could be taken as large as the period of step 1. However, in the
presence of diffusion it is not equivalent to apply diffusion at the end or during the whole
period such that �t must be decreased, as we will show in the convergence study. In order
to accelerate the convergence, the scheme is made symmetric by taking the mean between
a diffusive operator at the end and at the beginning of each step,

c̃(kx, ky, t + �t) = +1
2
Fx[ei kyv(x)F−1

x
(
c̃(kx, ky, t)

)
]e−Dk2�t (A6)

+ 1
2
Fx[ei kyv(x)F−1

x (c̃(kx, ky, t)e−Dk2�t)]. (A7)

For the second step, similar arguments lead to the formula

c̃(kx, ky, t + �t) = +1
2
Fy[ei kxu( y)F−1

y
(
c̃(kx, ky, t)

)
]e−Dk2�t (A8)

+ 1
2
Fy[ei kxu( y)F−1

y (c̃(kx, ky, t)e−Dk2�t)]. (A9)

The concentration field obtained at t = 15 is plotted in figure 1 for N = 8192 Fourier
modes in each direction and a time step �t = 0.005. The convergence of this method has
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Figure 18. Convergence test as a function of the number of points N at time t = 10 for U = 0.3, D = 10−6 and
�t = 5 × 10−3. The relative r.m.s. error on the total scalar field is plotted in (a) whereas the relative error on the
standard deviation σ = 〈c2〉1/2 is plotted in (b). The reference scalar field c8192 corresponds to the calculation
with N = 8192.
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Figure 19. Convergence test as a function of the time step �t at time t = 10 for U = 0.3, D = 10−6 and
N = 8192. The relative r.m.s. error on the total scalar field is plotted in (a) whereas the relative error on the
standard deviation σ = 〈c2〉1/2 is plotted in (b). The reference scalar field c5e−3 corresponds to the calculation
with �t = 5 × 10−3. The dashed line corresponds to the CFL condition and the solid line to a fit of the data as
�t2.1.

been first quantified by decreasing the number of Fourier modes as shown in figure 18.
It is clear that the root-mean-square (r.m.s.) error and the error on the standard deviation
decrease exponentially as usually obtained for spectral codes. For N = 8192 modes, we
can expect an error of the order of 0.1 % on the relative r.m.s. error and an error of the
order of 0.02 % on the relative error of the standard deviation.

The convergence of the method has then been quantified by varying the time interval �t
as shown in figure 19. Both the r.m.s. error and the error on the standard deviation scale as
�t2.1. If the scheme had been taken asymmetric (by applying the diffusive operator only
at the end of each step), the error would scale as �t1.2. This method is thus of second
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Figure 20. Convergence test as a function of the time step �t at time t = 10 for U = 0.3, D = 10−5 and
N = 4096. The relative r.m.s. error on the total scalar field is plotted in (a) whereas the relative error on the
standard deviation σ = 〈c2〉1/2 is plotted in (b). The reference scalar field cref corresponds to a classic spectral
DNS calculation with �t = 10−4 (i.e. 50 times smaller than the CFL) and a third-order Adams–Bashforth
temporal scheme. The dashed line corresponds to the CFL condition and the solid line to a fit of the data
proportional to �t2.

order in its symmetric version. The most striking is that the r.m.s. error is of the order of
0.01 % for a time interval �t of the order of 0.1, i.e. 50 times larger than the CFL condition.
This error is extremely small and actually smaller than the error due to the finite number
of Fourier modes. Furthermore, this method is extremely stable because the advection is
simply a phase shift in the mixed space. All simulations were found to be stable even for a
time interval equal to 0.5.

Finally, the method has been compared with a classical DNS using a third-order
Adams–Bashforth time scheme (see above) with a time interval �t = 10−4, i.e. 50 times
less than the CFL. Since the classical scheme is less stable, the comparison has been done
for a smaller number of modes N = 4096 and a larger diffusion D = 10−5. As shown in
figure 20, the r.m.s. error and the error on the standard deviation decrease as �t2. This
indicates that there is no bias. For the r.m.s. error, the saturation at a relative error of 0.2 %
is due to the error on the classical DNS rather than the error on our improved method.
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