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1. Introduction. Let Pn^
a^(x) be the Jacobi polynomial of degree n, 

order (a, /3), a, ft > — 1, defined by 

(1 _ xy{1 + xfpn^\x) = -til"£-n [(1 _ xr+«(1 + x)^] 

[9, p. 67], and let i?K
(a'»O0 = Pn^{x)/Pn<-«<®(1). Then for n è m, 

n+m 

Sn
iaJ0(x)Rm

l"M(x) = £ g{k,n,m)R^\x), 
k=n—m 

where 

g(k, n, m) = h(k) J Rk
(a^(x)Rn

M)(x)Rm
(a^(x)(l - x)a(l + x)p dx, 

h(k) = ( J' [Rk
{a'Q(x)]\l - x)a(l + xfdxj \ 

Since RJa^(l) = 1, it follows that 

(1) X) g(k,ntm) = 1. 
* 

It is known that if a = /3 ^ —J (the ultraspherical case) or if a = /3 + 1, 
then g(k, n, m) ^ 0. See Hsu [7] and Hylleraas [8]. Hence, for a = /3 ^ — J 
or a = /3 + 1 we have: 

(2) Z \g(k,n,m)\ = 1. 
A; 

This gives a convolution structure to expansions in Jacobi polynomials and 
permits the RJa'® (x) to behave like characters on a compact group (see [3]). 
Consequently, many parts of harmonic analysis, which cannot be extended 
to orthogonal polynomials in general, can be extended to those Jacobi 
polynomials for which (2) holds. 

Askey [1] has extended (2) and conjectured that if a ^ /3 and a + fi + 1 ^ 0, 
then (2) holds. For a ^ 0 ^ —J, Askey and Wainger [4] have obtained 
a weaker result: 

(3) T,\g(k,n,m)\ = 0(l) 
k 

uniformly in n and m. Then from the convolution structure given by (3) 
they obtained a Wiener-Lévy theorem for Jacobi expansions and an analogue 
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of the strong Szegô limit theorem for Toeplitz matrices associated with 
Jacobi polynomials. For a = /3, (2) is one of the main tools used by Askey 
and Wainger [5] to obtain a transplantation theorem for ultraspherical 
coefficients, from which follows an analogue of the Marcinkiewicz multiplier 
theorem and an analogue of a theorem of Hardy and Littlewood concerning 
the Fourier coefficients of even functions, monotonically decreasing in (0, ir). 
Additional applications of (2) will be given elsewhere. In this paper we shall 
prove that the above-mentioned conjecture is correct. 

THEOREM. If a ^ 13 and a + (3 + 1 ^ 0, then g(k, n} m) ^ 0 for all k, n, 
and m, and thus (2) holds. 

An important step in our proof is the application of Descartes' rule of signs 
to part of a recurrence formula for d(k, n, m), a positive multiple of g(fe, n, m). 
In subsequent papersf we shall apply this method to related problems; for 
instance, to determine those (a, f3) satisfying a + f3 + 1 < 0 for which 
g(k, n, m) ^ 0. 

I wish to thank Professor R. Askey for bringing this problem to my attention. 

2. Proof of the Theorem. Using 
(«.«/^ V(n + a+ 1) 

r(« + i)r(« + i) 
and the recurrence formula [6, p. 169, (11)], 

2(» + l)(n + a + fi + 1)(2» + a + £)Pw + 1^>(x) 
= (2n + a + 0 + l)[(2n + a + p)(2n + a + 0 + 2)x + a2 - /32]Pn<« •*>(*) 

- 2(» + a)(n + [3)(2n + a + p + 2)Pn_i<«'»(*), 

we obtain the explicit formula 

(4) ^^Rn(a'"\x)R^\x) 

= 2(n + a + P + l)(n + a + 1) (aifl) 

(2n + a + p + 2)(2n + a + p + 1) *n+1 W 

. «~P Tl - (a + ff + 2)(a+ff) 1 (ttift 
t a + H 2 L (2* + a + P + 2) (2» + a + 0)J n W 

, M** + ff) (aij8) 

^ (2« + a + P + 1)(2» + a + 0) "-1 W ' 

Since a ^ ft > — 1, (4) implies that g(fe, w, 1) ^ 0. Hence we may assume 
that n ^ m ̂  2. We may also assume that a + (3 + 1 > 0, for then the case 
a + (3 + 1 = 0 follows by continuity. Observe that (4) implies that a ^ P 
is a necessary condition for g(fe, w, m) ^ 0. 

f^4dded w proof. See, for example, Linearization of the product of Jacobi polynomials. II 
(to appear in Can. J. Math.) . 
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In [8] Hylleraas let 

yn(z) = F(-n, n + p;q;z), p + 1 > q > 0, 

and derived the recurrence formula for ck = c(k> n, m), where c^ is defined by 

n+m 

ynym = 2 chyh1 n^m. 
k=n—m 

Since 

P.(B,fl>(*) = ( - ! ) " ( * X P)n-n, n + a+p+l;p+l;(x+ l ) /2 ) 

[6, p. 170, (16)] and 

P . ^ ( l ) = ( » + " ) , 

it follows that if we let p = a + 0 + 1, g = /? + 1, 2 = (x + l ) / 2 , and 
d* = (-l)**+»c», then 

i?re
(-«(x)i?m

(-«(x)= E ) * w * ; u ^ - v ) . 
\ k J\ n J\ m / 

Clearly gk = g(k, n, m) is a (strictly) positive multiple of dk, and thus it 
suffices to show that dk 2; 0. 

In order to obtain more suitable formulas we also let 

a = a + 0 + 1, b = a — j3, s = n — m, k = s + j . 

Note that a > 0, 6 ^ 0, and s ^ 0. From the recurrence formula given by 
Hylleraas [8, (4.13)] for ch we obtain: 

0" + 1)(2* + 2j + 1 + a + b)(2n + j + 1 + a) 
(5) (2s + 2j + 1 + a) 

(2m-j-l + a)(2s+j+l) 
X (2s + 2j + 2 + a) ds+}+1 

j + 1) (2» + j + 2g) (2m - j ) (2s + j + 1) 

(2s + 2j + 1 + a) 

j(2tt + j - 1 + 2a) (2m ~j+ l)(2s + j ) ! , 

(2s + 2j - 1 + a) J 

(j - 1 + a)(2s + 2j - 1 + a - b)(2n + j - 1 + 2a) 

X 

(2s + 2j-2 + a) 

(2m-j+ l)(2s+j- 1 + g) 
(2s + 2j-l + a) ^s+j-l-
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From [8, (3.3) and (3.8)] we obtain: 

fan + a - l V 2 w + a - l V » + m + {a - b - 1 ) M 
, _ \ n / V m / \ n + m / 

^ ~ / » + (a - b - l)/2\/m + (a-b - l ) / 2 \ /2 rc + 2m + a - l \ 
\ n / \ m / \ « + m / 

and 

Un—m 

hm + a - l\/n\fn + (a + b - 1 ) M 
\ m / \m/ \ m / 

(m + (a - b - l)/2\(2m\(2n + a\ 
\ m )\m / \ 2m / 

Since a > 0, a = (a + b - l ) / 2 > - 1 and /3 = (a - 6 - l ) / 2 > - 1 , it 
follows that dre+TO > 0 and dn-.m > 0. Setting j = 0 in (5) and using ds_i = 0, 
we see that 

, 4 M * + <*)(& + 2 +g)  
^ s + 1 (2s+l + a + b)(2n + 1 + a)(2m - 1 + a) s = "' 

For j ^ 1 we let J = j — 1 and write the coefficient of ds+j in (5) in the form 

(6) coef(ds+j) = -Qs + 2 J + 3 + a){2s +YT+r+^) ' 

where (recall that s = n — m) 

F (J) = ( J + 2 ) ( / + 2 ^ + 2 a + l ) ( 2 m - / - l ) ( / + 2 5 + 2 ) ( 2 J r + 2 5 + a + l ) 

- (J+l)(J+2n + 2a){2m - J)(J+2s+ 1)(2J + 2s + a + 3) 

= - 6 / 4 - 12[2s + a + 2 ] / 3 + 2[ -16s 2 - 4(4a + 9)s + 4w(w + a) 

- 3a2 - 19a - 17]J2 + 2[-8s3 - 4(3a + 8)s2 + 2{4m(n + a) - 2a2 

- 17a - 17}s + 4m(n + a)(a + 2) - 7a2 - 19a - 10] / 

+ 4[4(w + a + l ) (w - l)s2 + 2(2n + an + a2 + 3a + 2)(m - l)s 

+ (n + San + 3a + l ) (m - 1) + am + a2(3m - 2)]. 

Notice that the coefficients of J 4 and J3 are negative and the constant term 
is positive. Denoting the coefficient of Jk in F(J) by coef(/*) and recalling 
that n ^ m ^ 2, we obtain 

(7) coef (J) - 2s coef (J2) = 48s3 + 40 (a + 2)s2 + 4a(a + 2)s 

+ 2a(8m + ±mn - 19) + 2a2(4ra - 7) + 4(4ww - 5) > 0. 

If coef (J2) ^ 0, then it is obvious that F(J) has only one variation of sign. 
If coef (J2) > 0, then by (7), coef (/) > 0 and thus again F(J) has only one 
variation of sign. Consequently, by Descartes' rule, F(J) has exactly one 
positive root (temporarily considering J as a real variable), and hence there 
exists a positive integer J0 depending on n, m, and a such that F (J) ^ 0, 
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J = 0, 1,. . . , Jo - 1, and F (J) < 0, / = J0f J0 + 1, . . . . Therefore, by (6), 
coef (ds+j) è 0,7 = 1, 2 , . . . , J0, and coef (d8+J) ^ 0, j = J0 + 1, J 0 + 2, . . . . 
In (5) it is clear that coef(ds+i+i) > 0, j = 1,2,. . . , 2m — 1, and coef (ds+j-i) > 0, 
j = 1, 2, . . . , 2m. 

If Jo < 2m, then by successive applications of (5) we obtain ds+j+i ^ 0, 
j = 1, 2, . . . , Jo, and (transposing the term ds+j to the other side of the equal 
sign and using ds+2m+i = 0) ds+J-i ^ 0, j = 2m, 2m — 1, 2m — 2, . . . , J0 + 1. 
Similarly, if J0 ^ 2m, then ds+j+i ^ 0, j = 1, 2, . . . , 2m — 1. In either case, 

ds+J è 0, j = 2, 3, . . . , 2m - 1, 

which completes the proof. 
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