LINEARIZATION OF THE PRODUCT OF JACOBI POLYNOMIALS. I

GEORGE GASPER

1. Introduction. Let $P_{n}{ }^{(\alpha, \beta)}(x)$ be the Jacobi polynomial of degree n, order $(\alpha, \beta), \alpha, \beta>-1$, defined by

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[(1-x)^{n+\alpha}(1+x)^{n+\beta}\right]
$$

[9, p. 67], and let $R_{n}{ }^{(\alpha, \beta)}(x)=P_{n}{ }^{(\alpha, \beta)}(x) / P_{n}{ }^{(\alpha, \beta)}(1)$. Then for $n \geqq m$,

$$
R_{n}^{(\alpha, \beta)}(x) R_{m}{ }^{(\alpha, \beta)}(x)=\sum_{k=n-m}^{n+m} g(k, n, m) R_{k}^{(\alpha, \beta)}(x),
$$

where

$$
\begin{gathered}
g(k, n, m)=h(k) \int_{-1}^{1} R_{k}^{(\alpha, \beta)}(x) R_{n}^{(\alpha, \beta)}(x) R_{m}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} d x \\
h(k)=\left(\int_{-1}^{1}\left[R_{k}^{(\alpha, \beta)}(x)\right]^{2}(1-x)^{\alpha}(1+x)^{\beta} d x\right)^{-1}
\end{gathered}
$$

Since $R_{n}{ }^{(\alpha, \beta)}(1)=1$, it follows that

$$
\begin{equation*}
\sum_{k} g(k, n, m)=1 \tag{1}
\end{equation*}
$$

It is known that if $\alpha=\beta \geqq-\frac{1}{2}$ (the ultraspherical case) or if $\alpha=\beta+1$, then $g(k, n, m) \geqq 0$. See Hsü [7] and Hylleraas [8]. Hence, for $\alpha=\beta \geqq-\frac{1}{2}$ or $\alpha=\beta+1$ we have:

$$
\begin{equation*}
\sum_{k}|g(k, n, m)|=1 . \tag{2}
\end{equation*}
$$

This gives a convolution structure to expansions in Jacobi polynomials and permits the $R_{n}{ }^{(\alpha, \beta)}(x)$ to behave like characters on a compact group (see [3]). Consequently, many parts of harmonic analysis, which cannot be extended to orthogonal polynomials in general, can be extended to those Jacobi polynomials for which (2) holds.

Askey [1] has extended (2) and conjectured that if $\alpha \geqq \beta$ and $\alpha+\beta+1 \geqq 0$, then (2) holds. For $\alpha \geqq \beta \geqq-\frac{1}{2}$. Askey and Wainger [4] have obtained a weaker result:

$$
\begin{equation*}
\sum_{k}|g(k, n, m)|=O(1) \tag{3}
\end{equation*}
$$

uniformly in n and m. Then from the convolution structure given by (3) they obtained a Wiener-Lévy theorem for Jacobi expansions and an analogue

[^0]of the strong Szegö limit theorem for Toeplitz matrices associated with Jacobi polynomials. For $\alpha=\beta$, (2) is one of the main tools used by Askey and Wainger [5] to obtain a transplantation theorem for ultraspherical coefficients, from which follows an analogue of the Marcinkiewicz multiplier theorem and an analogue of a theorem of Hardy and Littlewood concerning the Fourier coefficients of even functions, monotonically decreasing in $(0, \pi)$. Additional applications of (2) will be given elsewhere. In this paper we shall prove that the above-mentioned conjecture is correct.

Theorem. If $\alpha \geqq \beta$ and $\alpha+\beta+1 \geqq 0$, then $g(k, n, m) \geqq 0$ for all k, n, and m, and thus (2) holds.

An important step in our proof is the application of Descartes' rule of signs to part of a recurrence formula for $d(k, n, m)$, a positive multiple of $g(k, n, m)$. In subsequent papers \dagger we shall apply this method to related problems; for instance, to determine those (α, β) satisfying $\alpha+\beta+1<0$ for which $g(k, n, m) \geqq 0$.

I wish to thank Professor R. Askey for bringing this problem to my attention.

2. Proof of the Theorem. Using

$$
P_{n}^{(\alpha, \beta)}(1)=\frac{\Gamma(n+\alpha+1)}{\Gamma(n+1) \Gamma(\alpha+1)}
$$

and the recurrence formula [6, p. 169, (11)],

$$
\begin{aligned}
& 2(n+1)(n+\alpha+\beta+1)(2 n+\alpha+\beta) P_{n+1}{ }^{(\alpha, \beta)}(x) \\
& =(2 n+\alpha+\beta+1)\left[(2 n+\alpha+\beta)(2 n+\alpha+\beta+2) x+\alpha^{2}-\beta^{2}\right] P_{n}^{(\alpha, \beta)}(x) \\
& \quad-2(n+\alpha)(n+\beta)(2 n+\alpha+\beta+2) P_{n-1}{ }^{(\alpha, \beta)}(x),
\end{aligned}
$$

we obtain the explicit formula

$$
\begin{align*}
& \frac{2(\alpha+1)}{\alpha+\beta+2} R_{n}^{(\alpha, \beta)}(x) R_{1}^{(\alpha, \beta)}(x) \tag{4}\\
&=\frac{2(n+\alpha+\beta+1)(n+\alpha+1)}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta+1)} R_{n+1}^{(\alpha, \beta)}(x) \\
&+\frac{\alpha-\beta}{\alpha+\beta+2}[\left.1-\frac{(\alpha+\beta+2)(\alpha+\beta)}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta)}\right] R_{n}^{(\alpha, \beta)}(x) \\
&+\frac{2 n(n+\beta)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta)} R_{n-1}^{(\alpha, \beta)}(x)
\end{align*}
$$

Since $\alpha \geqq \beta>-1$, (4) implies that $g(k, n, 1) \geqq 0$. Hence we may assume that $n \geqq m \geqq 2$. We may also assume that $\alpha+\beta+1>0$, for then the case $\alpha+\beta+1=0$ follows by continuity. Observe that (4) implies that $\alpha \geqq \beta$ is a necessary condition for $g(k, n, m) \geqq 0$.

[^1]In [8] Hylleraas let

$$
y_{n}(z)=F(-n, n+p ; q ; z), \quad p+1>q>0
$$

and derived the recurrence formula for $c_{k}=c(k, n, m)$, where c_{k} is defined by

$$
y_{n} y_{m}=\sum_{k=n-m}^{n+m} c_{k} y_{k}, \quad n \geqq m .
$$

Since

$$
P_{n}{ }^{(\alpha, \beta)}(x)=(-1)^{n}\binom{n+\beta}{n} F(-n, n+\alpha+\beta+1 ; \beta+1 ;(x+1) / 2)
$$

[6, p. 170, (16)] and

$$
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}
$$

it follows that if we let $p=\alpha+\beta+1, q=\beta+1, z=(x+1) / 2$, and $d_{k}=(-1)^{k+n+m} c_{k}$, then

$$
R_{n}^{(\alpha, \beta)}(x) R_{m}{ }^{(\alpha, \beta)}(x)=\sum_{k=n-m}^{n+m} \frac{\binom{k+\alpha}{k}\binom{n+\beta}{n}\binom{m+\beta}{m}}{\binom{k+\beta}{k}\binom{n+\alpha}{n}\binom{m+\alpha}{m}} d_{k} R_{k}{ }^{(\alpha, \beta)}(x)
$$

Clearly $g_{k}=g(k, n, m)$ is a (strictly) positive multiple of d_{k}, and thus it suffices to show that $d_{k} \geqq 0$.

In order to obtain more suitable formulas we also let

$$
a=\alpha+\beta+1, \quad b=\alpha-\beta, \quad s=n-m, \quad k=s+j .
$$

Note that $a>0, b \geqq 0$, and $s \geqq 0$. From the recurrence formula given by Hylleraas [8, (4.13)] for c_{k} we obtain:

$$
\begin{array}{r}
\frac{(j+1)(2 s+2 j+1+a+b)(2 n+j+1+a)}{(2 s+2 j+1+a)} \tag{5}\\
\times \frac{(2 m-j-1+a)(2 s+j+1)}{(2 s+2 j+2+a)} d_{s+j+1} \\
=b\left[\frac{(j+1)(2 n+j+2 a)(2 m-j)(2 s+j+1)}{(2 s+2 j+1+a)}\right. \\
\left.-\frac{j(2 n+j-1+2 a)(2 m-j+1)(2 s+j)}{(2 s+2 j-1+a)}\right] d_{s+j} \\
+\frac{(j-1+a)(2 s+2 j-1+a-b)(2 n+j-1+2 a)}{(2 s+2 j-2+a)} \\
\times \frac{(2 m-j+1)(2 s+j-1+a)}{(2 s+2 j-1+a)} d_{s+j-1}
\end{array}
$$

From [8, (3.3) and (3.8)] we obtain:

$$
d_{n+m}=\frac{\binom{2 n+a-1}{n}\binom{2 m+a-1}{m}\binom{n+m+(a-b-1) / 2}{n+m}}{\binom{n+(a-b-1) / 2}{n}\binom{m+(a-b-1) / 2}{m}\binom{2 n+2 m+a-1}{n+m}}
$$

and

$$
d_{n-m}=\frac{\binom{2 m+a-1}{m}\binom{n}{m}\binom{n+(a+b-1) / 2}{m}}{\binom{m+(a-b-1) / 2}{m}\binom{2 m}{m}\binom{2 n+a}{2 m}}
$$

Since $a>0, \alpha=(a+b-1) / 2>-1$ and $\beta=(a-b-1) / 2>-1$, it follows that $d_{n+m}>0$ and $d_{n-m}>0$. Setting $j=0$ in (5) and using $d_{s-1}=0$, we see that

$$
d_{s+1}=\frac{4 b m(n+a)(2 s+2+a)}{(2 s+1+a+b)(2 n+1+a)(2 m-1+a)} d_{s} \geqq 0 .
$$

For $j \geqq 1$ we let $J=j-1$ and write the coefficient of d_{s+j} in (5) in the form

$$
\begin{equation*}
\operatorname{coef}\left(d_{s+j}\right)=\frac{b F(J)}{(2 s+2 J+3+a)(2 s+2 J+1+a)}, \tag{6}
\end{equation*}
$$

where (recall that $s=n-m$)

$$
\begin{aligned}
F(J)= & (J+2)(J+2 n+2 a+1)(2 m-J-1)(J+2 s+2)(2 J+2 s+a+1) \\
& \quad-(J+1)(J+2 n+2 a)(2 m-J)(J+2 s+1)(2 J+2 s+a+3) \\
= & -6 J^{4}-12[2 s+a+2] J^{3}+2\left[-16 s^{2}-4(4 a+9) s+4 m(n+a)\right. \\
- & \left.3 a^{2}-19 a-17\right] J^{2}+2\left[-8 s^{3}-4(3 a+8) s^{2}+2\left\{4 m(n+a)-2 a^{2}\right.\right. \\
& \left.-17 a-17\} s+4 m(n+a)(a+2)-7 a^{2}-19 a-10\right] J \\
+ & 4\left[4(n+a+1)(m-1) s^{2}+2\left(2 n+a n+a^{2}+3 a+2\right)(m-1) s\right. \\
& \left.\quad+(n+3 a n+3 a+1)(m-1)+a m+a^{2}(3 m-2)\right] .
\end{aligned}
$$

Notice that the coefficients of J^{4} and J^{3} are negative and the constant term is positive. Denoting the coefficient of J^{k} in $F(J)$ by $\operatorname{coef}\left(J^{k}\right)$ and recalling that $n \geqq m \geqq 2$, we obtain

$$
\begin{align*}
& \operatorname{coef}(J)-2 s \operatorname{coef}\left(J^{2}\right)=48 s^{3}+40(a+2) s^{2}+4 a(a+2) s \tag{7}\\
& \quad+2 a(8 m+4 m n-19)+2 a^{2}(4 m-7)+4(4 m n-5)>0
\end{align*}
$$

If coef $\left(J^{2}\right) \leqq 0$, then it is obvious that $F(J)$ has only one variation of sign. If coef $\left(J^{2}\right)>0$, then by (7), coef $(J)>0$ and thus again $F(J)$ has only one variation of sign. Consequently, by Descartes' rule, $F(J)$ has exactly one positive root (temporarily considering J as a real variable), and hence there exists a positive integer J_{0} depending on n, m, and a such that $F(J) \geqq 0$,
$J=0,1, \ldots, J_{0}-1$, and $F(J)<0, J=J_{0}, J_{0}+1, \ldots$. Therefore, by (6), $\operatorname{coef}\left(d_{s+j}\right) \geqq 0, j=1,2, \ldots, J_{0}$, and $\operatorname{coef}\left(d_{s+j}\right) \leqq 0, j=J_{0}+1, J_{0}+2, \ldots$. In (5) it is clear that coef $\left(d_{s+j+1}\right)>0, j=1,2, \ldots, 2 m-1$, and $\operatorname{coef}\left(d_{s+j-1}\right)>0$, $j=1,2, \ldots, 2 m$.

If $J_{0}<2 m$, then by successive applications of (5) we obtain $d_{s+j+1} \geqq 0$, $j=1,2, \ldots, J_{0}$, and (transposing the term d_{s+j} to the other side of the equal sign and using $\left.d_{s+2 m+1}=0\right) d_{s+j-1} \geqq 0, j=2 m, 2 m-1,2 m-2, \ldots, J_{0}+1$. Similarly, if $J_{0} \geqq 2 m$, then $d_{s+j+1} \geqq 0, j=1,2, \ldots, 2 m-1$. In either case,

$$
d_{s+j} \geqq 0, \quad j=2,3, \ldots, 2 m-1
$$

which completes the proof.

References

1. R. Askey, Linearization of the product of orthogonal polynomials (to appear in a volume dedicated to S. Bochner, published by Princeton Univ. Press).
2. - A transplantation theorem for Jacobi coefficients, Pacific J. Math. 21 (1967), 393-404.
3. R. Askey and I. I. Hirschman, Jr., Weighted quadratic norms and ultraspherical polynomials. I, Trans. Amer. Math. Soc. 91 (1959), 294-313.
4. R. Askey and S. Wainger, A dual convolution structure for Jacobi polynomials, pp. 25-36 in Orthogonal expansions and their continuous analogues, Proc. Conf., Edwardsville, Illinois, 1967 (Southern Illinois Univ. Press, Carbondale, Illinois, 1968).
5. - A transplantation theorem for ultraspherical coefficients, Pacific J. Math. 16 (1966), 393-405.
6. A. Erdélyi, Higher transcendental functions, Vol. 2 (McGraw-Hill, New York, 1953).
7. H.-Y. Hsü, Certain integrals and infinite series involving ultraspherical polynomials and Bessel functions, Duke Math. J. 4 (1938), 374-383.
8. E. A. Hylleraas, Linearization of products of Jacobi polynomials, Math. Scand. 10 (1962), 189-200.
9. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23 (Amer. Math. Soc., Providence, R.I., 1967).

University of Toronto,
Toronto, Ontario

[^0]: Received November 1, 1968. This research was supported by the National Research Council of Canada under grant number A-4048.

[^1]: \dagger Added in proof. See, for example, Linearization of the product of Jacobi polynomials. II (to appear in Can. J. Math.).

