MATHEMATICAL NOTES

A Review of Elementary Mathematics and Science.

A Dissection of the extended form of Pythagoras' Theorem

$$
A B^{2}=B C^{2}+C A^{2}+2 B C \cdot C D .
$$

The squares on $A C, C D$ are placed centrally in the squares on $A B, B D$ respectively, in such a way that two sets of four equal quadrilaterals are obtained, identical except in orientation. This

can be done in two ways-the dotted lines indicate the second arrangement.

Let a, b, c denote sides of triangle $A B C ; h$ the projection of c on $a ; p, q, r, s$ the sides of the required quadrilateral.

Then

$$
\begin{array}{ll}
q+p=c, \quad s-r=b & \\
q-p=h-a, s+r=h & \\
\text { (from } A B^{2} \text {) } \\
\left.q-s \text { from } B D^{2}\right) .
\end{array}
$$

These relations determine p, q, r, s and provide simple constructions for drawing the quadrilateral. The second set (dotted lines) is got by changing the third equation into $p-q=h-a$, so that this set has the same sides as the previous set but in different order.

When $a=h$ we get $p=q$ and the two sets degenerate into one and give Perigal's dissection of Pythagoras' theorem (Mackay's Euclid, 1897, p. 93). When $h=b$ the quadrilaterals become triangles ($r=0$). When $h<b r$ becomes negative; the construction still holds if the sign convention is admitted.

The construction of the quadrilateral may also be approached trigonometrically. Taking θ for the angle between sides s, r we find

$$
b \cos \theta+h \sin \theta=c
$$

which determines two values of θ when $b^{2}+h^{2}>c^{2}$ and one when $b^{2}+h^{2}=c^{2}$. Circles could be drawn centrally in $A B^{2}, B D^{2}$ with radii $\frac{1}{2} b, \frac{1}{2}(h-a)$ and tangents to them making θ with $A B$, etc.

G. D. C. Stokes.

A new form for the sum of a trigonometric series.

1. The usual text book formula for $\Sigma \equiv \sum_{t=0}^{n-1}\left[\gamma^{t} \sin (\alpha+t \beta)\right]$ is
$\Sigma=\left[\sin \alpha-\gamma \sin (\alpha-\beta)-\gamma^{n} \sin (\alpha+n \beta)+\gamma^{n+1} \sin (\alpha+\overline{n-1} \beta)\right] / R_{0}$
where $\quad R_{0} \equiv 1-2 \gamma \cos \beta+\gamma^{2}=(1-\gamma \cos \beta)^{2}+\gamma^{2} \sin ^{2} \beta$.
Now $\sin \alpha-\gamma \sin (\alpha-\beta)=\sin \alpha(1-\gamma \cos \beta)+\cos \alpha(\gamma \sin \beta)$

$$
=\sqrt{R_{0}} \sin (\alpha+\theta)
$$

where

$$
\theta=\tan ^{-1}[\gamma \sin \beta /(1-\gamma \cos \beta)] .
$$

Similarly

$$
\begin{array}{r}
\gamma^{n} \sin (\alpha+n \beta)-\gamma^{n+1} \sin (\alpha+\overline{n-1} \beta) \\
\\
=\gamma^{n} \sqrt{R_{0}} \sin (\alpha+\theta+n \beta) .
\end{array}
$$

