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The stress in static granular media under gravity
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A fundamental open problem in the mechanics of granular media is the determination
of the stress in the static state. It is known that the static stress depends strongly on
how the grain assembly is created and the nature of confining boundaries. Non-trivial
spatial variations have been observed even in simple geometries, posing long-standing
challenges to continuum modelling. In this paper, we create gravity-deposited grain
packings computationally and devise a method to visualise the paths of load transmission,
which we call force lines. We show that the force lines reflect the flow during deposition,
thereby encoding preparation history. We then show that the force lines coincide with
ensemble averaged biased random walks in the particle contact network; this identification
yields a closure relation for the stress, which together with the static momentum balances
fully determines the stress field. The model makes accurate predictions for the stress in
piles and silos, even for unusual deposition methods, thereby showing promise for more
general scenarios.

Key words: dry granular material

1. Introduction

The principles of fluid hydrostatics are so well established and simple that determining
the pressure in a liquid-filled container of any shape is trivial. However, there are no
established principles governing the stress in static granular media under gravity, despite
their widespread occurrence in nature and industry. Classical methods determine the stress
by treating granular media as elastic, plastic or elastoplastic continua, and are used for
the design of embankments, retaining walls and other geomechanical structures (Savage
1998; Rao & Nott 2008; Salgado 2008). However, they generally do not take into account
the influence of preparation history, for which there is substantial experimental evidence
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(Jotaki & Moriyama 1979; Smid & Novosad 1981; Molenda, Horabik & Ross 1996; Vanel
et al. 1999; Geng et al. 2001b). Alternative closures that aim to account for preparation
history have been proposed (Wittmer et al. 1996; Cates et al. 1998), motivated by the
curious observation that the normal stress at the base of a grain pile exhibits a local
minimum, or dip, under the apex (Jotaki & Moriyama 1979; Smid & Novosad 1981).
Subsequent experiments demonstrated that the stress dip is present only when the pile
is formed by pouring grains through a narrow source, such as a funnel; if it is formed by
‘raining’ grains from an extended source, such as a sieve, no dip is observed (Molenda
et al. 1996; Vanel et al. 1999; Geng et al. 2001b).

Wittmer et al. (1996) proposed a model that predicts the stress dip in a pile, expanding on
the intuitive idea of Edwards & Mounfield (1996) that load is transmitted through ‘arches’.
Their model rests on two key assumptions: the orientations of the principal stresses are
frozen at the time of burial of the grains, and the free surface of the growing pile is a slip
plane. These assumptions lead to the orientation of the principal stresses being constant
throughout the pile. This ‘fixed principal axis’ model (FPA) was critiqued by Savage (1997,
1998), who argued that there is no physical basis for the assumptions. Savage (1997, 1998)
also traced the history of studies on the problem and cited several earlier analyses that
predicted the stress dip by treating the granular medium as an elastic solid and allowing
the base to sag, and as an elastoplastic or rigid-plastic medium. Savage’s criticisms were
countered in ensuing papers by Cates and coworkers; we do not elaborate on the opposing
arguments, but refer the reader to the articles of Savage (1998) and Cates et al. (1998),
which serve as reviews of their respective viewpoints.

We find valid arguments in both viewpoints. We concur with Savage (1998) that the
assumptions leading to the FPA model and its ad hoc extension, the ‘oriented stress
linearity’ (OSL) model (Cates et al. 1998), lack clear physical basis. The OSL model
is claimed to represent general deposition protocols in any geometry, but there is no
connection between the two model parameters to the physical deposition process. Equally,
we agree with Cates et al. (1998) that Savage’s (1998) candidate explanations for the
stress are not generally applicable. While basal sag may be present in some situations,
the experiments of Vanel et al. (1999) show a dip for a very stiff base. Second, almost all
elastoplastic treatments of piles take the stress-free reference state to be a pile of the same
shape (for example, see Didwania, Cantelaube & Goddard 2000), which is remote from
how a pile is formed in practice. A notable exception is the work of Zheng & Yu (2014),
where an elastoplastic solution was obtained numerically for a pile created by pouring
material from a hopper, where it is assumed to be in a stress-free state. While this is a
substantial improvement, it is still not representative of a pile created by grains in free fall,
for which an elastoplastic description is clearly not appropriate.

Despite their divergent views, Savage (1998) and Cates et al. (1998) agree on two
points: they both envisage the fabric of the grain assembly being anisotropic and spatially
inhomogeneous. We provide firm evidence in this paper that this is indeed the case. They
also state that piles are formed by grains being captured as they avalanche down the free
surface – indeed, this is the picture evoked in most studies. We present clear evidence that
this is not the case and demonstrate the presence of a lateral outward flow deep within
the granular medium. We discuss these points further in § 3, in light of the results of this
paper.

The different closure relations yield partial differential equations (PDEs) for the stress
of different character. The plasticity and FPA/OSL closures yield hyperbolic PDEs (Cates
et al. 1998; Savage 1998), while the constitutive relation of elasticity yields elliptic PDEs
(Reydellet & Clément 2001). The continuum extension of the ‘q model’ (Liu et al. 1995),
a toy model in which each grain has two contacts below and transmits load to them in
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random fractions, yields a diffusion equation for the vertical normal stress σzz, a parabolic
PDE. Several experimental investigations attempted to determine the nature of stress
propagation by determining the response to a point load applied at the top of the grain
assembly. Their conclusions vary from diffusive (parabolic) (Da Silva & Rajchenbach
2000), elastic (elliptic) (Geng et al. 2001a; Reydellet & Clément 2001) and convective
(hyperbolic) propagation (Geng et al. 2003) of the stress. The disparate findings are
most likely to be due to the widely different ways in which the grains were assembled.
Significantly, none of the experiments find the hyperbolic response predicted by the FPA
and OSL models, except for perfectly ordered arrays (which was not their subject of
interest).

A much more longstanding observation, dating back to the mid-19th century, is the
saturation of the wall stress with depth in a silo (Hagen 1852). This problem was analysed
by Janssen (1895) with several simplifying assumptions, such as the normal stress σzz being
uniform in the cross-section of the silo and friction being fully mobilised at the walls, who
predicted exponential saturation of the stress with depth and validated it with experimental
measurements. The assumption of uniform stress in the cross-section can be dropped if the
problem is posed in terms of cross-section averaged σzz and perimeter-averaged wall shear
stress (Sundaram & Cowin 1979; Rao & Nott 2008, pp. 211–212), which again yields
exponential saturation of stress with depth. However, the detailed variation of the stress
within the silo remains unknown and the assumption of friction being fully mobilised
remains untested. While solutions have been obtained by treating the medium to be elastic
or at incipient plastic yield, they suffer from the same drawbacks mentioned above for
piles.

It is apparent from the discussion above that the nature of the stress in static granular
media is still an open question. In this paper, we study the problem computationally by
generating static disordered grain packs deposited under gravity. We first devise a method
to understand the transmission of load by defining the force lines, which represent the
coarse-grained direction of the grain contact forces. The force lines show a pronounced
directional bias in the contact forces towards the lateral confining walls or free surfaces
when the grains are deposited from a narrow funnel or by uniform raining. We show
that the bias arises from a lateral outward flow deep inside the grain assembly during
deposition. We then hypothesise that the paths of load transmission are biased random
walks, and validate it by showing that the random walks coincide with the force lines
when averaged over an ensemble of realisations. This identification leads to a closure
relation for the static stress, whose predictions agree very well with the stress obtained
from the simulations. The closure is further validated by comparing its predictions with
simulations of a silo filled by an unusual deposition method.

2. Simulation method and results

We generate disordered grain packings using the discrete element method (DEM) (Cundall
& Strack 1979), in which the grain interaction force is a combination of elastic repulsion,
viscous damping and Coulomb friction, and grain positions are tracked in time by solving
Newton’s laws. The simulations are conducted using the LAMMPS package (Thompson
et al. 2022). The interaction parameters are chosen to simulate hard particles such as sand
and glass beads, as in earlier studies (Silbert et al. 2001; Krishnaraj & Nott 2016). The
particles are spheres of mean diameter dp with a uniform size distribution in the range
0.8–1.2dp. They are either poured from a funnel or rained uniformly under gravity to create
conical piles (figure 1a) and fill rectangular silos (figure 1b). We also fill a cylindrical
silo by an unusual peripheral deposition method (figure 5a). Details of the deposition
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Figure 1. (a,b) Schematic of the conical pile and rectangular silo. The radius of the pile is R ≈ 90dp and the
angle of repose φ is 19.9◦ and 17.3◦ for deposition by a funnel and by raining, respectively. The rectangular silo
is filled by raining, and its dimensions are W = 20dp, H = 260dp; it is periodic in the out of plane direction
with period 25dp. (c) Forces transmitted by particle a (blue) to the particles it is in contact with below (grey).
The resultant of these contact forces is fa.

procedure are provided in Appendix A. The base of the pile is a ‘bumpy’ monolayer,
formed by rigidly adhering particles of diameter dp in a close-packed triangular array
(figure 1a); silos of bumpy-frictional and smooth-frictionless side walls are studied. The
dimensions of the piles and silos are given in the caption of figure 1.

2.1. Force lines
To understand and visualise the downward propagation of force in the contact network,
we determine a unit vector field f̂ representing the coarse-grained direction of the grain
contact forces in the following manner. For every particle a, we determine the resultant of
its contact forces with all the particles b below, fa = ∑

b fab (see figure 1c), and thence
the unit vector f̂a ≡ fa/| fa|. A smoothly varying unit vector field f̂ is then obtained by
averaging f̂a over a grid of small elemental volumes (see figure 1a) – toroids for the conical
piles and cylindrical silos, and cuboids for the rectangular silos, both of cross-section
2dp × 2dp – and over many realisations (30 for the conical piles and over 100 for the
silos), and by linear interpolation from the grid to any point x in the granular medium.
We then draw lines whose tangent at x is f̂ (x), like streamlines of the velocity field in
a fluid, and refer to them as force lines. In figure 2, the force lines are determined from
the normal contact forces. Figure 9 in Appendix C shows that the force lines are nearly
unchanged when they are determined from the total contact forces. This suggests that the
tangential forces are important in determining the contact network, but do not contribute
significantly to load transmission.

For piles deposited from a funnel (figure 2a) and by raining (figure 2b), the force lines
are vertical at the symmetry axis, but incline away from the vertical with increasing radial
distance r. The slope asymptotes to a constant at smaller r for a funnel-deposited pile than
for a rained pile. Thus, the difference between the two types of deposition is primarily in
the core of the pile. The inclination of the force lines results in lateral outward transfer
of the weight of the material, which explains the lowering of the stress around the apex
of the pile. This results in a dip in the normal stress at the base below the apex for a
funnel-deposited pile, reported in numerous studies (Jotaki & Moriyama 1979; Smid &
Novosad 1981; Vanel et al. 1999; Geng et al. 2001b; Zuriguel, Mullin & Rotter 2007; Ai
et al. 2011), and flattening of the stress profile below the apex for piles deposited by raining
(Vanel et al. 1999; Geng et al. 2001b; Ai et al. 2011). In silos, the nature of the walls has
a strong influence on the orientation of the force lines. The results for bumpy frictional
walls and smooth frictionless walls are shown in figure 2(c,d). For frictional walls, the
force lines display a marked curvature towards the walls – thus the influence of the walls
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Figure 2. Force lines (solid grey) and random walk lines (dashed blue) in grain piles and silos. The dashed
black line in each plot is the free surface. (a,b) Piles constructed by deposition from a funnel and by raining.
(c,d) Silos with bumpy frictional walls and flat frictionless walls, respectively, both filled by raining.

is felt deep inside the silo. When the walls are frictionless, the force lines incline slightly
(figure 2d) from the vertical with distance from the symmetry axis. The slope of the force
lines at the walls is indicative of traction on the walls: the more they deviate from the
vertical, the greater is the traction.

What determines the orientation of the force lines? To answer this question, we consider
the flow during the process of deposition, shown in the supplementary movies available
at https://doi.org/10.1017/jfm.2024.6; representative snapshots of some of the movies are
shown in figures 7 and 8 in Appendix B. Supplementary movies 1 and 2 show streamlines
of the (volume and ensemble averaged) velocity field in piles. They reveal a strong
horizontal outward component in the flow that spans the entire pile for deposition from
a funnel, but is absent in the core for deposition by raining. The horizontal flow is contrary
to the assumption of most previous studies that a pile is formed by flow and accretion along
the sloping surface (Wittmer et al. 1996; Vanel et al. 1999; Rajchenbach 2001; Atman et al.
2005). The background colour in the movies represents the magnitude of the displacement
s in a short time interval; its spatial variation shows that the material undergoes shear
in the vertical direction. For simple shear, the probability of finding a contact below is
maximum along the compression axis (i.e. at an angle of π/4 from the z axis in the
anti-clockwise direction, see figure 1). Though the flow in the pile is more complex,
the horizontal flow and the ensuing shear results in asymmetry of contacts and contact
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forces about the vertical, which is frozen on cessation of flow (figure 2a,b). The evolution
of the force lines, shown in supplementary movies 3 and 4, can now be understood: in
a funnel-deposited pile, the outward orientation of the force lines starts from the early
stages of pile formation, correlating well with the strong outward horizontal flow at all
time. When deposition is by raining, the force lines are vertical in the core of the pile and
begin to slope outwards in the regions of horizontal flow at the periphery of the growing
pile. The flow in silos depends strongly on the nature of the side walls. For frictional walls,
there is a clear outward flow towards the walls near the moving free surface (supplementary
movie 5), leading to asymmetry in contacts and force transmission (supplementary movie
6). However, when the walls are smooth and frictionless, we see intermittent vertical creep
along the entire height of the column (supplementary movie 7) for a substantial period
after deposition. The time evolution of the flow and contact lines clearly suggest that the
vertical creep determines the force network in the eventual static state (supplementary
movie 8).

2.2. Load transmission through biased random walks
The insight gained from the force lines in figure 2 and the supplementary movies provides
an understanding of the mechanism of stress transmission. Starting from any particle and
moving downwards along contacts, the force paths are random walks if at each step, all
contacts below have equal probability. The presence of a systematic contact and force
asymmetry results in a biased random walk. This hypothesis can be readily tested using
the simulation data: we assume that the weight of a particle is transmitted equally by
all random walks starting from it, and incorporate the bias by weighting the probability
of each step by the magnitude of the contact force. Thus, a random walk proceeds from
particles i to j below with transition probability pij = | fij|/

∑
k | fik|, where the sum is over

contacts with particles k below. The fraction of the weight wa of particle a transmitted
through the contact ij is then the number of random walks Ra

ij starting from a and passing
through ij divided by the total number of random walks Ra starting from a. The random
walk estimate of the fraction of the total weight transmitted through contact ij then is
Fij = ∑

a Ra
ijwa/Ra, the sum being over all particles a above the contact ij. From Fij, we

define a force-weighted unit vector for particle i as f rw
i = ∑

j nijFij/
∑

j Fij, where nij is
the unit normal at the ij contact. We then determine the volume and ensemble averaged
unit vector field f rw(x) and construct its ‘streamlines’ in the same manner as the force
lines in § 2.1 – we refer to them as random walk lines.

We see in figure 2(a–d) that the random walk lines are indistinguishable from the force
lines. Another way to verify this correspondence is by determining the vertical traction
on the boundaries from the random walk estimates of the particle-wall contact forces
(using the relation for Fij above, but with j being a wall particle). Here again we see close
agreement between the random walk estimate and the actual stress obtained from the DEM
simulations in figure 4(a–c). We have thus established that the paths of force transmission
are essentially ensemble averaged biased random walks.

2.3. Closure relation for the stress
We now show that in the continuum limit, the picture of force transmission by biased
random walks leads to a closure relation for the stress. Consider particle i with coordinates
(x⊥i, zi), where x⊥i is the vector of coordinates along axes perpendicular to gravity. Load is
transmitted to it via random walks from particles j above that are in contact with i. Particle
j transmits load to its contacts below with transition probability pjk (such that

∑
k pjk = 1).
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The load on i then is

L(x⊥i, zi) =
∑

j

[L(x⊥j, zj) + mjg]pji(x⊥j, zj), (2.1)

where mj is the mass of j and g the gravitational acceleration. We now average (2.1) over
an ensemble of realisations and a small elemental volume �A⊥�z to obtain the smoothed
form

L(x⊥, z) =
∫

L(x⊥ − �x⊥, z − �z)p(x⊥ − �x⊥, z − �z, �x⊥, �z) d�x⊥

+ ρg�A⊥�z, (2.2)

where p(x⊥, z, �x⊥, �z) is the transition probability for the load to be transmitted from
x⊥ to x⊥ + �x⊥ in the horizontal plane during a small vertical displacement �z (satisfying
the normality constraint

∫
p(x⊥, z, �x⊥, �z) d�x⊥ = 1), the integral being over all �x⊥.

Equation (2.2) is the Chapman–Kolmogorov equation for a Markov process (McQuarrie
1976, § 20-2), extended to include a source term (the body force); L and p are now
smoothly varying functions of x⊥ and z. Expanding the integrand in Taylor’s series about
(x⊥, z) and retaining only terms up to O(|�x⊥|2) and O(�z), we get

L̄ =
∫

[1 − �x⊥ · ∇ + 1
2�x⊥�x⊥ : ∇⊥∇⊥ − �z∂z](L̄p) d�x⊥ + ρg�z, (2.3)

where L̄ ≡ L/�A⊥ and ∇⊥ is the gradient operator in x⊥. Rearranging (2.3), we get

∂L̄
∂z

= −∇⊥ · (uL̄) + ∇⊥ · (D · ∇⊥L̄) + ρg. (2.4)

Here u = 〈�x⊥〉/�z is the drift velocity and D = 〈�x′
⊥�x′

⊥〉/(2�z) is the diffusivity
tensor, where we have used the notation 〈ξ〉 ≡ ∫

ξp d�x⊥ for the mean of ξ and ξ ′ ≡
ξ − 〈ξ〉 for its deviation from the mean. Assuming D to be isotropic (which we verify in
the simulations), D = D δ, where δ is the identity tensor. Equation (2.4) has the form of an
unsteady advection-diffusion equation, with z being the time-like variable. Recognising
that L̄ is the vertical normal stress σzz and comparing (2.4) with the z component of the
static momentum balance ∂σzz/∂z + ∂σxz/∂x + ∂σyz/∂y = ρg in Cartesian coordinates
(x, y, z), we get

σxz = uxσzz − ∂

∂x
(Dσzz), σyz = uyσzz − ∂

∂y
(Dσzz). (2.5a,b)

Equation (2.5a) is a full closure for the momentum balances in 2-D (i.e. in the x–z plane).
For 3-D problems, in addition to (2.5a,b), a closure is required to determine σxy. We
propose σxy = 0, based on the expectation that shear stress on a vertical plane will only be
in the direction of gravity, as the flow during deposition is expected to be along vertical
planes; this will not be the case when there is a swirl flow during deposition. The PDE
governing σzz is parabolic, in contrast to plasticity and the FPA/OSL closures which yield
hyperbolic PDEs, and elasticity-based closures which yield elliptic PDEs (see § 1). For
2-D problems, (2.5a) in the absence of diffusion is a linear algebraic relation between the
shear and normal stresses. The FPA and OSL models (Wittmer et al. 1996; Cates et al.
1998) also proposed an algebraic closure relation of the form σxx = η1σzz + η2σxz, but it
does not reduce to (2.5a) for any finite values of the constants η1 and η2. Moreover, one
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cannot discount diffusion in a disordered grain assembly. Most importantly, the drift
velocity is not constant but spatially varying, implying that the orientations of the principal
stresses must also be spatially varying, whereas the FPA and OSL models assume constant
orientation. A convection-diffusion equation for σzz was envisaged by Rajchenbach (2001)
by extending the toy q model to incorporate an assumed directional bias, but they did not
identify the lateral dispersion of load as the shear stress. We have arrived at (2.5a,b) by
showing that the paths of load transmission are ensemble averaged biased random walks
in the contact network, thereby giving it a firm physical basis.

2.4. Application to piles and silos
We now apply (2.5a,b) to a conical pile and a rectangular silo; for the former, the
momentum balances and the closure relation (2.5a,b) are posed in cylindrical coordinates
(r, θ, z). The boundary conditions for the axisymmetric pile are the symmetry condition
σrz = 0 at the axis, and zero normal and shear stress at the free surface. For the rectangular
silo too, the symmetry condition σxz = 0 holds at x = 0, but there is no obvious choice
for the boundary condition at the walls. We impose the condition that the ratio of the
contributions to σxz from diffusion and advection is a constant α,

−D∂σzz/∂x
uxσzz

= α, (2.6)

which is equivalent to the friction boundary condition σxz/σzz = Kμw used in the Janssen
solution (Janssen 1895; Rao & Nott 2008) if α = Kμw/ux − 1. The constant α must be
−1 for frictionless walls (σxz = 0); for bumpy frictional walls, it was taken to be 0 (i.e. the
diffusive contribution to σxz is negligible).

For each problem, the diffusivity and drift velocity were determined by conducting
random walks in the respective force networks, the details of which are given in
Appendix E. The diffusivity is found to be constant in all the cases at D = 1.41dp. The
spatial variations of the drift velocity for all the problems are shown in figure 3, and the
fitted functional forms are

ur = 0.28(r/R)0.29, ur = 0.32(r/Rz) + 0.3(r/Rz)
2 − 0.44(r/Rz)

3 (2.7a,b)

for the funnel-deposited and rained piles, respectively, and

ux = 0.17 sinh(0.135x/dp), ux = 1.3 × 10−3x/dp (2.8a,b)

for silos with bumpy frictional walls and smooth frictionless walls, respectively. In (2.7b),
Rz is the radius of the pile at depth z.

The stress field is obtained by solving the momentum balances with the closure (2.5a,b),
using these fitted forms of the drift velocity and the above-mentioned boundary conditions.
Figure 4(a–c) compare the model predictions with the data from DEM simulations – it is
evident that there is very good agreement. As discussed in § 2.2, the close agreement
between the random walk estimates of the vertical traction on the base of the pile and side
walls of the silo (σzz and σxz, respectively) with the simulation data is another validation
of the model.

To further demonstrate the validity of the model, we apply it to a silo filled by an unusual
peripheral deposition method (figure 5a), wherein grains flow into a cylindrical silo from
an annular inlet adjacent to the silo wall. The flow of grains from the periphery causes the
force lines to slope towards the centre and an inward slope of the free surface (figure 5b).
The slope of the force lines implies that the weight of the material is transferred inward
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Figure 3. Profiles of the drift velocity in (a) piles deposited by a funnel and by raining, and (b) silos with
frictional and frictionless walls filled by raining. In funnel-deposited piles, ur is largely independent of z, and
hence r̂ = r/R. In piles deposited by raining, ur is a function of r and z, but the profiles for different z collapse
to a single curve if r is scaled by the radius of the pile Rz at depth z, and hence r̂ = r/Rz. More details are given
in Appendix E.
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Figure 4. (a,b) Profiles of the normal and shear stresses at the base of grain piles deposited (a) by a funnel
and (b) by raining. (c) Shear stress σxz on a side wall in a rectangular silo with bumpy frictional walls and the
normal stress σzz (averaged over the cross-section) in a silo with smooth frictionless walls. In panels (a–c), the
grey squares are data from DEM simulations, the blue circles are estimates from the biased random walks, and
the black solid and dashed lines are the predictions of the advection-diffusion model. (d) Profiles of the drift
velocity ux(x) for 2-D silos (see Appendix A) with bumpy frictional walls of different width W.
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Figure 5. (a) Schematic of peripheral filling of a cylindrical silo. The granular material discharges into the
silo as the inner cylinder is retracted upwards. (b) Force lines for the peripherally filled silo. The dashed line is
the free surface. (c) Radial variation of the normal and shear stresses at the base.

towards the centre. This is indeed seen in figure 5(c), where σzz on the base is maximum
at the centre, despite the height of the free surface there being minimum. The predicted
stress profile at the base, using the fit

ur = −0.1 + 6.6 × 10−4 exp(0.148r/dp) (2.9)

for the drift velocity (see Appendix E), is in close agreement with the simulation data
(figure 5c).

A pertinent question is how the model may be used in a geometry for which the
functional form of u is unknown. An answer is suggested by figure 4(d), where it is seen
that the profiles of ux in silos of a wide range of the silo width W collapse to a single curve
when each is scaled by the value uw

x at the walls (also see Appendix D). Thus, for a given
silo width W, uw

x is the sole fitting parameter. Moreover, D and ux can also be measured
by experiments, as discussed in § 3.

Despite the potential difficulty in determining the drift velocity, we believe we have
made a useful advance by identifying the correct mathematical form of the closure for
the static stress. Moreover, the closure implies non-trivial aspects of the spatial variation
of stress. This point is illustrated by considering two simple stress fields that satisfy
momentum balance, but are incompatible with (2.5a,b).

Lithostatic stress. For a granular bed that is unbounded in the lateral direction, the
lithostatic stress field is

σzz = ρgz + h(x), σxz = 0, (2.10a,b)

where h(x) is the normal traction on the boundary z = 0 due to a load placed on the bed. It
signifies that the overburden at each point is transmitted vertically downwards. However,
substituting (2.10a,b) in (2.5a) yields ux = Dh′(x)/(z + h(x)), which implies that the σzz is
transferred laterally from regions of low overburden to high overburden. Thus, (2.10a,b) is
incompatible with (2.5a) unless D vanishes identically; however, D can only vanish for a
perfectly ordered assembly. For a disordered grain assembly, diffusion of σzz from regions
of high to low overburden is an important feature of our model and an intuitively desirable
one.

Stress in a silo. For a grain column enclosed by frictional vertical walls (figure 1b),
the following stress field satisfies momentum balance and obeys the well-known Janssen
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saturation, mentioned in § 1:

σzz = ρgα−1(1 − e−αz), σxz = ρgx(1 − e−αz), (2.11a,b)

where α = Kμw/W, K is the ratio σxx/σzz at the lateral walls (x = 0, W) and μw is the wall
friction coefficient. Substituting this stress field in (2.5a) yields ux = αx, implying that
σzz should increase along the curve dx/dz = αx. This contradicts the assumed σzz profile
(2.11a), which varies only along z. Note that in this case, there is no lateral diffusion of
σzz as it is independent of x. Our model (2.5a,b) yields a stress field that obeys Janssen
saturation, but its variation with x is more complex.

The above examples convey the key non-trivial features of our closure: the first is that
load is in general transmitted laterally due to advection and diffusion. The second feature
is that when there is a lateral variation of σzz, the shear stress σxz is non-zero except in
special circumstances where advection and diffusion exactly cancel each other.

3. Summary and discussion

This paper makes two main contributions. The first is the definition of the force lines in
a static granular assembly under gravity, and the demonstration that they are an insightful
representation of load transmission and encode deposition history. The second is the
hypothesis that paths of load transmission are biased random walks, and its validation
by showing that the ensemble averaged random walks coincide with the force lines. This
recognition leads to an advection-diffusion equation for the vertical normal stress and,
thereby, a closure relation for the static stress. Diffusion arises from disorder in the contact
network and advection from the directional bias of the contact force due to shear generated
by the horizontal flow during deposition. The closure relation is simple and applicable
to all geometries and types of gravity deposition. Its predictions are in good agreement
with data from DEM simulations for piles and silos constructed by different deposition
methods.

An important aspect of our findings is that the drift velocity u is spatially varying
and sensitive to the deposition method and the nature of the boundaries. For the model
to be of practical utility, methods must be found to determine u(x⊥, z). In this paper,
we have obtained it from the force network derived from our DEM simulations as a
proof of concept, but there are other ways of obtaining it. We envisage experimental
methods to infer u, such as through transmission of acoustic waves, used quite routinely to
determine the properties of inhomogeneous and anisotropic materials, such as in seismic
imaging (Wang 2016). Moreover, we have shown that DEM simulations of a small but
dimensionally similar system provide a good estimate of the spatial variation u (figure 4d).
In ongoing work, we have preliminary results to show that the functional form of ux(x̂, z)
for deposition by raining channels and hoppers is the same for all z, where x̂ = x/W(z)
and W(z) is the container width at depth z. This gives us hope that an expression for u can
be found that will have validity for a class of geometries, such as containers with convex
walls. We therefore believe it is possible to classify geometries and deposition protocols
and arrive at general relations for u.

We now discuss the distinction (or relation) between our closure relation (2.5a,b) and
those proposed in previous studies. As discussed in § 2.3, the physical arguments on which
our closure rests are quite different from those of the FPA and OSL closures, and so
too is the mathematical form of the equations governing the stress. Using our closure,
the momentum balance in the gravity direction gets decoupled from the balances in
the lateral directions. Moreover, the spatial variation of u implies that the directions of
the principal stresses are not constant. Coming to elastic and elastoplastic models, it is
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obvious that the contact forces on individual grains are elastoplastic – indeed, the contact
force between grains at rest is elastoplastic in DEM. It therefore follows that the stress
averaged over a mesoscale of a few grains must be elastoplastic. However, the fabric of the
granular medium is anisotropic and spatially varying (as shown by figure 2), making the
elastoplastic description much more complex at macroscopic scales. Our closure captures
the anisotropic and spatially varying fabric in a simple manner; we therefore see it as
a simple model with an appealing microscopic basis, but not a negation of elastoplastic
descriptions. For example, the splay and curvature of the force lines in a silo capture the
elastic-like spreading of the load.

As discussed in § 1, experimental studies have been largely restricted to simple
geometries, small systems and rather artificial deposition protocols. It is desirable to have
more experiments to test our closure for the static stress and also resolve the disparate
findings of previous experimental studies. In particular, measurement of the stress in grain
assemblies created by different deposition methods and in complex geometries would
be useful. It would also be of value to use measurements of the contact forces using
photoelastic disks (Geng et al. 2003) to more directly validate the utility of force lines.

Finally, we note that this is the first step in developing a closure for the stress in static
granular media. The closure is limited to a fixed gravity direction and wall orientations.
One could envisage more complex depositions where the wall orientations relative to the
direction of gravity vary in time. If the variation is slow, we expect that at each instant,
the form of the closure (2.5a,b) would still be valid, but u and D would be much more
complex spatial functions. These are problems worth tackling due to their obvious practical
importance, such as in industrial blenders.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.6.
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Appendix A. Method of deposition

To simulate the deposition of particles from a narrow source (funnel) and raining from
a distributed source (sieve), we used the following protocol. A deposition region (shaded
grey in figure 6a–c) of suitable size was chosen within which non-overlapping particles
were randomly created to a volume fraction of 0.1 for narrow source deposition and 0.01
for raining, and allowed to fall under gravity. As particles drained from the deposition
region, new particles were created and the process repeated until the required number
of particles were deposited. The simulations were further continued until the kinetic
energy per particle decreased to below 10−10mpgdp, where mp is the mass of a particle
of diameter dp. For the 3-D piles and silos discussed in figures 2 and 3 of the paper,
the deposition region had the shape of a cylinder and cuboid, respectively. For the 2-D
simulations conducted to make the supplementary movies, obtain the data for figure 3(d),
and determine the diffusivity D (see Appendix E), the deposition zone was a thin cuboid
that held a monolayer of particles of area fraction 0.2. The particles were constrained to
remain in the plane after leaving the deposition region, thereby forming 2-D piles and
silos.
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Figure 6. Schematic of the deposition procedures used for creating piles and filling silos. (a,b) Creating a pile
from a narrow source and by raining. (c) Filling a rectangular silo by raining. (d) Peripheral deposition of a
cylindrical silo: the figures from left to right show the initial, intermediate and final states of deposition.

A.1. Pile
For funnel-deposited conical piles, the deposition region was a cylinder of length Ld =
60dp and radius Rd = Wd/2 = 7dp (see figure 6a). For 2-D piles, the deposition region was
a thin cuboid that held a monolayer of particles with dimensions Ld = 50dp, Wd = 10dp.
The lower boundary of the deposition region was at a height Hd = 50dp from the base.

For conical piles deposited by raining, the deposition region was a cylinder of length
Ld = 10dp and radius Rd = Wd/2 = R (figure 6b). The lower boundary of the deposition
region was at a height Hd = 90dp from the base. For 2-D piles, the corresponding
dimensions of the deposition region were Ld = 50dp, Wd = 2R and Hd = 60dp.

In both deposition methods, particles at radial positions r > R exited the simulation
cell, thereby forming a pile of radius R. This is equivalent to particles being poured on an
elevated circular disk of radius R in a physical experiment.

A.2. Rectangular silo
The 3-D silos were of rectangular cross-section with periodic boundaries in the y direction
that were a distance P = 25dp apart. The cuboidal deposition region was of dimensions
Ld = 100dp, Wd = 17dp, and periodic in the y direction with depth P. Its lower boundary
was at a height Hd = 300dp from the base (figure 6c). For the 2-D silos, the corresponding
dimensions of the deposition region were Wd = W − 3dp and Hd ≈ H + 10dp.

A.3. Cylindrical silo filled by peripheral deposition
The required number of particles were first rained into an annular region bounded by the
inner and outer cylinders of radii Ri = 30dp and R = 40dp (figure 6d). After reaching a
static state, the inner cylinder was lifted with constant speed vw = 0.8

√
gdp, resulting in

the flow of particles from the periphery towards the centre. The simulations were continued
until all particles exited the annular region and the kinetic energy per particle fell to below
10−10mpgdp. At the static state, the conical free surface sloped inwards at an angle 23◦
from the horizontal and the height at the periphery is H = 52dp.
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Figure 7. Snapshots of (a–c) the streamlines and (d–f ) the force lines (taken from supplementary movies 1 and
3, respectively) during deposition of a 2-D pile from a funnel. The snapshots are at times (a,d) 162, (b,e) 649
and (c, f ) 1137 in units of (dp/g)1/2 from the start of filling. The background colour in panels (a–c) represents
the magnitude of the displacement s in a time interval 8.12(dp/g)1/2. The background colour in panels (d–f ) is
the scaled deposition time λ ≡ t/T , where t is the time at which the material leaves the deposition region and
T the time at which the deposition region is emptied.

Appendix B. Snapshots of the flow streamlines and the force lines

As discussed in § 2.1, supplementary movies 1–4 show the streamlines of the velocity field
and the evolution of the force lines during deposition of the pile, and movies 5–8 show the
same for filling of a silo. To aid the reader, snapshots of the streamlines and the force lines
are shown in figure 7 for the funnel-deposited pile and in figure 8 for the silo with bumpy
frictional walls (filled by raining). The snapshots convey the relation between the lateral
outward flow and the orientation of the flow lines, which is much clearer in the movies.

Appendix C. Force lines determined from the total contact force

The force lines in figure 2 were computed from the normal contact force f n
ij = nij· f ijnij

between any two particles i and j in contact, where nij is the unit normal at the point
of contact. However, they could just as easily be determined from the total contact force
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Figure 8. Snapshots of (a–c) the streamlines and (d–f ) the force lines (taken from supplementary movies 5
and 6, respectively) during filling of a silo with bumpy frictional walls. The snapshots are at times (a,d) 81,
(b,e) 243 and (c, f ) 406 in units of (dp/g)1/2 from the start of deposition. The z axis in panels (a–c) is shifted
with time to clearly show the flow in the growing free surface region. The meaning of the background colour
is the same as in figure 7.
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Figure 9. Comparison of the force lines determined from the total contact force (dashed red) with the force
lines determined from the normal contact force (solid grey). (a,b) 2-D piles constructed by deposition from a
funnel and by raining. (c) 3-D rectangular silo with bumpy frictional walls filled by raining.
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Figure 10. Force lines (solid grey) and random walk lines (dashed blue) in 2-D silos of two widths
(a) W = 20dp and (b) W = 140dp.

f ij, and the results are shown in figure 9. It is evident that the force lines determined from
the total and normal contact forces are nearly identical.

Appendix D. The effect of system size on the force lines

To understand the influence of the system size on the spatial variation of the force lines,
we studied 2-D silos with rough frictional walls for a range of the silo width W. Keeping
the aspect ratio H/W roughly constant (between 10 and 12), we studied silos of widths
W = 20, 40, 90, 140 and 200dp. Figure 10 shows that the features of the force lines for silos
of width W = 20dp and W = 140dp are very similar. To make a quantitative comparison,
we determined the horizontal variation of the advection velocity ux (see Appendix E) at
a depth z = 7W from the free surface for a range of W. Figure 4(d) shows that the ux(x)
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Figure 11. (a) Drift velocity ux in a rectangular silo with bumpy frictional walls at five different depths.
(b) Average of ux in panel (a) over the range of depth 2H < z < H, and the fitted curve for ux(x) whose
algebraic form is given in (2.8a). (c) Drift velocity ux in a rectangular silo with smooth frictionless walls at
different depths. (d) Average of ux in panel (c) over the range of depth 2H < z < H and the fitted curve for
ux(x), whose algebraic form is given in (2.8b).

profiles, when scaled by the value uw
x at the wall, collapse to a single curve. This suggests

that the influence of the walls is felt deep inside the silo, no matter how large the width is.
A related point is the influence of the deposition height Hd (see figure 6) on the force

lines. We studied the force lines for deposition heights Hd = 45dp and 60dp for funnel
deposited 2-D piles and found that the orientation of the force lines for the different Hd
differ only near the free surface. They are independent of Hd deeper in the pile, plausibly
because particles lose their kinetic energy within a short distance of their entry to the pile,
whence the flow inside the pile during deposition is non-inertial.

Appendix E. Determination of the drift velocity and diffusivity

As advection is unidirectional for the rectangular silo, the drift velocity ux =
lim�z→0〈�x〉/�z at any point is simply the slope of the random walk line (and therefore
the force line) passing through that point; the same holds for ur in the axisymmetric pile.

Figure 11(a) shows the variation of the drift velocity ux with x in the silo with bumpy
frictional walls (corresponding to figure 2c) at five different depths z, where it is evident
that ux is nearly independent of z. The functional form for ux(x) is therefore obtained by
averaging over the range of depth 0.2H < z < H, shown in figure 11(b), and the fitted
form is given in (2.8a). The same conclusion is reached for the silo with frictionless walls
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Figure 12. (a) Radial variation of the drift velocity ur for a funnel deposited conical pile at three depths.
(b) Average of ur over the range of depth 0.2H < z < H and the fitted curve for ur(r/R), whose algebraic
form is given in (2.7a). (c) Radial variation of ur for a rained conical pile at three depths. (d) Collapse of the
profiles of ur when r is scaled by Rz, the pile radius at depth z. (e) Average of ur(r/Rz) over the range of depth
0.2H < z < H and the fitted curve, whose algebraic form is given in (2.7b).
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Figure 13. (a) Radial variation of the drift velocity ur for a cylindrical silo filled by peripheral deposition.
(b) Average of ur over the range of depth 0.2H < z < H and the fitted curve for ur(r/R), whose algebraic form
is given in (2.9).

(corresponding to figure 2d), though the data are noisier due to the small magnitude of ux
(figure 11c); the fitted form obtained from the data in figure 11(d) is given in (2.8b).

For funnel-deposited conical piles, we again find that ur is largely independent of z
(figure 12a), except within a thin layer close to the sloping free surface which we ignore.
The functional form for ur(r) is therefore obtained by averaging over the range of depth
0.2H < z < H, and the fitted relation is given in (2.7a). For conical piles deposited by
raining, ur is a function of r and z (figure 12c). However, a reasonable collapse of the
profiles for all z is obtained if r is scaled by Rz, the radius of the pile at z, as shown in
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Figure 14. Variance of the lateral displacement 〈(�x′)2〉 with the vertical displacement �z. The red line is
the fit for large �z.

figure 12(d). The fitted relation for ur(r/Rz) is determined by averaging over the range of
depth 0.2H < z < H, which is given in (2.7b).

Finally, for the cylindrical silo filled by peripheral deposition (figure 4), we again find
that ur is largely independent of z (figure 13a). The functional form for ur(r) is therefore
obtained by averaging over the range of depth 0.2H < z < H (figure 13b), and the fitted
relation is given in (2.9).

The diffusivity is obtained by conducting random walks in the contact network.
As mentioned in § 2.4, we find the diffusivity D to be nearly constant and the same
for all geometries and deposition methods. To determine D, the variance 〈|�x′|2〉
must be averaged over many random walks in the contact network. Since the drift
velocity is spatially varying, every random walk experiences a different systematic lateral
displacement. As a result, we find that the variance varies linearly with �z only for large
values of the latter, and hence the system size must be large enough for accurate estimation
of D. We therefore determined it from the largest system studied, namely a 2-D silo with
rough frictional walls with W = 140dp and H = 1425dp. We determined 〈(�x′)2〉 from
104 random walks starting from particles near the top of the silo and then averaging over
all the realisations. As shown in figure 14, it is linear in �z only for �z > 150dp. The slope
of the fitted line yields the estimate D ≡ 〈(�x′)2〉/(2�z) = 1.41dp.
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