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CONJUGACY SEPARABILITY
OF CERTAIN POLYGONAL PRODUCTS

GOANSU KIM

ABSTRACT. We show that polygonal products of polycyclic-by-finite groups amal-
gamating central cyclic subgroups, with trivial intersections, are conjugacy separable.
Thus polygonal products of finitely generated abelian groups amalgamating cyclic sub-
groups, with trivial intersections, are conjugacy separable. As a corollary of this, we
obtain that the group Ay %5y A2 *14y) =+ *(q, ) Am 1S conjugacy separable for the
abelian groups 4;.

1. Introduction. A group G is called conjugacy separable (c.s.) iff to each pair
X,y € G either x and y are conjugate in G (x ~¢ y) or their images are not conjugate in
some finite quotient of G. For example, polycyclic-by-finite [5], free-by-finite [2], and
Fuchsian [4] groups are c.s. In general, it is not known whether free products of those
c.s. groups amalgamating a cyclic subgroup are c.s. However free products of free—
or nilpotent—groups [3], certain finite extensions of free—or nilpotent—groups [16],
and surface groups [15] amalgamating a cyclic subgroup are c.s. Also the conjugacy
separability of certain free products of c.s. groups amalgamating a cyclic retract has
been considered in [11, 8]. The purpose of this paper is to investigate the conjugacy
separability of certain polygonal products of groups. We show that polygonal products
of more than three polycyclic-by-finite groups amalgamating central cyclic subgroups
with trivial intersections are c.s. (Theorem 4.1).

Polygonal products of groups were introduced by A. Karrass, A. Pietrowski and
D. Solitar [7] in the study of the subgroup structure of the Picard group PSL(2. Z[i]),
which is a polygonal product of four finite groups amalgamating cyclic subgroups, with
trivial intersections. In [1], Allenby and Tang proved that polygonal products of four
finitely generated (f.g.) free abelian groups, amalgamating cyclic subgroups with trivial
intersections, are residually finite (X F). And they gave an example of a polygonal
product of f.g. nilpotent groups which is not K F. However, in [12, 10], Tang and
Kim showed that certain polygonal products of f.g. nilpotent groups are R F or .. In
[9], Kim proved that polygonal products of more than three polycyclic-by-finite groups
amalgamating central subgroups with trivial intersections are 7.; hence they are X ¥ . In
[9], the subgroup separability of polygonal products is also considered. Kim and Tang
[13] constructed a polygonal product of f.g. free abelian groups amalgamating cyclic
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subgroups, with trivial intersections, which is not residually p-finite for any prime p.
Thus we naturally ask whether polygonal products of f.g. abelian groups amalgamating
cyclic subgroups, with trivial intersections, are c.s. In this paper, we obtain that those
polygonal products are c.s. (Corollary 4.2).

2. Preliminaries. Briefly, polygonal products of groups can be described as follows
[1]: Let P be a polygon. Assign a group G, to each vertex v and a group G, to each
edge e of P. Let o, and 3, be monomorphisms which embed G, as a subgroup of
the two vertex groups at the ends of the edge e. Then the polygonal product G is
defined to be the group presented by the generators and relations of the vertex groups
together with the extra relations obtained by identifying g., and g.3. for each g, €
G,. By abuse of language, we say that G is the polygonal product of the (vertex)
groups Gy, G, . .. , G,, amalgamating the (edge) subgroups Hi, ..., H,, Hy with trivial
intersections, if G;_y N G; = H;and H;_y N H; = 1, where 0 < i < n and the subscripts i
are taken modulo » + 1. We only consider the case n > 3 (see [1]).

We introduce some definitions and results that we shall use in this paper.

We write x ~¢ y if there exists g € G such that x = g~'yg and we write x £ y
otherwise. {x}“ denotes the conjugacy class {y € G : x ~g y} of x in G. We use (X)¢
to denote the normal closure of X in G. We also use [x,y] =x~'y"!xy and Cy(K) = {h €
H:[hk]=1forall k € K}.

We denote by 4 *y B the free product of 4 and B with their subgroup H amalgamated.
If G =A%y Band x € G then ||x| denotes the amalgamated free product length of x in
G. On the other hand we use |x| to denote the order of x. We write N <, G to denote that
N is a normal subgroup of finite index in G. If G is a homomorphic image of G then we
use ¥ to denote the image of x € Gin G.

Let H be a subset of G. Then we say that G is H-separable if to each x € G\ H there
exists N <l G such that x ¢ NH. A group G is said to be residually finite (R F) if G is
(1)-separable, and G is said to be 7. if G is (x)-separable for any x € G. We shall use
the following results:

THEOREM 2.1 ([3]). If A and B are c.s. and H is finite, then A xy B is c.s.

THEOREM 2.2 ([9]). Let G be the polygonal product of the polycyclic-by-finite groups
Ao, Ay, ..., Ay (n > 3), amalgamating any subgroups H,, . . . , H,, Hy, with trivial inter-
sections, where H; C Z(A;—) N Z(A;) for all i, and where subscripts are taken modulo
n+1. Then G is 7.

LEMMA 2.3 ([9]). Let A; and H; be as in Theorem 2.2, and let E,, = Ay *n, A\ *n,
<o xpy Am (m > 1). Then E,, is (Hy * Hy+1)-separable and HyH,,+\-separable.

For a graph I', with vertex set /" and edge set E, assign a group G, to each ver-
tex v € V. Then the group (G,;[G,, Gy], for Vvw € E) is called the graph product
of the groups G, for the graph I'. For example, the graph product of cyclic groups
(a;) (i = 1,2,...,n) for the n-gon is just the polygonal product of abelian groups
(ar.az).(az,a3). ..., (ay.a,) amalgamating subgroups (a,). (as).....(a;) with trivial

intersections. Hence such polygonal product is c.s. by the next result.
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THEOREM 2.4 ([6, P104]). Graph products of c.s. groups are c.s.

As Dyer [3] observed, the main tool to prove the conjugacy separability of a free
product with amalgamation is the following result, known as Solitar’s theorem:

THEOREM 2.5 ([14]). Let G = Axy B and x € G be of minimal length in its conjugacy
class. Supposey € G, y is cyclically reduced, and x ~¢ y.

(1) If ||x|]| = 0, then ||y|| < 1 and if y € A say, there is a sequence hy.hs. .. .. hy of
elements in H such thaty ~4 hy ~g hy ~y -+ ~p h,=x.

(2) If|Ix|| = 1, then ||y|| = 1 and either x,y € A and x ~4 y, or else x,y € B and
X ~gy.

(3) If|Ix|l > 2, then ||x|| = |||l and y ~p x* where x* is some cyclic permutation of x.

3. Somelemmas. A group G is called polycyclic-by-finite if it has a normal subgroup
N such that N is polycyclic and G/N is finite. Throughout this paper we consider that
the A; are polycyclic-by-finite groups and that a;, a1 € Z(4;), {a;) N {ai1) = 1, and
A,- mA,'+| = (a,«+|>.

LEMMA 3.1. Let E = A] *<dz> A2 *<
Ifx ~pyforx,y € H thenx ~py y.

@) Fay ) Am—1 (m > 3), and H = (ay) * (am).

PROOF. We may assume that x and y are cyclically reduced in Hand x # 1 # y.

First, suppose x € (a;) (or x € (an)). Let E = A *(,,) Ei, where E| = A4 %,

(g 1y Am—1. Since x € Z(4,) and (a)) N (az) = 1, we have {x}*' N (a;) = 0. Thus
x has the minimal length 1 in its conjugacy class in £. Thus by Theorem 2.5 x ~g y
implies y € 4; and x ~4, y; hence x = y. Clearly x ~p y.

Second, suppose |[x|| = 2n > 1. Let E = A *,,, E} be as above. Since x has the
minimal length 2# in its conjugacy class in £, by Theorem 2.5 we have ||x|| = ||y|| and
X~ y* for some cyclic permutation y* of y. If m = 3, ie., E = A x(,,) 42, then
X ~q,) y* implies x = y*; hence x ~y y. If m > 3, then (a2, am) = (a2) * (am). Now
suppose x = a'al) - ay"dl, y* = a(l/'a,,ll ---daly, and x = a;*y*a}. Then we have
a)' = az_’\a]gaj', = az_*’af,ia’z', at = a;"a‘léaél, .... Hence ay = aé' and af' = a(I/',
since a; € Z(A;) and (a;) N (a2) = 1. Now, since (az,an) = (a2) * (am), we have

a; =1=al, and hence @} = 1. Thus x = y*; hence x ~y y. L]

LEMMA 3.2. Let P be the polygonal product of the polycyclic-by-finite groups
(ag.a1).Ay...., Ay (m > 3), amalgamating the central subgroups (a;),. .., {am),{(ao)
with trivial intersections. Denote A = (ay. a,). Then we have

(a) Ifx ~pyforx.y € A, thenx =y.

(b) Ifx ~pyforx € Aandy € A\, theny € Aand x = y.

PROOF. (a) Let E = (ao.a1) *(4) A1, F = A *14,) - *(ay) A2, and H = (ag) * (a2).
Then P = E *y F. We may assume x # 1 # v.
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CASE 1. Suppose x € (ag).

Since ||x|| = 0 in P and y € {(ag,a;) C E, by Theorem 2.5 there exist 4; € H such
that y ~g hy ~p hy ~g --- ~g h, = x. It follows from Lemma 3.1 that y ~¢ x. Now
1 # x € (ap) and a; € Z(E); hence x has the minimal length 1 in its conjugacy class in
E = (ag.a1) *(,,) 41. Thus, by Theorem 2.5,y € 4 and x ~ y, where 4 = (aop.a) is
abelian. Therefore x = y.

CASE 2. Suppose x & (ao). Clearly x ¢ H.

First, we note that x has the minimal length 1 in its conjugacy class in P = Ex4 F'. For,
ifx ~p hforsome h € H,thenx ~g hy ~g hy ~g --- ~g h. = h for some h; € H. Then,
by Lemma 3.1, we have x ~¢ h. Thusx ~¢ h* for a cyclically reduced cyclic permutation
h* of h. If x € (a;), then x = h* € (ap,a;) N H = {ao). Hence, by assumption, x £ {(a).
Then x has the minimal length 1 in its conjugacy class in £ = (ao.a1) *(,,) 41. Thus by
Theorem 2.5, h* € A and x ~4 h*, where 4 = (ag.a,). Hencex = hi* € HN A = (ap), a
contradiction. Therefore x has the minimal length 1 in its conjugacy class in P = E %y F.
Then, by Theorem 2.5, x ~g y. Now if x € (a;) thenx = y. If x ¢ (a,) then x has
the minimal length 1 in its conjugacy class in £'= 4 x,, 41, and then by Theorem 2.5
x ~y4y. Thusx = y.

The proof of (b) is very similar to that of (a) above. =

LEMMA 3.3. Let F = A() *(a])Al *<a2) s *<llm> Am (m Z 1) If[a’(‘),f] = lf‘OY‘ Cll(; # 1
and f € F, then f € Ay and hence [ag.f] = 1.

PROOF. Let I = Ag *(,) F1, Where Fi = Ay %1,y *(q,) Am. Iff € F) \ {(ay), then
clearly /' # a,*fak, since ||ay*fal|| = 3. Thus suppose /' & 4o U F). Since al € Z(4o), it
suffices to consider /' = fia - - - Gy 1fn, Where o € Ap \ {@1) and f; € F| \ (a;). Then
ag*fak = ag*fiay - - - frak is reduced with length ||f]| +2. Thus / # a; *fak. Consequently,
f € Ay, and hence [ap,f] = 1. [

LEMMA 3.4. Let P be the polygonal product of the polycyclic-by-finite groups
Ao, Ars ..., Am (m > 3), amalgamating the central subgroups (a1), ..., {am).{ao) with
trivial intersections. Let al # 1 # a} and p € P.

(a) Ifak € Cuy(p), then ay € Cyuy(p); hence C4,(p) N {ao) = {ao).

(b) Ifakal € C4,(p), then p € Ao, hence C4y(p) N {ao. a1} = (aop, ar).

PROOF. (a) Let E = Ao 4y A1, F'= Ap ¥4,y -+ *¥(q,) A2, and H = (ap) * (az). Then
P=ExyF.

First, if p € E (or p € F), then by Lemma 3.3 we have p € Ay (or p € 4,,). Then
[ao,p]l =1, since ay € Z(Ap) N Z(Am)-

Second, if p ¢ EUF, supposep = e\f; - - - eyfn, Where ¢; € E\ Hand f; € F'\ H (the
other cases are similar). Since e\f; - - - e,fy = agXeifi - - - enfnal, we have ey = agke,hy,
fi = h7'fiki, ex = k7 'exha, ... eq = k' enhy, and f, = h;'fyak, for some ki k; € H.
Then by Lemma 3.1, a{‘) ~p hy ~y h} for some cyclically reduced cyclic permutation
ht of hy. Hence b = h}, and it follows that 4, = wi'akw, for some w; € H. Thus
e = ag"‘elhl = ag"elwl“aﬁw]. By Lemma 3.3, elw,_I € Ap. Now f; = h,“lflk] =
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wy Iao ‘wf1k; hence wlf = aO -wif1 - k1. Then as before there exists vi € H such that

ki = vy 'dkv; and wifiv]! € A4,,. Inductively, suppose there exist w,_1.v,—; € H such
thatk,—; = v, akv, |, and w,,glf,,Al v! € A4,.Thene, =k, ' e.h, = v, jag* v, 1e,hy;
hence as before there exists w, € H such that h, = w, 'akw,, and v,_je,w,' € A,.
Then f, = h,'fak = w;'ag*w,f,ak. Hence, by Lemma 3.3, wyf, € A,. Therefore
p=elfi ey =ewy ! wifivit - v,,qe,,w;' - Wy fy 1s a product of elements in 4y and
Ap. Since ag € Z(Ay) N Z(A4,,), we have [ag,p] = 1.

(b) Let E,F, H be as above. If p € E then we have akp = pal. By Lemma 3.3, we
have p € Ao. Thus we shall show that if p # E then aka! & C4,(p). If p € F\ H then
clearly aka{p # paka!, so suppose thatp ¢ EUF.1fp =fie|---,orif p = - - - e,f,, where
e; € E\Handf; € F\H,thenclearly afa!p #pao a!. Thus we supposep =efi - fo1€n
wheree; € E\Handf; € F\H.Now ifaalp = paoal thendlaje, ¢ H,e,akal ¢ H,and
we have aoafew = e h; for some h; € H. Thus aOa[ ~g hy ~y hy for some cyclically
reduced cyclic permutation /] of h;. Since aka! has the minimal length 1 in its conjugate
class in E, we have h} € Ao and ala{ ~y4, h}. Hence alal = h} € 40N H = (ay), a
contradiction. =

Let P be as in Lemma 3.4. Then, for integers s,z > 1, we may construct a polygonal
product P of 4. 4. ..., A (m > 3), amalgamating subgroups <a|) ..... ,(@m), {ao),
with trivial intersections, where 49 = Ao/ (aj.a}), A = A, /{a = Ay /{a}), and
A; = A; for i # 0,1,m. Then there exists a natural homomorphlsm ¢t P — P with
ker ¢, = (a§, a})”. Hence we may consider P = P/(aj, a’)".

LEMMA 3.5. Let P be the polygonal product of the polycyclic-by-finite groups A =
(ag.ar). Ay, ... Ay (m > 3), amalgamating the central subgroups (a\), ..., {(an).{ao)
with trivial intersections. If {x}* N A = 0, where x € P, then there exist s, t such that, in
P=P/{a}.a\)", we have {x}F N4 =1.

PROOF. Let E = A %) A1, F = Ay *(g) *** *(a,) 42, and H = (ag) * (az). Then
P =FE xy F. Clearly x ¢ A. We may assume that x has minimal length in its conjugacy
classin P=E xy F.

CASE 1. Supposex € E.

Thus {x}¥ N4 = (. Now x £ 4, and we may assume that x has minimal length in
its conjugacy class in E. If x € 4, \ (a)), thenx € 4, \ (a,) for any s, ¢. Thus ¥ has the
minimal length 1 in its conjugacy class in £ = A x5,y 4). Thus we have {(x}na=0.
If x = o181 - - By, where oy € 4\ (a)) and 8; € A4; \ (a). Choose s.¢ so that
o ¢ (a%.aﬁ}( 1). Then, in E, we have ||x|| = ||%|| and hence {x}¥ N4 = (). Now, in
P = P/(a},a})", we claim {x}” N4 = (. For this, suppose X ~p &, for some « € A.
If & € (ao), theanFhl ~p hy ~p oo ~p by = & Thus, by Lemma 3.1, X ~; &. If
& ¢ (ao) then, as in the proof of Lemma 3.2, & has the minimal length 1 in its conjugacy
class in P = E x5 F. Thus by Theorem 2.5 we have & ~ %, which contradicts the fact
that {x}£ N4 = (). Therefore, we have {x}* N4 = .
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CASE 2. Supposex € F\ H.

Since F is H-separable (Lemma 2.3), there is s; such that x ¢ (a} )"H. Now {x}/'N
(ap) = 0, and we may assume that x is cyclically reduced in F = A *(a,) F1, where
Fy = Ay %, )+ ¥y A2 X = 0tfi -+, where o; € 4y, \ (@) and fi € F1 \ (ap),
then there exists s, such that o; & (ag){am). Let s = 515, and ¢ be arbitrary. Then in
F = Ay /(a}) %, F1, % is cyclically reduced with ||x|| = ||x||, and any a(# 1) has the
minimal length 1 in its conjugacy class in F. Hence, we have {x}* N (ag) = 0. In P =
P/(a}.a})", ifx ~p & for some @ € A then, as in Case 1 above, ¥ ~z & € ANF = (ay).
Therefore, since {x}* N (ao) = B, we have {x}’ N4 = (.

CASE 3. Supposex ¢ EUF.

Let x = eyf) - - - e,f,, where ¢; € E\ H and f; € F\ H. Since E, F are H-separable
(Lemma 2.3), there exist s,¢ such that ¢; ¢ (a},a\)EH and f; & (a})"H. Then, in
P=P/(a.a})", ||%]| = |lx|| = 2n. Thus {x}’ N4 =0. .

The following few lemmas are used to prove Lemma 3.9.

LEMMA 3.6. Let F = Ay %14,y = * ¥(a,) A2, H = (a0) * (a2), and let f,f" € F.
(@) Iff' & (ao)fH, then there exists s such that f’ ¢ (ao)fH in FF = F/(a})
(b) Iff' & (ao)f(az), then there exists s such that ' ¢ (ao)f(a,) in F = F/{a})F
(c) Iff" & (ao)f{ao), then there exists s such that f' ¢ {ao)f{ao) in F = F/(a3>F
(d) Iff' & (ay)fH, then there exists s such that f' ¢ (a,)fH in F = F[(a})"

(a2

(e) Iff’ & (a2)f(ay), then there exists s such that f' & (a,)f(a;) in F = F/(a$)"

PROOF. (a) We write F'= A4, *(a,) F1 where F| = Ay ¥lam 1) " *a) A,. For each
s > 1, we have the natural homomorphism 5 4, *(am) F — A,,,/(af)) *(a) F, with
Ker, = (a})’. Since F is 7. and H-separable, there exists s such that ||[fy]| = ||/,
sl = 17N, and (F~'f s & Hipy.

CASE 1. Supposef € A, (or f7 € Ay).
Since ag € Z(A,) and (f~' )9 & Hips, clearly f'1s & ({ao)f H)s.

CASE 2. Supposef € Fi \ (an) (orf" € F; \ {am)).

Considering Case 1, we may assume f & (an){a;) and ' & A,,. Moreover, if /' =
Sifs - - - is reduced with length > 2, then we suppose f] & (ao){am). Then in F = Fyy, if
f' = agfh for h € H,then we have a, = 1; hence f~'f” € H. It contradicts the choice of s.

CASE 3. Suppose |[f1I, I/l = 2.

Letf =fifs---foand f' = fif; -- - f] be reduced in F = Ay, *(, ) F1. We may assume
Juf! & (am)(ao) U (am)(az) and fi,f] & (ao){am). Moreover, if fi,f] € A,,, then we
assume f;'f] & (ao){an). We shall show that f"y; & ((ao)fH)ys. For, supposing f/* =
c‘zf)f h for h € H, where F = Fu);, we derive a contradiction as follows:

(1) If/i.f] € Ap, thenf] € aofi(an); hencef;™'f] € (@0)(@n). Thus fi'f] € (ao)(am).

(2) Iffy € A, and f] € Fy, then aGf; € (a,), and hence fi € (@)(a@n). Therefore
/i € (ao)(am). B

(3) Iff{ € A,y and f; € F, then f{ € (@o)(a@m). Therefore f{ € (ao)(am).
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(4) Iffi.f! € Fy,then &) = 1; hence /~/" € H.
We may prove (b) and (¢) in a similar way. In particular, we may use for (b) the fact that
F is also {(ag)(as)-separable (Lemma 2.3). The proofs of (d) and (e) are also similar to
the proofs of (a) and (b), respectively, considering the homomorphism ¢,: F *(gy) A2 —
Fy/{ay)f *(uy) A2s Where Fy = Ay k() - ¥ (g As. .

m

LEMMA 3.7. LetE = (ag.ai )%, (a1.a2), F = Am*(y,) %442, and H = (ag ) *(az).
Let P = E % F. Supposep = frey - - - en_\fn and q = fle' - - - €,_,f,, wheree;.e. € E\ H
andf.f € F\ H.

(a) Ifq & {ao)p(ay), then there exist s.t such that § & (@o)p{a>) in P = P/{(a}.a’)".

(b) If q & {ao)p{ao), then there exist s, t such that g ¢ (ao)p{ao) in P =P/ {(a}.a})".

(c) If q & (a2)p(as), then there exist s.t such that § ¢ (@)p(a>) in P = P/(a}, a})".

PROOF. Since the proofs of (b) and (c) are very similar to (a), we only consider (a).

Lemma 3.6 shows the result holds for n = 1. Note ¢; = a}'k; and ¢; = a,’k,’, for some
ki.k! € H.If e/ ¢ He;H for some i, that is afl; # af, then one can easily find P such
that ] ¢ HeH, ||p|| = ||pll, and |ll3’ll = ||p'[|. Then g £ (ao)p{a2). Hence it suffices
to consider the case g = fla}'f; - --a}"'f, and p = fia'fa- - - a"'f,. Now since F is H-
separable, there exist sy, 4 suchthatf.f,’ ¢ (a)YFHand a} ¢ (a'). Then ||pgs, .|| = ||pl|
and ||gés, ., || = ||g||, where ¢, is as on p.298.

If f{ & (ao)fiH, then by Lemma 3.6, there exists s, such that f] ¢ (ag)"(ao)fiH.
Let s = sy52 and ¢ = #. Then, in P = P¢;,, we have g & (ao)p{a»), since ||p|| =1»ll,

gl = llqll, and /7 £ (@o)i L
So, suppose f| = a1k, for some k| € H.

CASE 1. Suppose f; 'aofi & H.

Then, by Lemmas 3.1 and 3.3, we have f; 'alf; ¢ H for any aj) # 1. Then q ¢
(ao)p(az) iff (fra - fi) 'ki(f3alt - /1) & (a2). Since P is 7, (Theorem 2.2) and H-
separable, there exist s,. 1, such that (Ha$> -+ f) " ki(fa? - f1) & (ay.d")P(ay), and
Sitaofi & (ay.a ) H. Lets = sys, and t = t11,. Then, in P = P¢,,, we have 21 = el
lgll = llqll, /i 'aefi & H, and (ha}? - )" ki(fya -+ ;) & (az). These imply that
G & (ao)p{az), as required.

CASE 2. Suppose f; 'aofy = h) € H.

Then ag ~F A} for a cyclically reduced cyclic permutation 47 of 4. Thus ag ~4, h7;
hence ag = h}. Thus there exists w; € H such that h; = wf'aowl. Now we have
[wlf,".ao] = 1. Then we note that ¢ ¢ (ao)p(a>) iff abfikial'fy---f; & (ao)fiwy"

al'fy-- ﬁ1<a2> iff fiwy ! - al - wikifs ey £ (ao)fiwy! - al - wifa - fulaa)
1ff wikify---fi & (ao)wifr- - fu(az). By induction, there exist s,,7, such that
Wikyfs -~ fn’)¢>52_,2 ¢ ((ao)w\fa -+ fu(a2))ps,r- Let s = sys2 and ¢ = f11,. Then, in
P = Péy,, we have g & (ao)p{as), since ||p|| = wikif] - fl ¢
(ag)wifo - fulaz). =
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LEMMA 3.8. LetE = (ao.al)*<al> (a1,a2), F = Am* (g, *(qy) A2, and H = (ag)x{az).
Let P=ExyF, A= (ag,a,), and B = (ay,a>). Then we have the following, for p,q € P:
(a) If g & ApB, then there exist s, t such that g & ApB in P = P/(a}.a\)".
(b) If q & BpA, then there exist s, t such that § ¢ BpA in P = P/(a}, a\)".
(c) Ifq & ApA, then there exist s.t such that § & ApA in P = P/(aj.a})".
(d) If q & BpB, then there exist s, t such that g & BpB in P = P/(a}, a.)".

PROOF. (a) and (b) are equivalent, since ¢ € ApB iff ¢~' € Bp~'4. And the proofs
of (c) and (d) are similar to that of (a); hence we only consider (a).

CASE 1. Supposep € E(org € E).

If ¢ ¢ E then, considering the length of ¢ in P, one can easily choose P such
that § ¢ E. Then clearly g ¢ ApB. If ¢ € E, then p = ai'h; and ¢ = a(*h, for
hi,hy € H. Note that g € ApB iff hy € (ap)h){az). By Lemma 3.6, there exists s such
that hyys & ((ao)hi{a2)nps. For any , we have g & ApB in P = P/(a§,a’)".

CASE 2. Supposep,q € F\ H.

There exists s; such that p,g ¢ (ay)"H. By Lemma 3.6, there exists s, such that
q¥s, & ((ao)p{az))s,. Let s = 515, and let ¢ be arbitrary. Then, in P = Py, we have
G & ApB, since g ¢ (ao)p{as).

CASE 3. Supposep ¢ EUF (orq € EUF).

Since AH = E = HB, we may assume q = f{a 'f2 a?"f,’ andp = fial'fa - a\" 'fa,
wheref;.f/ € F\ Hand a} # 1 # a‘l‘l. Theng € ApBiffr =nand g € (ao)p{as). If r # n
then we can easily find P such that § ¢ ApB, by a length preserving homomorphism.
Hence we let ¥ = n and ¢ ¢ (ao)p{az). Then, by Lemma 3.7, there exist s, # such that
g ¢ (ao)p(az), ll4ll = llqll, and [|pll = [lp|l, where P = P/(ay,a})". Then we have
q & ApB. [

LEMMA 3.9. LetE = <a0, aj >*(a|> <a|, a2>, F= Am*(a,,,) . ‘*(u;)AL andH = (ao)*(a2>.
Let P=E«y F, and Py = P xg A\, where B = (ay, a,). Suppose x,y € Py are such that
x & AyA, where A= (ag, a\). Then there exists, tsuch thatx & ApAin Py = P, /{a}, a" )"

PROOF.

CASE 1. Supposex,y € P.
Then by Lemma 3.8 there exist s, £ such that x ¢ (ao, a' )P 4yA. Then clearly, x ¢ Ay4
inP, =P /{a},a\)"' = Pxz A\, where P=P/(a},a\)", 4, = 4,/ {a})

CASE 2. Supposex € Pandy € P.

Ifx € A\ B then, for any s, t, we have X € 4; \ B; hencex ¢ AyA4, where P, = Px3A4,.
Suppose ||x|| > 2,say x = pya; - - -, where p; € P\ B and o; € 4, \ B. Then there exist
s,tsuch that p; £ (aj.a})"B, 1 by Lemma 3.8. Then o; € (a)), a)"B, thus ||x|| = ||x|| > 2,
and hence X & AyA, where P =P *p Al

CASE 3. Supposex,y € 4; \ B.
Smce x & AyA, we have x ¢ (a;)y(a;) = y(a|). Thus we can choose ¢ such that
y~'x # (a}). Then for any s, in P = P, /(a,a} )", we have ¥ ¢ AyA.
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CASE 4. Supposex € 4, \ Band ||y]| > 2 (ory € 4, \ Band |[x|| > 2).

Considering the above cases, we may assume that y = y;y, -y, is reduced and
y1 & AB,y, & BA. As in Case 2, we can find P| = P x5 A, such that ||j|| = ||y|| > 2,
71 # 4B, and 7, ¢ BA (using Lemma 3.8). Then clearly ¥ ¢ Ay4, if ||3|| = |y > 4. If
n=223andx € AvA then we have 3, € AB, or Vn € € BA, a contradiction.

CASE 5. Suppose ||x|| > 2 and ||y|| > 2.

Suppose that x = xx2---x, and y = y,y; - - - y, are reduced in P, and x,,y, & 4B,
Xu.yr £ BA. Then as above, there exist sy, #| such that, in P, = Pl/ aO al
7 = lyll,X7. 57 # 4B, and X;,. 3, & BA.

If x; and y, are in different factors, say x| € 4, and y; € P, then ¢ AyA, where
P, = Py, since V1 € P \ ABand x| € A, \B Hence we may assume that x; and y, are
in the same factor of P|. Similarly, considering x~' ¢ 4y~'4, we may assume that x,,
and y, are in the same factor of P;. In this case, if n # r, then clearly x ¢ AyA, where
P = P;. Thus we only consider the case n = r.

SUBCASE 1. Suppose x = pia -+ of,_p, and y = pia - - - 01 py, Where p;.p} €
P\ Band o, a, € 4y \ B.

If a7 '« ¢ B for some i, then O(,Tl(;,/- ¢ B; hence X ¢ AyA, where P; = P;. So it
suffices to consider x = play - a,—1p}, and y = pya; - - o, p,. Note that x € AyA
iff p| = d\p1by, a1 = by ayby, ph = b 'paba.. .., P, = b7 puda, where b; € B and
di.dy € A. Now if p{ & Ap\B, or p; & Bp:B (1 < i < n), orp, £ BpnA then by
Lemma 3.8, we can find s.¢ (s1]s and #]¢) such that p! ¢ Ap\B, or p| ¢ Bp;B, or
Ply & BpaA. Then, since [|x]| = |[X]| = [|x], [[]| = 7]l = IIvll, we have & £ Ay4.

Thus we assume p| € Ap B, p! € Bp;B (1 <i < n), and p;, € Bp,A. Then one of the
following holds:

*) Pl aipl € Aprag - i ipiB,  but
pray - aiphy & Apiay - api B fori<n—1, or
(**) plog - cyop, | € Apray - o_op,_ B, but
Pra - Cipy AP i pad.

If () holds, then let pla; -+ o_1pl = diproy -+ o ipu and pl,, = vpiw for
u.v,w € B, d € A. Since pio - - oply, & Apiay - ap B, we have uy ¢
Ciapyra - pii))Cp(pis1) = S. Then S = 1, or (a\), or {(az) by Lemma 3.4. Now
since P) is m, by Lemma 2.2, there exist s, (si|s, ¢;]f) such that wv ¢ §, and such
that C ;) (Prai -~ pio;)Cy(Pin7) = S by Lemma 3.4. Then we note that p/ - - - playpl, | ¢
Apiay -+ aipiB. For, if pi---plapl,, € Apjoq---opsB, then we have
P puvapiw € Apa - - a;pi+i B. Hence, by Lemma 3.2, for some u; € B, and
dy € A, we have P = d2p|LI|, o) = Mi’|a|u|, P2 = u,"lpzul,.n. ,piuv = i:('p,-z?.W,
& = (wuv) ' &, and pry = (@wv)” pauuy. By Lemma 3.2,d, € ANB = (a),
and d;' = &t;. Now ity € Cy(pray - pici) N {a;) and @y € Cy(pra7). Thus v € S, a
contradiction.
The case (*x) can be similarly handled.
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SUBCASE 2. Suppose x = a\p| - ayp, andy = a\p; - - - a,p,, where pi.pl € P\ B
and ;. o) € A) \ B.

If o; 'l ¢ B for some i, then W # B; hence ¥ ¢ AyA, where P, = P,. So it
suffices to consider x = ayp|---aup), and y = ayp - - ap,. Note that x € AyA iff
x' € (ay)y’4, wherex' = play---plandy’ = pjay - - - p,. Thus if x' € A)’4 then we can
find P, by Subcase 1, such thatx’ ¢ 4)’4. Then % ¢ AyA. Now if X' € 4y'A\ (a;)y'4, let
x'=d\piay - - puda, where d|.d, € Aandd, ¢ (a;). Choose s. (s|s and ¢;|¢) such that
dy & (a1). Now if x € AyA, then x’ € (a,)y'4; hence d\p| = &pi, for some u; € B.
Thus by Lemma 3.2 we have d| = aji; € AN B = (a,), a contradiction. Therefore
% & AyA.

SUBCASE 3. Supposex = piaj ---phaj andy = pyc; - - - pyot,, Where pi.pl € P\ B
and ;. o) € 4, \ B.

This case is similar to Subcase 2, since x~!' ¢ 4y~'A4.

SUBCASE 4. Suppose x = a|p} -+ pyo,, and y = aip; - - - p,0ns1, Where p;. pl €

P\ Band o, a} € A \ B.

If o '] ¢ B for some i, then m Z B; hence ¥ ¢ AyA, where P, = P;. So it
suffices to consider x = o p| -+ - p,otns1 and y = ayp) - - - pp@pe1. Note that x € AyA
iff x € (a1)y(a) iff X’ € (a))y'(a)) iff x' € AY'4, where X’ = pla---p, and ) =
P10y -+ - p,. Thus if x' & A)'A then we can find P, such that x' ¢ 4y’4 by Subcase 1.
Thenx ¢ AyA. Now if X' € Ay'4 \ (a1)y'(a1), letx' = d\y'd, = d\p\cz - - - p,d>, Where
di,dy € Aandd; ¢ (a)) ord, & (a;). Choose 5.t (s1|s and ¢, |¢) such that d\.d> & (a,).
Now if ¥ € AyA, then aipy - Phler) = d30py - - - PuOtys1ds, for some ds, dy € A. Then
213 € ANB = <(_1|> and 34 € (é[). It follows that dspyoy - ppds = dipro - - - puda;
hence dsp; = d\p,i1, for some u; € B. Thus, by Lemma 3.2,d;'ds =ity € ANB = (ay).
Hence d; € (a,), and similarly, d, € (a, ), which contradicts the choice of s. . =

4. Main result.

THEOREM 4.1. Let P be the polygonal product of the polycyclic-by-finite groups
Ao, Ays ..., Am (m > 3), amalgamating the central subgroups {(a;), . ... (am), {ao) with
trivial intersections. Then P is c.s.

PROOF. First, we note that the reduced polygonal product Py, which is a polygo-
nal product of abelian groups (ag,a1).(a1,a2),. .., {am, ap) amalgamating cyclic sub-
groups (a1),...,{am),{ao), with trivial intersections, is a graph product of the
cyclic groups (aj),....{(am),{(ao). Hence Py is c.s. by Theorem 2.4. Let P, =
(. = ((Po g, Am) *B,_, A,,,_I) . ) *g, . Am—i+1, Where B; = (a;.a;x1) with subscripts
taken modulo m + 1. Then P; is the polygonal product of (aq.ay).. .., (Am—is Am—is1)s
Am—it1s - - . , Ay amalgamating the central subgroups (a)..... (am—is1)s- - (ap), with
trivial intersections, and Pi+; = P; xp, , Am—;. Since Py is c.s., for an induction we as-
sume that P, is c.s. and we show that P = P+ = P, 5, Ao is c.s. By the assumption,
every polygonal product of polycyclic-by-finite groups (co.c; ), Ci. . . ., C,,, amalgamat-
ing the central subgroups (c,),..., (em)s (co) with trivial intersections, is c.s. Hence
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P, =P,/ (a).a})" is c.s. forany s.1 > 1, since P, is the polygonal product of (ag. @),
Ay /(a}),Aa.. ... Ap—1.4n/({a}), amalgamating the subgroups (a,). (a2). . .. . (am)-{ao).
Thus P = P/{a}.a!)’ = P, %3 Ao is c.s. for any 5.1 > 1, where Ay = 4o/ (a). a}), since
A = {ap, a,) is finite. Hence, for each pair x,y € P with x £p y, we shall find 5. ¢ such
that X £p j.

Letx.y € P = P, *g, Ag such that x £p y, each of minimal length in its conjugacy
class in P,, *p, Ag. Throughout the proof, we denote 4 = By = (a¢.a,) and

¢5412Pm *4 AO - P—m*j 1:10-

where P, = P,/ {a}.d! )", 4y = Ao/ (a}.a'), and 4 = (ag,a;). By Lemma 3.9, P,, is
A-separable. Hence there exist so. #o such that ||x|| = |[x¢s,.,|| and |[y]| = [y sl
Since P is R F by Theorem 2.2, we may assume x # 1 # y.

CASE 1. ||x|][ =0and ||y|]| = I (or, similarly, ||y|| = 0 and ||x|| = 1).

Firstly, we suppose y € Ao \ 4. Lets = so, £ = t. Then j ¢ 4; hence {p}* N4 = 0),
thus x %p .

Secondly, suppose y € P, \ 4. By Lemma 3.5, there exist s;.f such that
{Vs, 0} N Ags,,, = 0. Let s = sos1 and ¢ = fof). Then {y}‘[’-’"ﬂﬁ = () and
v & A. Hence X #p p by Theorem 2.5.

CASE 2. [[x[| # [ly[l and |[x|| > 2 (or, similarly, [|x|| # [|y]| and [[y[| > 2).
Since x has minimal length in its conjugacy class in P, x is cyclically reduced. Let
s =spand ¢ = ty. Then ||x]| = ||x|| # |[¥|| = ||7||- Thus x #£p y by Theorem 2.5.

CASE 3. |lx|| = |ly[| = 0.

Since P is R ¥, there exist s, such that y~'x ¢ (_af)’.a'l'y’. Lets =s;and ¢ = ¢,.
Ifx ~p y, then X ~p— &y ~y -~z & =y for & € A. It follows by Lemma 3.2 that
X =& =y,since A € Z(Ao). Hence X 5 y by Theorem 2.5.

Cased. |ix|| = [yl = 1.

Firstly, suppose both x and y are in P, \ 4. Now {x}’» N4 = () and x £p, y.
There exist s, ¢ such that {x@s, ,, }"*11 N A¢y,, = 0 and there exist s3. £ such that
Xbgy.1y 76pm¢,_\2.,2 Ybs,.4,, SINCE Py, 1s c.s. by the induction hypothesis. Let s = sos152 and
t = totit. Then {x}'" N4 = 0, x #5- ¥, and ||x]| = [[yl| = 1. Hence x #p y by
Theorem 2.5.

Secondly, suppose x,y € Ay \ 4. Since x 4, y, and since Ay is c.s., there exist s1. £
such thatx¢s, s, a0, , Vb5, Lets =sosi and ¢ = tot1. Then¥ £, 7 and {x}na =0,
hence, by Lemma 3.2 and Theorem 2.5, we have {x}” N4 = 0. It follows that X %5 by
Theorem 2.5.

Finally, suppose x € 49 \ 4 andy € P, \ A. Lets = 59 and = 1o. Then as before
{x}¥' M4 =0. Hence x 5 y by Theorem 2.5, since y € P,, \ 4.
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CASES. ||| = [lyl| = 2n

Letx =pia) -+ pyayandy = p\ e - - pa,, where p;.p; € P, \dand oy. ] € 4p\ 4
for all j. Since x £p y, we have x £, y* for all cyclic permutation y* of y. Thus each of
the equations

N ) AN / / — 1
) pjo -+ - pyogup @y - P 0 = a prog - ppya

has no solution a € 4. We shall find s;, 4; such that (j)¢s, ;, has no solution a¢y, , € Ady,,

for each j. Then, for s = sgs; - - -5, and t = fot) - - - £, we have ||x]| = ||x|| = |yl = [Pl

and x /£ y* for any cyclic permutation 7* of 5. Hence we have x £ y as required.
Here we only consider the case j = 1, since the others are similar.

CLaM. If piaj-- pﬁ, o A4 piog-c-pgay then there exist s,t such that
Pie - PO, Foq PO PuCly.

If o 'a) ¢ A for some i then, taking s = sp and ¢ = #), we have m ¢ A; hence
clearly X £ . Thus it suffices to consider the case o; = o for all i. Now if p] ¢ Ap;A
for some i then, by Lemma 3.9, there exist s, 7 such that pl¢,, ., & (Ap,A)qS‘, .- Let
s = sos1 and ¢ = tot). Then p! ¢ Ap;A; hence % 7 . Therefore, we suppose o, = o, and
p; € ApiA for all i. Then one of the following is true:

*) play - ai \p. € Apyay -+ o;_1piA.  but
piog - aipy, & Aprog - ogpin A, for some i or
(**) play -+ phay € Aproy -+ ppay A, but
p';Oﬂ “'P,',Ofn 7<’A P1ay - PnQty.

If(x)is true, thenletpl ) - - - i 1pl = diproyy - - - qi_\pidy and pl, | = d3pjs1dy fordy € A.
Since pla -+ aply, € Aprog - - apin A, we have dods & Ca(proy - - - pi;)Ca(pin1)-
Hence, by Lemma 3.4, Cy(p, | - - - pio;)Cy(pi+1) is a cyclic subgroup of 4. Now since
P is 7. by Lemma 2.2, there exist s;,f; such that, in p = P/{a).a P,

dyds & Cy(pray -+ pia))Cy(piv1), C3(01 - pic) = Cu(py - - - pict;), and C;(pm) =
Cy(pir1)- Let s = sos51 and ¢ = toty. Then, in P = P/{a},a|)’, we have
dods & Calpray - pioi)Ca(pis1), C3(1 - api) = Ca(pr - apy), and C3(pi1) =
Cu(pi+1). Now we note that ¥ #y; y. For, if ¥ ~; p, then p|---playpl,, €
Apiog - - - agpiiA, and hence p - - - pidyotidspiv) = dspi o - - - aipivide for some ds, dg €
A. Then, by Lemma 3.2, and since A C Z(4g), we havep, = d5p|d;‘,&] = d5oqd§'
pidads = dspids ' (dhds). &; = (dods) ' dstyds ' dads, and piry = (dads) ™' dspride; hence
ds = d5'dydy by Lemma 3.2. It follows thatds ' dads € Cy(Firr).andds € Cy(p1 - aip)).
Thus dbd; € Cy(pr - aipi)Cy(pi1) = Capray - - - pia;)Ca(pi+1), a contradiction.
If () is true, then let play - - - pho, = dipia) - - - patnds, wWhere dy,dy € A and
d\dy # 1. Choose si,; such that did, ¢ (a.a})". Let s = sos, and t = tot;.
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We note that X #; v in P = P/(a}.a})". For, if ¥ ~; 7, then d\p - pyaydy =
d;‘p. ay - paayds, for some ds € A. Hence, by Lemma 3.2, we havem = 3;"[91M,
&, = (dsd)) 'aydsd,, . ... pn = (dsd)) ' padsd), apdy = (d3d))"'&,ds. Thus we have
> = c_i[" , which contradicts the choice of 5. ¢;. This completes the proof. n

COROLLARY 4.2. Let P be the polygonal product of the f.g. abelian groups
Ao Ay ... Am (m > 3), amalgamating subgroups (a,). . ...{an). (ao), with trivial in-
tersections. Then P is c.s.

Corollary 4.2 generalizes Theorem 3.4 in [1]. We also have the following.

COROLLARY 4.3. Let Eyy = Ay *(q)) A2 %143~ X(a, ) Am—1 (m > 3), where the A; are
polycyclic-by-finite and a; € Z(A;—) N Z(A4;) with {a;) N (ai+1) = 1. Then E,, is c.s.

PROOF. Let E = (o, ai)*(q,y ((@1) X A1) *(ayy % (g s (Am—1 X {@m)) ¥4,y (Qme Gmr1 ),
and F = (ao.ams2) *(4,.,) (@m+2.@m+1), Where (ag.ai), (am.ams1), (@o.am+2), and
(@m+2- ams1 ) are free abelian groups of rank 2. We write H = (ag. am+1) = (ao) * (am+1),
and P = E xy F. Then P is a polygonal product of polycyclic-by-finite groups, amalga-
mating cyclic central subgroups with trivial intersections. Hence P is c.s. by our main
result. Note that there is a natural homomorphism 7: P — E,, such that g;7 = 1 fori = 0,
1,m+1,m+2and |g, is the identity map on E,,. Simply, E,, is a retract of P. It follows
immediately that £, is c.s., since P is c.s. »
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