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OPTIMALITY AND DUALITY WITHOUT A CONSTRAINT
QUALIFICATION FOR MINIMAX PROGRAMMING

HOUCHUN ZHOU AND WENYU SUN

Without the need of a constraint qualification, we establish the optimality necessary
and sufficient conditions for generalised minimax programming. Using these opti-
mality conditions, we construct a parametric dual model and a parameter-free mixed
dual model. Several duality theorems are established.

1. INTRODUCTION

Consider the generalised minimax programming:

(P) min sup 4>{x,y)
xes y e y

where S is nonempty subset of Rn defined by

S= {xe Rn : hj{x) ^ 0 , j = l , 2 , . . . , m } .

Y is a compact subset of Rn, <j>(x,y) : Rn x Y —> R is a convex function with respect to
x, and hj(x) : Rn -> R, j = 1 , . . . , m are convex functions, for each x € Rn, and <f>(x, y)
is upper semi-continuous with respect to y.

Ben-Israel, Ben-Tal, and Zlobec presented some necessary and sufficient optimality
conditions for (scalar) convex programming problems without any constraint qualifica-
tion in [2], and Egudo, Weir, and Mond gave some necessary and sufficient optimality
conditions for multi-objective convex programming problems without any constraint qual-
ification in [4]. Latter, Mond[7], Ben-Tal, and Zlobec [2], Egudo [4], Weir [8, 9] used
these optimality conditions in designing various dual models and established several du-
ality theorems without any constraint qualification for the (convex or generalised convex,
single-objective or multi-objective) mathematical programming.

Motivated by [3, 2], Lai, Liu and Tanaka [6] established some optimality necessary
and sufficient conditions for the generalised fractional programming without any con-
straint qualification and constructed a parametric dual model and two parameter-free
dual models.
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In this paper, we establish the optimality necessary and sufficient conditions for
generalised minimax programming (P) without the need of a constraint qualification.
Using these optimality conditions and the ideas of Bector [1], we construct a parametric
dual model and a parameter-free mixed dual model, whereas the latter model unifies the
two parameter-free dual models of Lai, Liu andk Tanaka in [6]. Several duality theorems
are established, subsequently, one of the problems posed by Lai, Liu and Tanaka [6] is
solved.

2. NOTATIONS AND PRELIMINARY RESULTS

In this section, we first introduce some notation. Let J — {1 ,2 , . . . ,m}, and define

J(x) = {j€J\ hj(x) = 0}

as the set of active indices at x. The minimal index set of the binding constraints at x

for 5 is
J= = {j g J | hj(x) = 0, for all x eS}

We also denote

•/<(£) = J(x) \J= = {j E J(x) | 3xi € S to satisfy hjfa) < 0}.

Define the set
S= = {x£Rn\hj(x)^0,je J=}

with the convention
S= = Rn, ifj= = 0.

Since J = C J, the set 5= D S. Obviously,

S= = {x e Rn \ hj(x) =0,j e J=}.

DEFINITION 2.1. ([6]) For a function h : Rn >-¥ R and a point x € dom(h), the cone
of directions of constancy at x with respect to the function h is defined by

Dj^(x) = {d 6 Rn | there exists an 5 such that

h(x + ad) = h(x), for every 0 < a < a} .

We use the following notation:

Dj(x) = Dl.{x), Dj(x) = f) Df(x).

If J = 0, we define Df(x) = Rn.
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DEFINITION 2.2. ([6]) Let M C i f be a nonempty subset. The positive dual cone

M* of M is defined by

M* = {d e Rn | dTx Z 0, for all x e M}.

LEMMA 2 . 3 . ([7]) Ifx € 5 and u e S=, then

(x - u)Td ^ 0, for aJJ d € [Z?J=(a;)]*.

Let .A : Rn *-¥ R be a convex continuous function. We consider the following scalar
minimisation problem:

(SP) min{,4(z) | x € 5 } .

LEMMA 2 . 4 . ([2, Corollary 3.7]) Let x0 € 5 . Then, x0 is an optimal solution

of (SP) if, and only if, there exist jj ^ 0, j € J<(x0), such that

0€dA(xo)+
3€J<(xo)

Let Y is a infinite compact set, fy,y € V are convex functions, we assume that

f{x) := sup{fy{x) | y G Y} < +oo for all x € fl",

Y(x) = {yeY\fy(x) = f(x)}.

LEMMA 2 . 5 . ([5, Theorem 4.4.2]) Assume that fv,y eY are convex functions,
Y is a inGnite compact set, on which the functions y »->• fy(x) are upper semi-continuous
for each x € Rn. Then

df(x) = co{udfy(x),yeY(x)}.

In the following, we shall consider elements of the set i?+ defined as

R^ .= {A : Y -> R+ \ Xy — 0, for all y except for a finite number}.

LEMMA 2 . 6 . For each x e S, one has

f(x)=sup[4>(x,y)] = s u p V Py<t>{x,y)\,

where U = {$ e R{+] \ E ^ - l\,D(0) = {y € Y \ 0y ± 0}.

PROOF: For arbitrary y0 e Y, let @ — {0y), where fiy = 1, if y — y0; otherwise,

/?y = 0, thus /? € U and

<t>{x,yo)=
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By the arbitrariness of j/o G Y, we derive

sup <f>(x, y) ^ sup Y\ Pv<t>{x, y) •

"6y "&Ke5u» J

On the other hand, For arbitrary ft — (/3y) € U, we have

J2 Py<t>(x,v) < max{<}>(x,y) \ y e

By the arbitrariness of /? € f/, it holds that

sup Y] 0y<l>{x,y)\ ^sup(<f>(x,y)).
^ U W, J vev

sup0(x,2/) =sup \ 0y4>(x,y)\.

Thus

3. OPTIMALITY NECESSARY AND SUFFICIENT CONDITION FOR (P)

In this section, we shall establish optimality necessary and sufficient conditions for
the generalised minmax programming problem (P).

In the following, we suppose that for each v £ R+,

f(x) = sup{0(z, y) | y € Y} < +oo for all x € Rn,

and denote:

L(x0) = \y € Y | 4>(xo,y) = sup<£(zOly)},

ftWxo>) _ | a . £,(a;0) —>• .R+ I ay = 0, for all j / except for a finite number},

and Uo = {a £ R^{xo) | X) o , = l } , A)(o) = {j/6 L(rc0) I " , # 0}.

Based on Lemmas 2.4 and 2.5, we can get the following result.

THEOREM 3 . 1 . xo € S is an optimal solution of (P) if, and only if, there exist

a € Uo, and 7, ^ 0, j € J<(x0), suci that

0€ ^ av[d<K;y){x0)]+
y€D0(a)

PROOF: If x0 is an optimal solution of (P), then, by lemma 2.4, there exist
0,j € J<(xo), such that

jeJ<(x0)
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It follows from Lemma 2.5 that there exists a G Uo, such that

OG £ ay[d<t>(;y)](x0)+ £ yjdhi(x0)-[Dja{x0)]'.
y€D0(a) j€J<(xo)

Conversely, if there exist a G Uo, and 7, ^ 0, j G J<(xo), such that

OG Yl «»[0*(-.w)](*o)+ £ lJdhj(x0)-[D%(x0)Y,
y€D0(a)

then from Lemma 2.5, it follows that

ay[d4>(;y)](x0)cco{ (J
) (yeL(xo)

So we obtain

0&dsup[(/>(;y)](x0)+ 53 7jdhj(xQ) - [D%{xo)Y.

By lemma 2.4 we can deduce that zo is &n optimal solution of (P).

For a G U, we denote by

J=l

COROLLARY 3 . 2 . (Optimality Necessary Condition) If x0 € S is an optimal
solution of (P), then there exist a G U, and 7 G i?+, such that

(3-1) 0 G a[aT$(-,2/)](xo) + 5[7
T//](xo) - [Dj.(x0)]*,

(3.2) aT0(xo,2/) = /(xo) ,

(3.3) JTH(x0) = 0.

PROOF: In the proof of Theorem 3.1, if we set

ay = 0, y G r \ L(a;0), and 7,- = 0 , ; £ j \ ^ ( l o ) ,

then (3.1)-(3.3) hold. D

THEOREM 3 . 3 . (Optimality Sufficient Condition) Let x0 G 5 and /(x0)

= supU(io,2/)l- Assume that there exist a G U and 7 G RT such that the expres-

sions (3.1)-(3.3) hold. Then, x0 is an optimal solution of (P).
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P R O O F : Suppose to the contrary that XQ is not an optimal solution of (P). Then

there exists a feasible solution Xi € 5 such tha t

>y)] <f(x0)-

From Lemma 2.6, we get

Combining with relation (3.2) yields

aT$(xuy)< aT$(x0,y).

Since xx € S, 7 € #+, using (3.3), we have

7T#(*i) ^ 0 = jTH(x0).

Hence,

(3.4) ar*(xi,v) + 7Ttf(*i) < aT$(xQ,y) + jTH(x0).

By (3.1), there exist

C G 5[aT$(-,2/)](x0),a e 9[

such that
£ + CT - T = 0.

By the convexity of functions aT<$(-, j/),7rH, we have

a r * ( i i , y) - aT$(x0, y) + 7T#(*i) - 7T^(z0) ^ (n - xo)
T(£ + a) = {n - xo)

Tr ^ 0.

This contradicts inequality (3.4). So, io is an optimal solution of (P). D

4. PARAMETRIC DUAL MODEL

In this section, we consider the following parametric dual problem:

(Dl) maxA

(4.1) subject to Oed[aT$(;y)]{u) + d{yTH](u)- [Dj_(u)]*,

(4.2) ar$(u,7/)+7
Ttf(u)£A,

(4.3) aet/jefl?,

(4.4) u 6 5 = .

We denote Sx the set of all feasible solutions (u, a, 7, A) € 5 = x U x R™ x R+ of Problem
(Dl). Then, a weak duality theorem is established as follows.
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THEOREM 4 . 1 . (Weak Duality) Let x 6 S and (u, a, 7, A) € Si. Then

A ̂  sup(j>(x,y).
y€Y

PROOF: By relation (4.1), there exist

(6a[oT*(-,»)](u), aed[jTH](u), T£[DJ=(U)Y,

such that

£ -T - 0.

By the convexity of functions aT^(-,y),jTH, we have

aT$(x, y) - aT$(u, y) + -yTH{x) - jTH(u) ^ (x - u)T{£ + a) = {x- U)TT > 0.

It follows that

(4.5) aT$(x, y) + jTH(x) > a r$(u,y) + 7
T i / ( U ) .

From (4.2), (4.5) and jTH{x) ^ 0, we get

aT${x,y) > aT$(u,y)+'YTH(u) > A.

Hence, from Lemma 2.6, one has

(4.6) sup <£(z, y) - sup V ] Py</>(x, y) ^ aT$(x, y) ^ A.

THEOREM 4 . 2 . (Strong Duality) Let u e S be an optimal solution of(P). Then
there exist a e [ / , )€ i?™, A € R+ such that (u,a,7, A) € Si is an optimal solution of
(Dl), and the optimal values of (P) and (Dl) are equal.

PROOF: By Corollary 3.2, there exist a e U,y E it!™, A € R+ such that (u,a,7, A)
is a feasible solution for (Dl) and A = f{u), by Theorem 4.1, we derive that (u,a, 7, A)
is an optimal solution for (Dl), and the optimal values of (P) and (Dl) are equal. D

THEOREM 4 . 3 . (Strict Converse Duality) Let x G S and (u,a,7,A) € Si be
optimal solution of (P) and (Dl), respectively. IfaT$(-,y), 7T#(-) are convex and one
of them is strictly convex at u, then x = u; that is, u is an optimal solution of (P) and
f{x) = A.

PROOF: Suppose to the contrary that x 7̂  u. From Theorem 3.2, we know that
there exist ai € U, j x € #+,Ai e R+ such that (x,a\,yl,Xi) £ Si is an optimal solution
of (Dl) with the optimal valueAi = f(x). Similar to the proof of Theorem 4.1, we can
obtain the strict inequality f(x) > A which contradicts that f(x) = Ai = A. The proof is
complete. D
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5. M I X E D - T Y P E DUAL MODEL

In this section, we shall introduce the parameter-free mixed type duality for (P)
and establish several mixed duality theorems. The following dual problem is called a
Mixed-type dual problem:

(MD) sup aT$(u, l
(5.1) subject to Oed[aT$(;y)]{u)+d[yTH){u)- [Dj.(u)]\

(5.2) ljhj(u)^0,jeJ2,

(5.3) a € U, 7j > 0, j € J, u € S=,

where 7i is a subset of J = { 1 , . . . , m}, J2 = J\Ji.

We denote the set of all feasible solution (u, a, 7) € S=xUx R™ of problem (MD) by
52- In the following, we shall prove the weak duality, strong duality, and strict converse
duality theorems.

THEOREM 5 . 1 . (Weak Duality) Let x € 5 and (u, a, 7) € S2. Tien

PROOF: By (5.1), there exist

such that

(5.4) q + r + e-d-0.

Using the characterisation of subgradients, (5.4), the fact that •yTH(x) ^ 0 ,V x € 5,
and (5.2), we have

aT$(x, y) - [aT$(u,y) +

^ [aT$(x!2/) - ar$(U,j/)] + i-yl

^ (x - u)r[g + r + e] = (x - u)Td ̂  0.

So
aT$(x,y) > aT$(u,y) + 7j,ff/,(«)-

By Lemma 2.6, we get

f(x) = sup[l3T${x,y)} > aT$(x,y) > aT${u,y)

Then, the desired result is obtained. D
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THEOREM 5 . 2 . (Strong Duality) Let x e S be an optimal solution of(P). Then

there exist a € U, 7 6 R+, such that (x,a, 7) € 52 is an optimal solution of (MD), and

the optimal values of (P) and (MD) are equal.

PROOF: By Corollary 3.2, there exist a € f/,7 € /?+, such that

(5.5) 0 6 d[aT$(;y)](x) + dtfH^x) - [D%(x)]\
(5.6) aT<t>(x,y) = f(x),
(5.7) lTH{x) = 0.

In fact, from the proof of Theorem 3.1, we know that jjhj(x) = 0, for all j e J. Therefore,
(x, a, 7) is an feasible solution of (MD), and

f(x) = aT${x, y) = aT$(x, y) + %HJx (x).

Hence, {x,a,y) is an optimal solution of (MD), and the optimal values of (P) and (MD)
are equal. D

THEOREM 5 . 3 . (Strict Converse Duality) Let ~x and (u,a,7) be optimal solu-
tion of (P) and (MD), respectively. If aT$(-,y), 7j,#./i(-)> I^HJA')'

 a r e convex and
one of them is strictly convex at u, then x = u; that is, u is an optimal solution of (P)
and

}(x)=aT$(u,y)+ir
hHJl{u).

PROOF: Suppose to the contrary that x ^ u. From Theorem 5.2, we know that
there exist a € U, 7 € R™, such that (x, a, 7) is an optimal solution of (MD) with the
optimal value

f(x)=aT$(x,y) + >ylHJl(x).

Similar to the proof of Theorem 5.1, we can obtain the strict inequality

f{x)>aT<b{u,y)+ir
JiHJx{u).

This contradicts that

f(x) = aT^(x,y) + jlHJl(x) = ar$(u,y) + l^Hj^u).

Therefore,
x - u, and f(x) = aT$(u, y) + 7^HJl{u).

The proof is complete. D
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