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An open billiard is a dynamical system in which a pointlike particle moves at constant
speed in an unbounded domain, reflecting off a boundary according to the classical
laws of optics [4]. This thesis is an investigation of dimensional characteristics of
the nonwandering set of an open billiard in the exterior of three or more strictly
convex bodies satisfying Ikawa’s no-eclipse condition [5, 11]. The billiard map for
these systems is an axiom A diffeomorphism with a finite Markov partition. The
nonwandering set is a hyperbolic set with stable and unstable manifolds satisfying
a certain reflection property. The characteristics we investigate include the topological
and measure-theoretic entropy, topological pressure, Lyapunov exponents, lower and
upper box dimensions and the Hausdorff dimension of the nonwandering set. In
particular, we investigate the dependence of the Hausdorff dimension on deformations
to the boundary of the billiard obstacles. While the dependence of dimensional
characteristics on perturbations of a system has been studied before [6, 9], this is the
first time this question has been answered for dynamical billiards.

We find upper and lower bounds for the Hausdorff dimension using two different
methods: one involving bounding the size of curves on convex fronts and the other
using Bowen’s equation and the variational principle for topological pressure. Both
methods lead to the same upper and lower bounds. In the first method, we use a well-
known recurrence relation for the successive curvatures of convex fronts to find bounds
on the size of the fronts. This allows us to construct Lipschitz (but not bi-Lipschitz)
homeomorphisms between the nonwandering set and the one-sided symbol space.
From there we obtain estimates of the dimension. Kenny [7] used this method for
open billiards in the plane. We extend it to higher dimensions and make improvements
to the results in the plane. This work has been published in [13].
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The second method is a more general approach from the dimension theory of
dynamical systems. In the plane, the billiard map is conformal, meaning that its
derivative is a multiple of an isometry. For conformal maps, the Hausdorff dimension
of nonwandering sets is well understood and satisfies Bowen’s equation [2, 8]. In
higher dimensions, the billiard map is nonconformal and the dimension only satisfies
some estimates [3].

We consider what happens to the nonwandering set when one or more obstacles
in a billiard are deformed or shifted. Consider a billiard with Cr-smooth boundary,
deformed Cr′-smoothly with respect to some parameter α. In two and higher dimen-
sions, we show that all points in the nonwandering set depend Cmin{r−1,r′}-smoothly
on α. We use a well-known lemma [10] about the position of periodic points in a
noneclipsing billiard, and differentiate these points to get a cyclic tridiagonal system
of equations. In more than two dimensions, the system is block cyclic tridiagonal. We
extend a theorem from [12] to bound the solutions to these equations.

For billiards in the plane, we use Bowen’s equation to further show that the
Hausdorff dimension depends smoothly on the deformations. Specifically, if the
boundary of the billiard obstacles are Cr and they are deformed Cr′-smoothly with
respect to a parameter α, then the Hausdorff dimension is a Cmin{r−3,r′−1}-smooth
function of α. We find an upper bound for the derivative of the Hausdorff dimension
with respect to α. Finally, we show that when the billiard deformation is real analytic,
the Hausdorff dimension is also real analytic with respect to α. This work has
been submitted for publication (see [14]). For higher dimensions, there is no exact
equation for the Hausdorff dimension to differentiate because the billiard ball map is
nonconformal.

We obtain some new results for nonconformal hyperbolic dynamics. The concept
of an average conformal repeller was developed as a generalisation of a conformal
repeller [1]. We extend this idea by generalising conformal hyperbolic sets to average
conformal hyperbolic sets. A hyperbolic set is average conformal if it has only two
distinct Lyapunov exponents, one positive and one negative. We obtain an equation
for the Hausdorff dimension of an average conformal hyperbolic set. While we know
that a billiard in three or more dimensions is never conformal, it is unknown whether
there exist billiards that are average conformal. This work has been submitted for
publication (see [15]).

Finally, we consider several examples of billiards with deformations and apply the
techniques developed in this thesis to obtain numerical upper and lower bounds for the
Hausdorff dimension and its derivative.
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