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SOME PROPERTIES OF EQUATIONS IN INTEGERS 

BY 

M. FAIERMANC1) 

1. Introduction. In certain boundary value problems associated with two-
parameter ordinary differential equations defined and having 2p, (p > 1), turning 
points in a given interval, there arises certain equations in integers whose solutions 
determine the coefficients in the asymptotic expansions for the eigenvalues 
[1,2, 3, pp. 134-139]. 

As an example consider the system discussed in [1]; we have here the differential 
equation in the two parameters X and //, y"(x)+(2.+jLLa(x)+q(x))y(x)=0, 
0 < * < 1 , r=d/dx, together with a pair of linear, homogeneous boundary con
ditions, and where in [0, 1] a(x) and q(x) are real-valued continuous functions, 
a(x) e C4 and attains its absolute maximum in [0, 1] at the points {AJ3^, 
0<AX<- • -<hp<l9 p>l, with 0"(A,)<O, i = l , ...,p. For fixed integer m > 0 , 
let Aw(,a) denote the mth eigenvalue of our system; then we have shown in [1] that 
as jjL-xx), km(jLc)=fi[B0(r, ri)+Bx(r9 n)^1/2+B2(r9 ri)ff1+o(jdr1)], for some integer 
tuple (r,7i), and where Bi(r9n)=Bi(a

i0)(hr)9.. . , a(4)(Ar), «), /=0 , 1,2, and 
a{j)(hr)=dja(hr)ldxj, j=0,. . . , 4. Hence in order to deduce the coefficients in the 
asymptotic formula for Am(//), it remains to determine the tuple (r, n). To this 
end we put A=sup a(x) in [0, 1], and for / = 1 , . . . , / ? , a—— fl(2)(A,)/2, vi(ia)= 
[(4^ai)^

l/2(Am(iw)+//y4)—|], / />0 , and for [i sufficiently large we approximate an 
eigenfunction corresponding to lm{p) in the neighbourhood of A* by means of the 
parabolic cylinder function Z)v (At)(X), lyi=(4//Ai)

1/4(x—h{). It can then be shown 
that Vida) tends to a finite limit, say vi9 as ^->oo, — i<vi9 z = l , . . . 9p9 and at 
least one such limit is an integer. If precisely one such limit is an integer then we 
must have vr=n; and if g(v) denotes the number of real zeros of Dv(s)9 [4, p. 126], 
then g(n)+2Zlg(vJ=m9 ' implies i^r. Since (ai)

1/2(vi+i)=^r)1Hn+^, i = 
1,. . . , p, we see that the tuple (r, n) must be chosen as to render soluble the equa
tion in integers/; (n)=m, where/ r(«)=g(«)+2'Li g((arl

aùll2(n+%)—$)- But then 
one may ask whether there is a tuple (r, n) such that fr(ri)=m, or if there is, is it 
unique? It is precisely these questions which are discussed in the sequel; and for 
further discussion and application of these and similar results to our two-parameter 
eigenvalue problem we again refer to [1], 

2. Equations in integers. Let {a^fi=l9p>29 be a set of p positive numbers. For 
r, s=l,... ,/?, and x^O, let ArtS(x) denote the greatest positive integer less than 
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(x(ar/fls)
1/2+i) or zero if such a positive integer does not exist; (here and in the 

sequel the positive square root is always assumed). Let us denote by R the subset 
of the rationals consisting of all numbers of the form ((2k+l)/(2q+l))2, k, q 
integers; and for nonnegative integer n put: 

(1) fr(n) = n+iX,0 t + i), r = 1, . . ., p; 
s = l 
s*r 

then we shall prove the following theorem. 

THEOREM 1. Iffa/ty) $ R, / , y= l , . . . , p, i^j, and m is any nonnegative integer, 
then there is an r0 and an n0 such that fr (n0)=m. The tuple (r0, n0) is unique. 

First for simplicity of notation, let us put6( / )=(^) l / 2 , f = l , . . . ,/?, and b(i9j)= 
(ailaj)1/2> /, 7 = 1, . . . ,p. Then before proving Theorem 1, let us observe a case 
where the hypothesis of this theorem is violated. Put p=2, a1 = l, a2=9; then 

/ i ( 0 ) = 0 , / 1 ( l ) = l , / 1 ( / i ) £ 3 for « > 2 , / 2 ( 0 ) = l , / 2 ( l ) = 5 , / 2 ( « ) > 9 for n>l. Hence 
fr(n)=m is (I) uniquely soluble if m = 0 , (II) soluble, but not uniquely if m = l , 
(III) not soluble if m=2. 

Now with the assumption that (ajaj) $ R, i, y = l , . . . ,p, iy£j, it is clear that 
without loss of generality we may assume a±<a2<- • *<<v Under both these 
assumptions then, let us first prove the following lemma and then Theorem 1. 

LEMMA 1. Iffiin^^fjQt^), then i=j and nx=n2. 

Proof. Under our hypotheses we see that for any integer n>0, n<fx{n)<npy 

fr(n+l)>fr(n)+h r = l , . . . , / > , and fr+1(n)>fr (« )+ l , r = l , . . . , ( p - 1 ) ; and 
clearly our lemma is true if /==/. Now let us assume fi(n1)=fj(n2) for /<y, say; 
then n2<nl9 and from equation (1) we have 

(2) 2 [AiÀn2+l)-Aitln1+\)]+AJtln2+\)--'Au{n1+\) = n±-n2 
s=l 

If Kj)(«2+!)>Z>(0(«i+D, t h e n ^ ( « 2 + i ) > " i + l > ^, ,0*i+i)<"2> and 
^•,s(w2+i)^^i,s(w i+i)» s=l9. . . 9p9 sj^i9j\ and hence the left hand side of (2) 
is not less than nx—n2-\-\9 which is a contradiction. Similarly if 6( /)(«2+J)< 
6(/)(«i+i), then the left hand side of (2) is not greater than n1—n2—1, which again 
is a contradiction; and this completes the proof of our lemma. 

Proof of Theorem 1. First we note that Lemma 1 proves the uniqueness part of 
our theorem; then since / i (0)=0, our theorem is true for m=0. Let us now 
assume m > 1 ; and since/x(m)>m, we see that our theorem is proved once we show 
that the set of integers {r}^^ is contained in the set {fr(ri) | « = 0 , . . . , m, 
r = l , . . . ,/>}. 

Now we observe that if 6(1, 2 ) ( m + J ) < | , then f1(n)=n, n=0,. . . , m, and 
hence our theorem is true. So let us then suppose that for some v, 2<v<p 
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b{\9 v)(m+\)>\9 and if v<p, b{\9 v+\)(m+\)<\. Then for z=2 , . . . , v9 let us 
introduce the positive integers n(i9j)9 7 = 1 , 2 , . . . , with the property that 
b(l9i)(n(i,j)+i)>(j-l)9 b(l9i)(n(i9j)-$)<(j-$)9 and where «(/, 1 ) < / I ( I , 2)< 
. . . , n(i, m^<m9 n(i9 m i + l ) > m , m^l. We observe that 1<«(2, 1)<«(3, 1)< 
• • -<n(v9 1), and m>m2>mz>.- • ->mv; and for f = 2 , . . . , v andy^>l, we have 

(3) (n(iJ)-MJ-i) < b(i, 1) < (n(i,j)+l)IU-l). 

Let us remark now that if v<p9 then, 

(I) AltS(n+i)=09 n=09. . . , m9 s=v+l9. . . 9p9 and, 
(II) for i = 2 , ...9v9 Ait9(n+l)=09 n=09... 9 (n i , - l ) , s = r + l , . . . 9p. 

Statement (I) follows from our definition of v9 and statement (II) from the fact 
that for z = 2 , . . . , v9 

b(i9 v+ lXm, -* ) = b(l, v+l)b(i9 l ) (m , - i ) < 6(1, v+l)(n(i, m,)+J) 

< &(1>H-I)(m+1)< i 

using equation (3). 

We now conclude that, (I) / i ( ^ ) = ^ + 2 v = 2 m i and, (II) for z = 2 , . . . , v, 
Ail(mi—%)=n(i9 mt). Statement (I) follows from above and statement (II) from 
equation (3) if y there is replaced by mi9 i=29. . . , v. Hence if v=29f2(m2— 1)= 
m2—l+n(29 m2)<m+m2—l<f1(m); and since the (A(m)+1) elements of the set 
{fr(ri) | n=09. . . , (mr— 1), r = l , 2, m1=m+l} are all distinct and each does not 
exceed fi(m)9 then it is clear that these elements are precisely the integers {r}f

r^
) 

and so our theorem follows for this case. 
Therefore let us assume v>2; we shall now show that if 2<i9j<v and ijkj then 

Aijirrii—DKmj and ^ , i ( ^ — ^ ) < m f . To this end select the integers k9 q so that 
2<fc, q<v, k?£q; and fix the integer 5-^1 so that n(q9 s)>n(k9 1) and denote by 
n(k9 r) the largest number from the set {n(k9j)}f=1 not exceeding n(q9 s). Then 
b(l9q)<(s+i)l(n(k9r)+$) and b(l9k)<(r+i)l(n(q9s)+%). Also *(fc, 1)< 
(«(/:, r)+£)/(r—£) and % , 1 ) < ( % , J)+i)/(^—i), as seen from equation (3); 
thus we conclude 

(4) &(fc,9)(r- i)< ( s+ i ) , and % , fc)(s-t)< ( r+J) . 

Hence going back to the first statement of this paragraph we see that if n(i9 m t )< 
n(j9 nij) then our result follows from equation (4) if we put k=i, r=mi9 q=j9 and 
s=mj'9 while if n(j9m^<n(i9m^ then our result again follows if we put k=j9 

r=mj9 q=i, and s=mi. 
Thus we see that if v>2, then for z=2 , . . . , v9 

V V 

fiinii-l) < m*—l+n(î, m^)+^mj < m — l + J m , <A(m); 
3=2 ?'=2 
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and since the (A(w) + 1) elements of the set {fr(n) | n=0,. . . , (mr— 1), r= 
1,. . . , v, mx=m+l} are all distinct and each does not exceed fx(m)9 then it is 
clear that they are precisely the integers {r}'L(Jl). This completes the proof of our 
theorem. 
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