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SOME PROPERTIES OF EQUATIONS IN INTEGERS

BY
M. FAIERMAN()

1. Introduction. In certain boundary value problems associated with two-
parameter ordinary differential equations defined and having 2p, (p > 1), turning
points in a given interval, there arises certain equations in integers whose solutions
determine the coefficients in the asymptotic expansions for the eigenvalues
(1,2, 3, pp. 134-139].

As an example consider the system discussed in [1]; we have here the differential
equation in the two parameters A and wu, y"(x)+(A+ua(x)+4q(x))y(x)=0,
0<x<1, '=d|dx, together with a pair of linear, homogeneous boundary con-
ditions, and where in [0, 1] a(x) and ¢(x) are real-valued continuous functions,
a(x) e Cy and attains its absolute maximum in [0, 1] at the points {A;}"_,,
o<m< - -<h,<1, p>1, with a"(h;)<0, i=1,...,p. For fixed integer m>0,
let 4,,(«) denote the m™ eigenvalue of our system; then we have shown in [1] that
as pu—>0, A,,(w)=ulBy(r, n)+By(r, n)u12+By(r, mu+o(u1)], for some integer
tuple (r,n), and where B(r,n)=B;(a"h,),...,a%,),n), i=0,1,2, and
a9 (h,)=d‘a(h,)[dx’, j=0, ..., 4. Hence in order to deduce the coefficients in the
asymptotic formula for 1,(ux), it remains to determine the tuple (r, n). To this
end we put A=sup a(x) in [0, 1], and for i=1,...,p, a;=—a®(h)/2, v,(w)=
[(4pa)2(A,,(w)+pA)—3], >0, and for u sufficiently large we approximate an
eigenfunction corresponding to ,,(x) in the neighbourhood of 7; by means of the
parabolic cylinder function D, (,(s,), s;=(4uh)'’*(x—h,). It can then be shown
that »,(u) tends to a finite Iimft, say v;, as u—o0, —3<v;, i=1,...,p, and at
least one such limit is an integer. If precisely one such limit is an integer then we
must have »,=n; and if g(v) denotes the number of real zeros of D,(s), [4, p. 126],
then g(n)+3:2, g(v)=m, ' implies i#r. Since (a,V2(v;+3)=(a,)'2(n+3), i=
1,...,p, we see that the tuple (r, #) must be chosen as to render soluble the equa-
tion in integers f, (n)=m, where f,(n)=g(n)+ "2, g((a,/a}'*(n-+1)—}). But then
‘one may ask whether there is a tuple (r, n) such that f,.(n)=m, or if there is, is it
unique ? It is precisely these questions which are discussed in the sequel; and for
further discussion and application of these and similar results to our two-parameter
eigenvalue problem we again refer to [1].

2. Equations in integers. Let {a,}7_;, p>2, be a set of p positive numbers. For
rys=1,...,p,and x>0, let 4, (x) denote the greatest positive integer less than
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(x(a,/a,)'2+%) or zero if such a positive integer does not exist; (here and in the
sequel the positive square root is always assumed). Let us denote by R the subset
of the rationals consisting of all numbers of the form ((2k+1)/(2q+1))% k, q
integers; and for nonnegative integer »# put:

D
1) fi(n) = n+zAr.s(n+%)> r=1,...,p;
s=1
s#Er

then we shall prove the following theorem.

THEOREM 1. If (a;/a;) ¢ R, i, j=1, ..., p, i#], and m is any nonnegative integer,
then there is an ry and an ny such that f, (ng)=m. The tuple (ry, ny) is unique.

First for simplicity of notation, let us put b(i)=(a,)"2, i=1, ..., p, and b(i,j)=
(a;/ap)''3, i, j=1, ..., p. Then before proving Theorem 1, let us observe a case
where the hypothesis of this theorem is violated. Put p=2, a,=1, a,=9; then
f100)=0, fi(1)=1, fi(n) >3 for n2>2, £,(0)=1, £,(1)=5, fo(n)>9 for n>2. Hence
f+(m)y=m is (I) uniquely soluble if m=0, (II) soluble, but not uniquely if m=1,
(III) not soluble if m=2.

Now with the assumption that (a;/a,) ¢ R, i, j=1,...,p, i##], it is clear that
without loss of generality we may assume a;<a,<---<a,. Under both these
assumptions then, let us first prove the following lemma and then Theorem 1.

LemMa 1. If fi(ny)=f;(ny), then i=j and ny=n,.

Proof. Under our hypotheses we see that for any integer n>0, n< f;(n) <np,
frm+D)>f,(m+1, r=1,...,p, and f, () >f, m+1, r=1,...,(p—1); and
clearly our lemma is true if i=j. Now let us assume f;(n,)=f;(n,) for i<j, say;
then n,<n,, and from equation (1) we have

k4
(2 821 [4;,{ne+ ) —A;, (i + D]+ A5, (o + 3 — 4, (i +3) = ny—n,
$¥F4,J

If b(a+H>b@)(m+3), then 4, ,(my+i)>m+1, 4, ,(m+3H<n,, and
A; (n+H>A4; (m+3), s=1,..., p, s5#i, j; and hence the left hand side of (2)
is not less than n;—n,+1, which is a contradiction. Similarly if b(j)(n,+3%)<
b(i)(n;+%), then the left hand side of (2) is not greater than n, —n,—1, which again
is a contradiction; and this completes the proof of our lemma.

Proof of Theorem 1. First we note that Lemma 1 proves the uniqueness part of
our theorem; then since f;(0)=0, our theorem is true for m=0. Let us now
assume m > 1; and since f;(m) >m, we see that our theorem is proved once we show
that the set of integers {r}10" is contained in the set {f,(n)]n=0, e, m,
r=1,...,p}

Now we observe that if b(1, 2)(m+%)<3, then fi(n)=n, n=0,...,m, and
hence our theorem is true. So let us then suppose that for some », 2<v»<p
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b(1, »)(m+3)>4, and if v<p, b(1, v+1)(m+3%)<3}. Then for i=2,...,, let us
introduce the positive integers n(i,j), j=1,2,..., with the property that
b(1, )(n(i, )+3)>(j—1), b1, DG, )—H<(—1), and where n(i, )<n(i, 2)<
., n(i,m)<m, n(i, m;+1)>m, m;>1. We observe that 1<n(2, 1)<n(3, N
---<n(, 1), and m>my >mg>- -+ >m,; and for i=2, ..., v and j>1, we have

(3) (n(i, N—HI(G—1) < b(i, 1) < (n(i, H+H/(—D).
Let us remark now that if v<p, then,

M 4, ,(n+4)=0,n=0,...,m,s=v+1,...,p, and,
ap fori=2,...,, 4; (n+34)=0,n=0,..., (m;—1), s=v+1,...,p.

Statement (I) follows from our definition of », and statement (II) from the fact
that for i=2,...,v,

b(i, v+ 1)(m;—3) = b(1, v+ 1)b(i, D(m;—3) < b(1, v+1)(n(i, m)+%)
< b1, v+D(m+3) < 3,
using equation (3).

We now conclude that, (I) fi(m)=m+>'_,m; and, (Il) for i=2,...,,
A;1(m;—3)=n(i, m;). Statement (I) follows from above and statement (II) from
equation (3) if j there is replaced by m,, i=2, ..., Hence if v=2, foy(m,—1)=
my—14-n(2, my) <m-+my—1< fi(m); and since the (f;(m)+1) elements of the set
{fr(m l n=0,..., (m,—1), r=1,2, my=m+1} are all distinct and each does not
exceed f,(m), then it is clear that these elements are precisely the integers {r}/2»’
and so our theorem follows for this case.

Therefore let us assume »>2; we shall now show that if 2 <i, j<» and i#j then
A; j(m;—%) <m; and A; ;(m;—3) <m,. To this end select the integers k, g so that
2Lk, g<v, k#q; and fix the integer s>1 so that n(g, s) >n(k, 1) and denote by
n(k,r) the largest number from the set {n(k, )}, not exceeding n(g, s). Then
b(1,9)<(s+3)/(n(k,r)+3) and b(1l, H)<(r+3)/(n(g,s)+1). Also bk, )<
(n(k, r)+3)/(r—3%) and b(g, 1)<(n(g, s)+%)/(s—%), as seen from equation (3);
thus we conclude

@ bk, q)(r—3) < (s+3), and b(g, K)(s—3) < (r+d).

Hence going back to the first statement of this paragraph we see that if n(i, m;) <
n(j, m;) then our result follows from equation (4) if we put k=i, r=m;, g=j, and
s=m;; while if n(j, m;)<n(i, m;) then our result again follows if we put k=j,
r=m;, =i, and s=m;.

Thus we see that if v>2, then for i=2,...,v,

fi(m;—1) < m—1+n(i, m)+ 22"15 <m—1+ Zm,- < fi(m);
j= j=2

i¥Fi
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and since the (fi(m)+1) elements of the set {f,(n) | n=0,...,(m,—1), r=
l,...,v, my=m+1} are all distinct and each does not exceed f;(m), then it is

clear that they are precisely the integers {r}’1'?". This completes the proof of our
theorem.
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