SOME PROPERTIES OF EQUATIONS IN INTEGERS

BY
M. FAIERMAN $\left.{ }^{\mathbf{1}}{ }^{\mathbf{1}}\right)$

1. Introduction. In certain boundary value problems associated with twoparameter ordinary differential equations defined and having $2 p,(p>1)$, turning points in a given interval, there arises certain equations in integers whose solutions determine the coefficients in the asymptotic expansions for the eigenvalues [1, 2, 3, pp. 134-139].

As an example consider the system discussed in [1]; we have here the differential equation in the two parameters λ and $\mu, y^{\prime \prime}(x)+(\lambda+\mu a(x)+q(x)) y(x)=0$, $0 \leq x \leq 1,{ }^{\prime}=d / d x$, together with a pair of linear, homogeneous boundary conditions, and where in $[0,1] a(x)$ and $q(x)$ are real-valued continuous functions, $a(x) \in C_{4}$ and attains its absolute maximum in $[0,1]$ at the points $\left\{h_{i}\right\}_{=1}^{p}$, $0<h_{1}<\cdots<h_{p}<1, p>1$, with $a^{\prime \prime}\left(h_{i}\right)<0, i=1, \ldots, p$. For fixed integer $m \geq 0$, let $\lambda_{m}(\mu)$ denote the $m^{\text {th }}$ eigenvalue of our system; then we have shown in [1] that as $\mu \rightarrow \infty, \lambda_{m}(\mu)=\mu\left[B_{0}(r, n)+B_{1}(r, n) \mu^{-1 / 2}+B_{2}(r, n) \mu^{-1}+o\left(\mu^{-1}\right)\right]$, for some integer tuple (r, n), and where $B_{i}(r, n)=B_{i}\left(a^{(0)}\left(h_{r}\right), \ldots, a^{(4)}\left(h_{r}\right), n\right), i=0,1,2$, and $a^{(j)}\left(h_{r}\right)=d^{j} a\left(h_{r}\right) / d x^{j}, j=0, \ldots, 4$. Hence in order to deduce the coefficients in the asymptotic formula for $\lambda_{m}(\mu)$, it remains to determine the tuple (r, n). To this end we put $A=\sup a(x)$ in $[0,1]$, and for $i=1, \ldots, p, a_{i}=-a^{(2)}\left(h_{i}\right) / 2, v_{i}(\mu)=$ $\left[\left(4 \mu a_{i}\right)^{-1 / 2}\left(\lambda_{m}(\mu)+\mu A\right)-\frac{1}{2}\right], \mu>0$, and for μ sufficiently large we approximate an eigenfunction corresponding to $\lambda_{m}(\mu)$ in the neighbourhood of h_{i} by means of the parabolic cylinder function $D_{v_{i}(\mu)}\left(s_{i}\right), s_{i}=\left(4 \mu h_{i}\right)^{1 / 4}\left(x-h_{i}\right)$. It can then be shown that $v_{i}(\mu)$ tends to a finite limit, say v_{i}, as $\mu \rightarrow \infty,-\frac{1}{2}<v_{i}, i=1, \ldots, p$, and at least one such limit is an integer. If precisely one such limit is an integer then we must have $v_{r}=n$; and if $g(v)$ denotes the number of real zeros of $D_{v}(s),[4, \mathrm{p} .126]$, then $g(n)+\sum_{i=1}^{\prime p} g\left(v_{i}\right)=m,^{\prime}$ implies $i \neq r$. Since $\left(a_{i}\right)^{1 / 2}\left(v_{i}+\frac{1}{2}\right)=\left(a_{r}\right)^{1 / 2}\left(n+\frac{1}{2}\right), i=$ $1, \ldots, p$, we see that the tuple (r, n) must be chosen as to render soluble the equation in integers $f_{r}(n)=m$, where $f_{r}(n)=g(n)+\sum_{i=1}^{\prime p} g\left(\left(a_{r} / a_{i}\right)^{1 / 2}\left(n+\frac{1}{2}\right)-\frac{1}{2}\right)$. But then one may ask whether there is a tuple (r, n) such that $f_{r}(n)=m$, or if there is, is it unique? It is precisely these questions which are discussed in the sequel; and for further discussion and application of these and similar results to our two-parameter eigenvalue problem we again refer to [1].
2. Equations in integers. Let $\left\{a_{i}\right\}_{i=1}^{p}, p \geq 2$, be a set of p positive numbers. For $r, s=1, \ldots, p$, and $x \geq 0$, let $A_{r, s}(x)$ denote the greatest positive integer less than

[^0]$\left(x\left(a_{r} / a_{s}\right)^{1 / 2}+\frac{1}{2}\right)$ or zero if such a positive integer does not exist; (here and in the sequel the positive square root is always assumed). Let us denote by R the subset of the rationals consisting of all numbers of the form $((2 k+1) /(2 q+1))^{2}, k, q$ integers; and for nonnegative integer n put:
\[

$$
\begin{equation*}
f_{r}(n)=n+\sum_{\substack{s=1 \\ s \neq r}}^{p} A_{r, s}\left(n+\frac{1}{2}\right), \quad r=1, \ldots, p ; \tag{1}
\end{equation*}
$$

\]

then we shall prove the following theorem.
Theorem 1. If $\left(a_{i} \mid a_{j}\right) \notin R, i, j=1, \ldots, p, i \neq j$, and m is any nonnegative integer, then there is an r_{0} and an n_{0} such that $f_{r_{0}}\left(n_{0}\right)=m$. The tuple $\left(r_{0}, n_{0}\right)$ is unique.

First for simplicity of notation, let us put $b(i)=\left(a_{i}\right)^{1 / 2}, i=1, \ldots, p$, and $b(i, j)=$ $\left(a_{i} / a_{j}\right)^{1 / 2}, i, j=1, \ldots, p$. Then before proving Theorem 1 , let us observe a case where the hypothesis of this theorem is violated. Put $p=2, a_{1}=1, a_{2}=9$; then $f_{1}(0)=0, f_{1}(1)=1, f_{1}(n) \geq 3$ for $n \geq 2, f_{2}(0)=1, f_{2}(1)=5, f_{2}(n) \geq 9$ for $n \geq 2$. Hence $f_{r}(n)=m$ is (I) uniquely soluble if $m=0$, (II) soluble, but not uniquely if $m=1$, (III) not soluble if $m=2$.

Now with the assumption that $\left(a_{i} / a_{j}\right) \notin R, i, j=1, \ldots, p, i \neq j$, it is clear that without loss of generality we may assume $a_{1}<a_{2}<\cdots<a_{p}$. Under both these assumptions then, let us first prove the following lemma and then Theorem 1.

Lemma 1. If $f_{i}\left(n_{1}\right)=f_{j}\left(n_{2}\right)$, then $i=j$ and $n_{1}=n_{2}$.
Proof. Under our hypotheses we see that for any integer $n \geq 0, n \leq f_{1}(n) \leq n p$, $f_{r}(n+1) \geq f_{r}(n)+1, r=1, \ldots, p$, and $f_{r+1}(n) \geq f_{r}(n)+1, r=1, \ldots,(p-1)$; and clearly our lemma is true if $i=j$. Now let us assume $f_{i}\left(n_{1}\right)=f_{j}\left(n_{2}\right)$ for $i<j$, say; then $n_{2}<n_{1}$, and from equation (1) we have

$$
\begin{equation*}
\sum_{\substack{s=1 \\ s \neq i, j}}^{p}\left[A_{j, s}\left(n_{2}+\frac{1}{2}\right)-A_{i, s}\left(n_{1}+\frac{1}{2}\right)\right]+A_{j, i}\left(n_{2}+\frac{1}{2}\right)-A_{i, j}\left(n_{1}+\frac{1}{2}\right)=n_{1}-n_{2} \tag{2}
\end{equation*}
$$

If $b(j)\left(n_{2}+\frac{1}{2}\right)>b(i)\left(n_{1}+\frac{1}{2}\right)$, then $A_{j, i}\left(n_{2}+\frac{1}{2}\right) \geq n_{1}+1, \quad A_{i, j}\left(n_{1}+\frac{1}{2}\right) \leq n_{2}, \quad$ and $A_{j, s}\left(n_{2}+\frac{1}{2}\right) \geq A_{i, s}\left(n_{1}+\frac{1}{2}\right), s=1, \ldots, p, s \neq i, j$; and hence the left hand side of (2) is not less than $n_{1}-n_{2}+1$, which is a contradiction. Similarly if $b(j)\left(n_{2}+\frac{1}{2}\right)<$ $b(i)\left(n_{1}+\frac{1}{2}\right)$, then the left hand side of (2) is not greater than $n_{1}-n_{2}-1$, which again is a contradiction; and this completes the proof of our lemma.

Proof of Theorem 1. First we note that Lemma 1 proves the uniqueness part of our theorem; then since $f_{1}(0)=0$, our theorem is true for $m=0$. Let us now assume $m \geq 1$; and since $f_{1}(m) \geq m$, we see that our theorem is proved once we show that the set of integers $\{r\}_{r=0}^{f_{1}(m)}$ is contained in the set $\left\{f_{r}(n) \mid n=0, \ldots, m\right.$, $r=1, \ldots, p\}$.

Now we observe that if $b(1,2)\left(m+\frac{1}{2}\right)<\frac{1}{2}$, then $f_{1}(n)=n, n=0, \ldots, m$, and hence our theorem is true. So let us then suppose that for some $v, 2 \leq v \leq p$
$b(1, v)\left(m+\frac{1}{2}\right)>\frac{1}{2}$, and if $v<p, b(1, v+1)\left(m+\frac{1}{2}\right)<\frac{1}{2}$. Then for $i=2, \ldots, v$, let us introduce the positive integers $n(i, j), j=1,2, \ldots$, with the property that $b(1, i)\left(n(i, j)+\frac{1}{2}\right)>\left(j-\frac{1}{2}\right), b(1, i)\left(n(i, j)-\frac{1}{2}\right)<\left(j-\frac{1}{2}\right)$, and where $n(i, 1)<n(i, 2)<$ $\ldots, n\left(i, m_{i}\right) \leq m, n\left(i, m_{i}+1\right)>m, m_{i} \geq 1$. We observe that $1 \leq n(2,1) \leq n(3,1) \leq$ $\cdots \leq n(v, 1)$, and $m \geq m_{2} \geq m_{3} \geq \cdots \geq m_{v}$; and for $i=2, \ldots, v$ and $j \geq 1$, we have

$$
\begin{equation*}
\left(n(i, j)-\frac{1}{2}\right) /\left(j-\frac{1}{2}\right)<b(i, 1)<\left(n(i, j)+\frac{1}{2}\right) /\left(j-\frac{1}{2}\right) . \tag{3}
\end{equation*}
$$

Let us remark now that if $v<p$, then,
(I) $A_{1, \mathrm{~s}}\left(n+\frac{1}{2}\right)=0, n=0, \ldots, m, s=v+1, \ldots, p$, and,
(II) for $i=2, \ldots, v, A_{i, s}\left(n+\frac{1}{2}\right)=0, n=0, \ldots,\left(m_{i}-1\right), s=v+1, \ldots, p$.

Statement (I) follows from our definition of v, and statement (II) from the fact that for $i=2, \ldots, v$,

$$
\begin{aligned}
b(i, v+1)\left(m_{i}-\frac{1}{2}\right) & =b(1, v+1) b(i, 1)\left(m_{i}-\frac{1}{2}\right)<b(1, v+1)\left(n\left(i, m_{i}\right)+\frac{1}{2}\right) \\
& \leq b(1, v+1)\left(m+\frac{1}{2}\right)<\frac{1}{2}
\end{aligned}
$$

using equation (3).
We now conclude that, (I) $f_{1}(m)=m+\sum_{{ }_{=}=2} m_{i}$ and, (II) for $i=2, \ldots, v$, $A_{i, 1}\left(m_{i}-\frac{1}{2}\right)=n\left(i, m_{i}\right)$. Statement (I) follows from above and statement (II) from equation (3) if j there is replaced by $m_{i}, i=2, \ldots, v$. Hence if $\nu=2, f_{2}\left(m_{2}-1\right)=$ $m_{2}-1+n\left(2, m_{2}\right) \leq m+m_{2}-1<f_{1}(m)$; and since the $\left(f_{1}(m)+1\right)$ elements of the set $\left\{f_{r}(n) \mid n=0, \ldots,\left(m_{r}-1\right), r=1,2, m_{1}=m+1\right\}$ are all distinct and each does not exceed $f_{1}(m)$, then it is clear that these elements are precisely the integers $\{r\}_{r=0}^{\gamma_{1}(m)}$ and so our theorem follows for this case.

Therefore let us assume $v>2$; we shall now show that if $2 \leq i, j \leq v$ and $i \neq j$ then $A_{i, j}\left(m_{i}-\frac{1}{2}\right) \leq m_{j}$ and $A_{j, i}\left(m_{j}-\frac{1}{2}\right) \leq m_{i}$. To this end select the integers k, q so that $2 \leq k, q \leq v, k \neq q$; and fix the integer $s \geq 1$ so that $n(q, s) \geq n(k, 1)$ and denote by $n(k, r)$ the largest number from the set $\{n(k, j)\}_{j=1}^{\infty}$ not exceeding $n(q, s)$. Then $b(1, q)<\left(s+\frac{1}{2}\right) /\left(n(k, r)+\frac{1}{2}\right)$ and $b(1, k)<\left(r+\frac{1}{2}\right) /\left(n(q, s)+\frac{1}{2}\right)$. Also $b(k, 1)<$ $\left(n(k, r)+\frac{1}{2}\right) /\left(r-\frac{1}{2}\right)$ and $b(q, 1)<\left(n(q, s)+\frac{1}{2}\right) /\left(s-\frac{1}{2}\right)$, as seen from equation (3); thus we conclude

$$
\begin{equation*}
b(k, q)\left(r-\frac{1}{2}\right)<\left(s+\frac{1}{2}\right), \quad \text { and } \quad b(q, k)\left(s-\frac{1}{2}\right)<\left(r+\frac{1}{2}\right) . \tag{4}
\end{equation*}
$$

Hence going back to the first statement of this paragraph we see that if $n\left(i, m_{i}\right) \leq$ $n\left(j, m_{j}\right)$ then our result follows from equation (4) if we put $k=i, r=m_{i}, q=j$, and $s=m_{j}$; while if $n\left(j, m_{j}\right)<n\left(i, m_{i}\right)$ then our result again follows if we put $k=j$, $r=m_{j}, q=i$, and $s=m_{i}$.

Thus we see that if $v>2$, then for $i=2, \ldots, v$,

$$
f_{i}\left(m_{i}-1\right) \leq m_{i}-1+n\left(i, m_{i}\right)+\sum_{\substack{j=2 \\ j \neq i}}^{v} m_{j} \leq m-1+\sum_{j=2}^{v} m_{j}<f_{1}(m)
$$

and since the $\left(f_{1}(m)+1\right)$ elements of the set $\left\{f_{r}(n) \mid n=0, \ldots,\left(m_{r}-1\right), r=\right.$ $\left.1, \ldots, v, m_{1}=m+1\right\}$ are all distinct and each does not exceed $f_{1}(m)$, then it is clear that they are precisely the integers $\{r\}_{r=0}^{f_{1}(m)}$. This completes the proof of our theorem.

References

1. M. Faierman, Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order, Trans. Amer. Math. Soc. (to appear).
2. M. J. O. Strutt, Reelle eigenwerte verallgemeinerter Hillscher eigenwertaufgaben 2. ordnung, Math. Z. 49 (1943-44), 593-643.
3. J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Spharoidfunktionen, SpringerVerlag, Berlin, 1954.
4. A. Erdelyi, et al., Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953.

loyola College,

 Montreal, Quebec
[^0]: Received by the editors, in revised form, May 8, 1970.
 ${ }^{(1)}$ Part of this work was done at the Summer Research Institute of the Canadian Mathematical Congress, Montreal, 1968.

