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ABSTRACT. Western Kunlun Mountain (WKM) glaciers show balanced or even slightly positive mass
budgets in the early 21st century, and this is anomalous in a global context of glacier reduction.
However, it is unknown whether the stability prevails at longer time scales because mass budgets
have been unavailable before 2000. Here topographical maps, Shuttle Radar Topography Mission and
Landsat data are used to examine the area and surface elevation changes of glaciers on the WKM
since the 1970s. Heterogeneous glacier behaviors are observed not only in the changes of length and
area, but also in the spatial distribution of surface elevation changes. However, on average, glacier
area and elevation changes are not significant. Glaciers reduce in the area by 0.07 £0.1% a~' from
the 1970s to 2016. Averaged glacier mass loss is —0.06 +0.13 m w.e. a~' from the 1970s to 1999.
These findings show that the WKM glacier anomaly extends back at least to the 1970s.
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1. INTRODUCTION

In recent decades, much attention has been paid to global
glacier reduction and its consequences for sea-level rise
and the mountain ecosystem (e.g. Immerzeel and others,
2010; Gardelle and others, 2012a). Glaciers located in the
western Kunlun Mountains (WKM), Karakoram, Pamirs and
Himalaya represent the largest ice masses outside of the
polar regions (Smiraglia and others, 2007). They are the
headwaters of many prominent rivers such as the Indus,
Ganges and Brahmaputra, and play an important role as
the water towers of Asia (Yao and others, 2012). Glaciers in
the WKM, Pamirs and Karakoram have become a focus of
public and scientific debate due to their unusual behavior
(e.g. Hewitt, 2005; Gardner and others, 2013; Kddb and
others, 2015). In contrast to worldwide glacier reduction,
their overall areas present no significant changes, with
some glaciers advancing or surging in recent decades (e.g.
Copland and others, 2011; Bhambri and others, 2013).
Additionally, their mass is stable or even growing in the
early 21st century (e.g. Bolch and others, 2012; Ke and
others, 2015; Zhang and others, 2016).

In contrast, glaciers in the Himalaya are reported to be
losing mass rapidly during the same period (e.g. Bolch and
others, 2011; Kdab and others, 2015; Maurer and others,
2016). These contrasting glacier changes may result from
regional variations in climatic change (Maussion and
others, 2014; Wiltshire, 2014). To determine if recent varia-
tions in glaciers are representative for longer time periods,
glacier mass budgets have been extended to the 1970s
over the middle and eastern Himalaya (e.g. Maurer and
others, 2016; Ragettli and others, 2016), eastern Pamirs
(Holzer and others, 2015; Zhang and others, 2016) and
central Karakoram (Bolch and others, 2017). They reveal
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that the stability of glaciers over the Karakoram and Pamirs
is probably not limited to the past 15 years, but extends
back at least to several-decade time span. Very recent
research (Zhou and others, 2018) indicates that WKM gla-
ciers have been stable prior to 2000, and are part of a
larger regional anomaly that includes the Pamirs and
Karakoram (Kadb and others, 2015).

Based on the first and second Chinese Glacier Inventories
(CQI) and Landsat images, some attempts have been made to
determine changes in glacier extent over the WKM since
1970 (e.g. Shangguan and others, 2007; Ji and others,
2013; Wei and others, 2014; Bao and others, 2015).
Shangguan and others, (2007) found a slight area increase
from 1991 to 2001, and no significant change during the
period 1970-2001. Ji and others (2013) reported slightly
positive conditions of six typical glaciers from 1991 to
2009. Bao and others (2015) indicated only —3.4+3.1%
reduction in glacier area over WKM for the 1970-2010
period. These results seem to suggest that WKM glaciers
have been in balance or changing insignificantly during the
last several decades. To further confirm this, there is still a
need to examine changes in the glacier mass budget before
2000. Thus, the major objective of this study is to quantify
the changes in mass budget over WKM glaciers before
2000 by means of geodetic measurements to fill a knowledge
gap, and also to give possible climatic consideration for the
glacier changes in the WKM.

2. STUDY AREA

WKM, located on the northwestern Tibetan Plateau (Fig. 1), is
one of the most extensively glacierized regions in China
(Shi and others, 2008). Morphologically, the WKM contain
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Fig. 1. Western Kunlun Mountains (WKM) on Landsat 8 OLI image false-color composite (band 7, 5, 4 for R, G, B) acquired in September
2016. Inset indicates the locations of meteorological stations, WKM and Tibetan Plateau. Glacier outlines are derived from the
topographical maps generated in 1968-71. The names of well-known glaciers are presented, and the unnamed glaciers in the north and

south slopes have identifiers prefixed by N or S, respectively.

cirque glaciers, valley glaciers and ice caps, nine of which
have an extent of >100 km?. Over the rugged northern
slopes, valley glaciers are dominant, while ice caps are
mainly distributed over the southern slopes. Among them,
Guliya Ice Cap is the largest ice cap in mainland Asia cover-
ing an area of >370 km”. These glaciers are situated in an
extremely cold and dry continental climate (Zhou and
others, 2014) and are almost debris free (<3% debris-
covered area) (Scherler and others, 2011). End-of-summer
transient snowlines range from 5900 to 6100 m a.s.I and
the average equilibrium line (ELA) elevation is 5930 m a.s.|
(Zhang and Jiao, 1987). Primarily controlled by mid-latitude
westerlies, the climate of WKM is cold and semi-arid, with
most precipitation occurring between May and September
(Zhang and others, 1989). Near the ELA, annual mean air
temperature and precipitation reach ~—13.9 °C and 300
mm, respectively (Zhang and others, 1989). The glaciers
provide seasonal to long-term downstream freshwater
supply and also act as invaluable indicators of climate
changes (e.g. Vaughan and others, 2013; An and others,
2016).

3. DATA AND METHODS

3.1. Data

3.1.1. DEM70

We collected seven topographic maps at a scale of 1: 1 00
000, which were generated from 1: 60000 aerial stereo
pairs acquired during 1968-71 by the Chinese Military
Geodetic Service (CMGS). They are referenced to the
Beijing Geodetic Coordinate System 1954 (BJ54) geoid and
the Yellow Sea 1956 datum (the averaged sea level at the
Qingdao Tidal Observatory in 1956). The contour and
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points of elevation were digitized from these topographic
maps by the State Bureau of Surveying and Mapping of
China and reprojected to the Xian Geodetic Coordinate
System 1980 (GDZ80) geoid using the Yellow Sea 1985
datum. The digital contour and points were then used to con-
struct a triangulated irregular network (TIN) and the TIN was
interpolated to an ~50 m resolution DEM called DEM70.

According to General Administration of Quality Supervision
Inspection and Quarantine (2008), the nominal vertical uncer-
tainties of the topographic maps are controlled within 10-16 m
over mountain regions (with slopes of 6°-25°) and 16-28 m
over steep mountains (with slopes of >25°). The average
slope of WKM glaciers is 11.2° (calculated based on Shuttle
Radar Topography Mission (SRTM) DEM) and hence we
consider the averaged vertical accuracy of these topographic
maps may be better than 16 m on the glacierized terrain. It is
noted that topographic data are derived from stereo photo-
grammetry, which often suffers from errors and gaps over the
snow accumulation zones because of low radiometric
contrast, leading to the larger uncertainty (>16 m) in these
regions.

3.1.2. SRTM DEM

The SRTM DEMs are constructed by means of C-band and X-
band Spaceborne Imaging Radar operating in interferometric
mode aboard the space shuttle Endeavour from 11 to 22
February 2000, and has been widely applied for glacier
investigations (e.g. Kddb and others, 2008; Gardelle and
others, 2013; Bao and others, 2015). SRTM C-band DEM is
available over the entire globe between 60°N and 57°S.
However, the X-band DEM'’s coverage is not continuous
and fails to cover our whole study region because of its
narrow swath widths. Therefore, we use C-band DEM for
the estimate of glacier changes. Assuming the radar beam
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fully penetrating into snow (Paul and Haeberli, 2008), the
resulting DEM is considered to be representative of the
glacier surface at the end of the 1999 ablation period
(Gardelle and others, 2013). The geodetic reference for
SRTM C-band DEM is the World Geodetic System 1984
(WGS84), defined as the 1996 Earth Gravitational Model
(EGM96) geoid. The horizontal and vertical datum of X-
band SRTM DEM is WGS84 ellipsoid. The original SRTM
data contain data gaps, especially at high and steep regions
because of heavy shadows and layover effects. The voids
on the glacierized surface of WKM account for 0.52% of
glacier total areas for the 1970s, and Figure S1 presents
their spatial distribution. To render the data more useful,
the voids in C-band DEM have been filled by the
Consortium for Spatial Information of the Consultative
Group for International Agricultural Research (CGIAR-CSI)
(Jarvis and others, 2008). The C-band DEM data for regions
outside the USA has a spatial resolution of 3 arc-seconds
(~90 m) (SRTM3).

3.1.3. ICESat elevation

The Geoscience Laser Altimeter System (GLAS) onboard
ICESat provides surface elevation data in several campaigns,
with horizontal and vertical accuracies of 10.6 +4.5 and
0.34 m, respectively (Magruder and others, 2007; available
online at http:/www.nsidc.org). The laser footprints have
172 m spacing along-track, and ~42km cross-track
spacing between 91 day repeat. Because of the reliability
of vertical reference of GLAS elevations for stable ground
control points (Kddb, 2008; Nuth and K&db, 2011), the
GLAS14 product is used to evaluate the quality of DEM70
and SRTM DEM. ICESat/GLAS elevations are referenced to
the TOPEX/Poseidon ellipsoid.

3.1.4. landsat images

Table 1 summarizes all the cloud-free Landsat MSS, TM/
ETM+ and 8 Operational Land Imager (OLI) images used
in this study. Landsat MSS images have 57 m horizontal reso-
lution and have one thermal, two near-infrared and two
visible bands. The spatial resolution of TM images is 30 m,
including one near infrared band two short-infrared bands,
one thermal band and three visible bands (i.e. blue, green
and red). Different from TM images, the ETM+ images
have a 15 m resolution panchromatic band, which is often
used to merge with other TM bands to improve the resolution
of images. The Landsat 8 satellite launched 11 February 2013
and has two push-broom instruments, i.e. the OLI sensor and

Table 1. List of data for the WKM glacier change assessment

the Thermal Infrared Sensor (TIRS), which can be used to
enhance the radiometric signal-to-noise and to improve char-
acterization of land cover state and condition. New deep
blue visible and shortwave infrared bands are included in
the OLI sensor to improve the prior Landsat instruments.

3.2. Methods

3.2.1. Datum transformation

To make the DEM70 and C-band SRTM-DEM (topographical
maps and Landsat images) under the same horizontal coord-
inate system, a seven parameter transformation is used to
transform the Xian 80 data into the WGS84 data:

Xs4 1T —wz +wy Xso Xo
Yea | =MX [ wz+ 1 —wy X {Yso | + | Yo (1)
Zgy4 —Wy +wx + 1 Zgo Zy

where Xg4, Ygs4 and Zg, are the WGS84 datum coordinates,
Xso, Yso and Zgg are the Xian 80 datum coordinates, X,, Yo
and Z, are the translation parameters, wy, wy and wy are
the rotation parameters, and M is the scale factor. Three
known national trigonometric points are used to evaluate
these parameters for each map. The uncertainty of this
seven-parameter transformation is estimated to be <0.5m
(Gao and others, 2009).

An IDL program acquired from NSIDC (https:/nsidc.org/
data/icesat/geoid.html) is used to convert the TOPEX/
Poseidon ellipsoid of GLAT4 data to the WGS 84 ellipsoid,
and further to EGM96 geoid based on the model from the
National =~ Geospatial-Intelligence Agency (NGA)/NASA
(http:/earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/
egm96.html). We also use this NGA/NASA model to trans-
form the vertical reference datum of SRTM X-band DEM to
the EGM96 geoid.

3.2.2. DEM co-registration

Subtracting the DEM70 from the SRTM-DEM, difference
maps are constructed to compare elevation deviations on a
cell-by-cell basis. We first calculate the difference of
DEM70 relative to SRTM-DEM by excluding nonstable
terrain such as glaciers, lakes and ice-cored moraines. The
elevation difference is strongly affected by topographical
slope and aspect (Fig. 2; Nuth and Kaéb, 2011). To minimize
the horizontal displacements on stable terrain, DEM70 is co-
registered to SRTM-DEM using the following equation

Data Date Pixel size/Scale Path/Row Cloud coverage (%) Purpose Resource
SRTM February 2000 90 m - DEM CGIAR-CSI
Topographical maps ~ September—October 1968-71 1: 100000 - DEM/base image ~ CMGS
Landsat MSS February 1977 57m 156/35 0 Reference image  GLCF
Landsat TM November 1990 30m 145/35 <1 Reference image  GLCF
Landsat TM November 1990 30m 145/36 <1 Reference image  GLCF
Landsat ETM+ October 1999 30 m 145/35 2 Base image GLCF
Landsat ETM+ September 1999 30m 145/36 4 Base image GLCF
Landsat 8/OLI October 2016 15m 145/35 4.56 Base image USGS
Landsat 8/OLI October 2016 15m 145/36 2.84 Base image USGS
Landsat 8/OLI September 2016 15m 145/35 4.05 Reference image ~ USGS
Landsat 8/OLI September 2016 15m 145/36 15.72 Reference image ~ USGS
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Fig. 2. Scatter plot of slope standardized elevation differences between DEM70 and SRTM DEM vs. aspect (a) before co-registration and (b)

after co-registration.

described by Nuth and Kaab (2011).

dh

tana

=acos(b—¢)+c (2)
where a and ¢ denote the topographic slope and aspect,
respectively, and a, b and c represent the shift vector magni-
tude and direction and the averaged difference of the two
DEMs. Before co-registration, the pixels with a slope angle
of <5° are discarded. A least-squares optimization is used
to calculate the parameters a, b and c. This process is iterated
to reach an ultimate solution when the length of the solved
shift vector is <1 m. The resulting horizontal shifts are
19.3 m in X-direction and —23.0 m in Y-direction (Table 2).
The vertical bias (Z-offset) is 6.9 m. The vertical RMSE of ele-
vation difference for off-glacier terrain after the correction
decreases ~20% compared with that before the correction.
Based on this co-registration method, we also co-register
DEM70 and SRTM DEM to ICESat data to estimate their ver-
tical accuracy.

3.2.3. DEMSs accuracy

We use ICESat data to assess DEM70 and SRTM elevation
data prior to the quantification of glacier elevation
changes. The surface elevation accuracy of DEM70 is
tested by a comparison with the GLA14 over ice-free stable
areas. In total 2301 GLAS footprints during 2003-09 are
available over the barren areas of the WKM. ICESat elevation
differences >100 m relative to DEM70 and SRTM DEMs are
regarded as outliers resulting from the cloud reflections, satu-
rated waveforms, or inaccurate regions of the DEM70 or
SRTM data and thus are excluded from the evaluation.
ICESat footprints with a slope angle of >15° are also
omitted to ensure that the vertical uncertainty of GLAT4
data are <1 m (Beaulieu and Clavet, 2009; Pieczonka and

others, 2013). After the outlier exclusion, 1810 ICESat data
are left for the assessment of DEM70 and SRTM DEM accur-
acy. The resulting surface elevation difference between
DEM70 and GLAS ICESat data has the averaged value and
RMSE of 0.3 and 10.9 m. The averaged value and RMSE of
the difference between available GLAS data and SRTM in
the WKM are —0.1 and 9.8 m, respectively. Due to the
limited available number of ICESat GLAS data, further correc-
tions are performed using the difference between SRTM DEM
and DEM70 rather than individual DEM adjustment based on
ICESat data.

3.2.4. Correction of terrain curvature and SRTM radar
penetration

As pointed out by previous studies (Berthier and others,
2006; Paul, 2008; Gardelle and others, 2012b), elevation-
dependent vertical bias in mountainous regions is attribut-
able to differences in the original spatial resolution of the
two DEMSs. The coarse DEM is prone to underestimate the
heights of the sharp peaks or ridges with high terrain curva-
ture due to its limited capacity of the representation of
high-frequent changes in slopes. This bias can be corrected
by the relationship between elevation difference and
maximum curvature over the stable terrain off glaciers
(Gardelle and others, 2012b, 2013). A clear polynomial rela-
tionship is found between the two variables and thus in this
study, a cubic-polynomial fitting is utilized to make the cor-
rection (Fig. 3a).

For glacier covered by snow and firn, SRTM data map a
surface which is below the real glacier surface because of
penetration of the C-band radar signal. This penetration
depth varies from 0 to 10 m (e.g. Barundun and others,
2015; Fischer and others, 2015; Kdab and others, 2015). A
geodetic mass balance without any correction for this pene-
tration will likely be severely biased in the dry cold climate of

Table 2. Shift vectors in X, Y and Z directions and the uncertainty in DEM before and after co-registration

Shift vectors in X, Y and Z Before co-registration

After co-registration

directions
X (m) Y (m) Z(m) Mean bias (m) SD (m) RMSE (m) Mean bias (m) SD (m) RMSE (m)
19.3 -23 6.9 6.8 17.3 18.6 -0.1 14.8 14.9

SD, standard deviation; RMSE, root mean square error.
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Fig. 3. (a) Relationship between elevation difference and maximum
curvature; (b) Relationship between SRTM C band snow penetration
depth and elevation.

the WKM. Here, we estimate this penetration by differencing
the SRTM C-band (5.7 GHz) and X-band (9.7 GHz) DEMs, as
done by Gardelle and others (2012b, 2013), due to the lower
penetration of the X-band than C-band. Based on this
method, the SRTM C-band DEM elevations are compared
with the simultaneously acquired X-band SRTM DEM cover-
ing ~70% of the icefield. The resulting averaged SRTM¢_pand
penetration over WKM glaciers is estimated to be ~2.8 m.
We determine the relationship between the penetration
depth in each 50 m elevation bin and the corresponding
glacier altitude (Fig. 3b). Following Gardelle and others
(2013), the correction is performed using the elevation differ-
ence (SRTMx_pand— SRTMc_pand) @s a function of altitude (a
six-order polynomial fitting, Fig. 3b) at each glacierized
pixel.

3.2.5. Clacier extent delineation and geodetic mean
elevation change calculation
Before glacier outline delineation, all Landsat images are co-
registered to the topographical maps using 30-45 easily iden-
tified ground control points (GCPs) and the accuracy of co-
registration is ~20 m (slightly more than half of one pixel of
Landsat images). Glacier outlines from the topographical
maps are manually digitized and then corrected by Landsat
MSS images taken in 1977. The resulting glacier boundaries
are then manually adjusted to reflect the glacier outlines in
1999 and 2016 by means of the visual interpretation of co-
registered Landsat TM/ETM+ and 8 OLI images.

Prior to elevation change calculations, we exclude data
that meet the following conditions:

¢ Void-filled regions of the SRTM DEM

¢ Slopes >30° (Pieczonka and others, 2011)

* Absolute elevation changes >100 m

* For nonsurging glaciers, we exclude (1) elevation changes
> or <3 standard deviations of the mean in each 100 m
elevation band and (2) elevation changes that are >68.3

https://doi.org/10.1017/jog.2018.53 Published online by Cambridge University Press

and <31.7 quantiles of elevation change in the accumula-
tion area (Holzer and others, 2015)

e For surging glaciers, we use the filtering method of
Pieczonka and Bolch (2015) which applies a sigmoid
function that allows for a larger range of elevation
change in ablation areas and a narrower range at the
glacier head.

Missing data below the ELA are replaced by kriging and
data gaps in the accumulation area are filled using the
average elevation change of the appropriate 100 m elevation
band.

Fluctuations in glacier length and elevation changes in
surge-type glaciers are controlled by internal instabilities
and are typically independent of climate change, whereas
for nonsurge-type glaciers these are more closely related to
climate changes. To better examine the cause of WKM
glacier changes, we calculate area changes and geodetic
mass balances separately for surge-type glaciers, nonsurge-
type glaciers and all glaciers (cf. Citterio and others, 2009).
The averaged elevation change for the WKM glaciers is
assessed as an area-weighted averaged elevation difference
per 100 m altitude bin. We transform elevation change to
mass balance by using a constant density of 850 + 60 kg
m~> (Huss, 2013).

3.2.6. Uncertainty assessment

The uncertainties of the glacier areas and area changes are
estimated using a buffering method as described by Minora
and others (2016). This method considers both the uncer-
tainty from the data sources (satellite images, topographic
maps and aerial photos) and the clarity of glacier limits
(Vogtle and Schilling, 1999; Citterio and others, 2007). The
error for the whole glacier coverage is computed by taking
the root of the squared sum of the buffer perimeter of each
glacier. Additionally, we take into account the error of co-
registration from the different images. The final estimate
formula is:

Earea = \/Z:;] (pl Y LRE)Z/r + Ego) (3)

where E,, is the areal error, and p; and n are the it glacier
perimeter and the number of glaciers, respectively. LRE,, is
the Linear Resolution Error affecting topographical map and
Landsat images from the different years. E., represents the
error of co-registration (20 m). Following O’Gorman (1996),
LRE,, is half a pixel for the outline delineation and thus in
this study, it is 15 m for the Landsat TM images, 7.5 m for
Landsat 8/OLI images and 25 m for the 1: 100000 topo-
graphical maps. It is noted that this error may be too low
for debris-covered pixels because glacier extents are more
difficult to distinguish when ice is covered by debris (Paul
and others, 2009). Therefore, errors on the debris pixels are
regarded as three times those of clean ice. Finally, the total
error in area change is calculated as the following format.

AEyea = \/E2, + B2, (4)

where AE,,., represents an error in changes in glacier area,
and Enq and Ex; are the uncertainties of the outlines of gla-
ciers at different periods.
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Table 3. Area changes for glaciers in the WKM of nonstable terrain using the two DEMs.

WKM glaCierS Aarea 1970s—2016 (kmz) Aarea 1970s—2016 (0/0 371) A = UA hi (5)
N

Surging glaciers 11 —0.02+0.09 eff

Non-surging glaciers 100 —0.14+0.11 where U, represents the Std dev. of the averaged elevation

All glaciers 111 -0.07+0.10

change in each altitude band for off-glacier terrain and Neg is
the effective number of measurements:

_ PX Nt
- 2d

Following Gardelle and others (2013), the uncertainty of Nogt
the glacier elevation change is calculated after the exclusion

(6)

Fig. 4. Terminus positions at different time spans for (a) West Kunlun Glacier, (b) Kunlun Glacier, (c) Yulong Glacier, (d) Alakeasyi Glacier, (e)
Chongce Glacier and (f) Zhongfeng Glacier.
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where Ny is the total number of measurements, P is the pixel
size (30 m) and d is the distance of spatial autocorrelation
(810 m), which is calculated by Moran’s | autocorrelation
index.

Furthermore, the uncertainties in the penetration correc-
tion, ice density and mapped glacier extents are also consid-
ered. Penetration correction error (Up,) is assumed to be + 1
m, which is the maximum difference of two penetration esti-
mate methods from Gardelle and others (2013) and K&ab and
others (2015), respectively. Following Huss (2013), glacier
ice density uncertainty (Ug) is + 60 kg m~>, i.e. + 7% of the
elevation change. The uncertainty of the glacier area (U,) is
<4%, based on the area error estimate method as describe
above, and thus 4% is applied for the elevation change
error calculation. The final uncertainty (U) is calculated
based on the sum of these individual uncertainties:

U= /U3 + U3+ U; + U3 (7)

4. RESULTS

4.1. Area change

There are 389 glaciers with elevation change calculation
in the WKM region, covering an area of 3079 + 105 km” in
1968-71. These glaciers have shrunk to 2968 + 103 km” in
2016. Hence, the glacier area shrinkage rate is 3.6 +4.8%
or 0.07£0.1% a~ ' (Table 3), which is not significant. Area
changes over the past 40 years are characterized by spatial
and temporal heterogeneity. As shown in Figure 4,
Xikunlun Glacier experiences terminus retreat for the
1977-90 and 1990-2011 periods, and advance during
2011-16, while Chongce Glacier retreats between 1977
and 1990 and advances from 1990 to 2011, then remains
stable until 2016. Overall, some glacier tongues advance,
while most are stable or retreating from 1968-71 to 2016.
Non-surging glaciers exhibit low or insignificant area
changes, with a mean area loss of 100 km® (—0.14 +0.12%
a”') between 1968-71 and 2016. In comparison, surge-
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type glaciers show a mean area loss of 11 km? (—0.02 +
0.09% a~") over the same period.

4.2. Mass change

Between 1968-71 and 1999, we observe a heterogeneous
pattern of surface elevation changes in the WKM. We thus
divide the WKM into western, central and eastern parts
(Fig. 5), and calculate mass changes (Fig. 5) and altitudinal
distribution of thickness changes (Fig. 6) of nonsurging and
surging glaciers separately for each region. A mass gain
(0.13+0.15m w.e. a_ ') is observed in the western WKM
nonsurging glaciers, whereas central WKM nonsurging gla-
ciers experience a mass loss of —0.08+0.15m w.e. a_'.
Non-surging glacier mass loss over the eastern WKM is great-
est (—0.16+0.15m w.e. a~ 1. In contrast to mass gain of
nonsurging glaciers over the western WKM, surging glaciers
exhibit an insignificant mass loss. Over the central and
eastern WKM, there is no distinct difference of mass
change between surging and nonsurging glaciers.

In the elevation bins above 5600 m, nonsurging glaciers
over the western WKM show rather constant thickening
rates (Fig. 6a), whereas small thinning rates are observed
for nonsurging glaciers over the central and eastern WKM
(Figs. 6¢, e). Although the surging glaciers over the western
and eastern WKM exhibit significant thickening rates in
each elevation bin below 5600 m (Figs 6b, f), several thin-
ning rates are found in the surging glaciers in the central
WKM at elevation bins below 5300 m (Fig. 6d)

Surface elevation changes vary significantly both within
and between glaciers. The western branch of Kunlun
Glacier, for example, has high thinning rates at middle eleva-
tions and elevation increases larger than 40 m at its terminus
(Fig. 7a). More typical patterns of thinning at the terminus and
slight elevation gains in the accumulation area are observed
over Gongxing and West Kunlun Glaciers (Fig. 7b). A switch
between quiescent and surging phases of the Zhongfeng
Glacier is demonstrated by thinning at the terminus and
thickening in its middle elevations in 1980-99 (Fig. 7d),
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Fig. 5. Surface elevation changes of WKM glaciers between the 1970s and 1999. Glaciers are divided into western, central and eastern parts
by purple lines. Their annual mean mass balances are indicated in units of mw.e. a™" (blue: surging glaciers, and black: nonsurging glaciers).
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Fig. 6. Altitudinal distribution of thickness changes of nonsurging (a, c and e) and surging (b, d and f) glaciers over the western, central and
eastern WKM. Error bars present Std dev. of glacier height changes in each elevation bin.

followed by thinning in the middle elevations and bulging at
the glacier terminus after 2003 (Yasuda and Furuya, 2013; Ke
and others, 2015).

Strong thickening in the downstream part and significant
thinning over the upstream part are observed on a few gla-
ciers, for example Bulakebashi Glacier (Fig. 6c), Yulong
Glacier (Fig. 6¢), Chongce Glacier, Kunlun Glacier and N6
Glacier, which are characteristic of surging glaciers.

5. DISCUSSION

5.1. Glacier area and surface elevation change

Glacier outlines of the CGI from GLIMS, which are published
in 2002 and are based on topographical maps obtained from
aerial photographs from the 1950s to the 1980s (Shi and
others, 2010), have potential application for the investigation
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of glacier changes. However, the quality of the CGI is
reported to be poor based on comparison with Landsat 8
OLI images over WKM (Ke and others, 2015). Therefore,
we do not use the inventory data, but manually digitize the
boundaries of glaciers on the topographical maps. Because
of the possible uncertainty in the boundaries of glaciers pre-
sented on the topographic maps (Bolch and others, 2010), we
further correct the outlines based on Landsat MSS images.
Combined with Landsat 8 OLI images in 2016, the deter-
mined area change reduction of both surging and nonsurging
glaciers is —3.6 +4.8% (—0.07£0.1% a1l in the last 40
years, which is comparatively small and within the calcula-
tion uncertainty. The slight area reduction rate agrees well
with the previously published results from Ji and others
(2013), Wei and others (2014) and Bao and others (2015).
However, our calculated shrinkage rate (—0.07 +0.1% a™ ")
is higher than the area decrease rate (~ —0.02% a~') from
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Fig. 7. Surface elevation changes for (a) Kunlun Glacier, (b) Gongxing Glacier and West Kunlun Glacier, (c) Yulong Glacier and Bulakebashi

Glacier, and (d) Zhongfeng Glacier.

1970 to 2000 determined by Shangguan and others (2007).
The different glacier area shrinkage rate may result from the
different investigation period, the uncertainty in glacier
extent from the Chinese topographic maps (Bolch and
Schneider 2010) and the difficulty in the glacier interpret-
ation based on the coarser resolution Landsat imagery.
Furthermore, a detailed assessment of glacier extent uncer-
tainty is absent in Shangguan and others (2007). Compared
with multi-decadal glacier shrinkage rates of —0.57 to
—0.40% a~' found for High Mountain Asia (Cogley, 2016),
the WKM glacier area shrinkage rate is an order of magnitude
lower (Table 3).

25

Annual temperature

=== Summer temperature

Air temperature anomaly (°C)
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In recent decades, WKM glacier mass-balance evalua-
tions have been performed based on the available gravimet-
ric (GRACE) and ICESat observations (Bao and others, 2015;
Gardner and others, 2013; Kadb and others, 2015; Ke and
others, 2015). Gardner and others (2013) have found an
average thickening of 0.17+0.15ma""' from 2003 to 2009
by analyzing ICESat footprints and GRACE observations for
WKM. Slightly lower rate of increase in surface elevation
(0.05+0.07 ma~') has been estimated by Kéddb and others
(2015) using ICESat measurements in relation to SRTM-
DEM. Ke and others (2015) and Bao and others (2015) also
used ICESat laser altimetry to determine the WKM glacier
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Fig. 8. Temporal variations of (a) averaged annual and summer (June, July, August and September) air temperature and (b) annual and winter
(November, December, January and February) precipitation of the five meteorological stations nearest to the WKM from 1970 to 2012.
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Fig. 9. Time series of air temperature from nine reanalyses for the
northwestern Tibetan Plateau (33-39°N, 71-82°F) including ERA-
Interim, MERRA, CFSR, GISS, 20CR, ERA-20C, CRU, GHCN-M
and CPC (a), and 8'®0 records from Chongce ice core from An
and others (2016).

elevation change between 2003 and 2008, and the deter-
mined elevation increase rate is >0.20 ma~'. The relatively
high thickening rate probably results from their uncorrected
SRTM C band penetration. Based on the difference of
DEM7O0 relative to SRTM-DEM, averaged elevation change
is —0.06+0.19 mw.e. a_' for the glaciers on the WKM
region from 1970s to 1999. In addition, Lin and others
(2017) reported a mass gain of 0.128+0.055 mw.e. a~'
for WKM glaciers from 2000 to 2014, based on the difference
between SRTM DEM and TerraSAR-X DEM. Therefore, WKM
glacier mass is probably balanced or changing only slightly
since the 1970s. At Muztagh Ata and Kongur Tagh (eastern
Pamir), geodetic measurements show glacier masses are
balanced or nearly balanced since the 1970s (Holzer and
others, 2015; Zhang and others, 2016). At Hunza catchment
of Karakoram, the averaged glacier mass budgets are slightly
but insignificantly negative between 1973 and 1999 and
positive after 1999 (Bolch and others, 2017). These results
show that the Pamir-Karakoram-WKM anomaly may be at
least put back to the 1970s and are consistent with recent
publications (Forsythe and others, 2017; Zhou and others,
2018).

5.2. Glacier surging

The spatial pattern of elevation changes reveals that surge-
type glaciers are widely distributed in the WKM. They can
be easily identified by the marked thinning over the accumu-
lation area and thickening on the ablation area. It is clearly
seen that surge events have happened over Chongce
Glacier, Yulong Glacier, N6 Glacier, Kunlun Glacier and
Bulakebashi Glacier from the 1970s to 1999. This agrees
with velocity, terminus position and morphology changes
determined from SAR images during 1972-2014 (Yasuda
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and Furuya, 2015). In addition, N4 Glacier, N5 Glacier
and the eastern branches of Duofeng Glacier and Duota
Glacier present surge-type elevation change character.
They are regarded by Yasuda and Furuya (2015) as possible
surge-type glaciers because no active surge was observed.
The similar mass changes of surge-type and nonsurge-type
glaciers suggest that the glacier internal instabilities seem
not to have a significant impact on the glacier mass
balance over WKM. Similar mass budgets for surging and
nonsurging glaciers have been also reported in the Pamirs
and Karakoram (Gardelle and others, 2013).

5.3. Climate consideration

Glacier changes are related to a larger-scale meteorological
or climatic feature. Here, we collect the monthly air tempera-
ture and precipitation observations from five meteorological
stations (Pishan, Hetain, Yutain, Minfeng and Shiquanhe,
Fig. T and Table S1) near to the WKM glaciers. The data
are derived from the National Meteorological Information
Center, China Meteorological Administration. Based on the
averaged records from the five meteorological stations, it is
found that from 1970 to 1999, annual and summer mean
air temperature shows the significant upward trends of
0.24+0.10°C decade™' (p <0.01) and 0.20+0.12°C
decade™" (p <0.01), respectively. However, the upward
trends are not significant for the 2000-12 period (Fig. 8a).
In October 2012, three ice cores with the length of 133.83
m, 135.81 m and 58.82 m were recovered from Chongce
ice cap (35°14’'N, 81°07’E, 6010 m a.s.l., see Fig. 1) (An
and others, 2016). Stable oxygen isotope ratios are positively
correlated with annual mean air temperature recorded at
Shiquanhe and the ice core temperature trend calculated
between 1970 and 1999 (0.74+0.12°C decade™) is
greater than that observed from station data. In consideration
of the scarceness of the meteorological stations around WKM
glaciers, the nine high-resolution reanalyses (Table S2) for
this region (33-39°N, 71-82°E) are compared with the avail-
able observations to further determine the air temperature
variability. The results also show that significant warming
occurs between 1970 and 1999, but variability in the air
temperature is not significant since 2000 (Fig. 9).
Meteorological station measurements reveal an insignificant
increase in the annual and winter (November—April) pre-
cipitation for the 1970-99 and 2000-12 time spans
(Fig. 8b). Based on the gridded precipitation fields from
Global Precipitation Climatology Project (GPCP) Combined
Precipitation Data Set, WKM and surrounding (33-39°N,
71-82°E) experience a significantly increasing annual pre-
cipitation trend (>2 mm a " since 1979 (Fig. 10), which
may result from the strengthening westerlies (e.g. Yao and
others, 2012). The background of climate change in recent
decades suggests that the increased snow accumulation
and summer melt both contribute to WKM glacier changes.
Thus, the determination of glacier sensitivity to climate
change is essential to understand the slight glacier reduction
in the WKM.

The difference in the sensitivity of glaciers to climate
change can result in varying glacier response. WKM glaciers
are reported to be more sensitive to changes in winter pre-
cipitation, rather than temperature variability, in contrast to
other regions of the Tibetan Plateau (Kapnick and others,
2014). Furthermore, the increased air temperature in winter
will not result in increased melt or changes in precipitation
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statistically above 95% confidence level. Highlighted box shows the location of WKM.

phase, due to their relatively high altitudes. Thus, the
increased winter precipitation likely translates into greater
snow accumulation that may offset recent summer
warming and ablation season increase in melt on the
glacier summer melting over the WKM. Alternatively, de
Kok and others (2018) have suggested that intensive regional
irrigation leads to increased cloudiness in summer that would
reduce ablation. Further research is required to evaluate
these two theories.

6. CONCLUSIONS

Based on a set of remote-sensing data that includes topo-
graphical maps, SRTM DEM and Landsat images, changes
in glaciers over the WKM are determined. The analysis of
the glacier area change reveals insignificant shrinkage
(=0.07 £0.1% a~ ") between the 1970s and 2016, agreeing
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well with the recent glacier area change estimates by Ji and
others (2013) and Bao and others (2015). The slight reduction
in glacier extent may imply that the mass budgets in the
WKM were also balanced over the last 40 years. However,
glacier extent or length changes can only provide an indirect
and delayed response to climate change. Here, based on
geodetic measurements, we report that WKM glaciers do
not experience significant mass change from 1970s to
1999. Combined with mass-balance calculations from
ICESat laser altimetry measurements (e.g. Gardner and
others, 2013; Kdab and others, 2015), WKM glacier stability
is not a recent phenomenon, but has persisted for at least 40
years. The slight reduction in the WKM glaciers may be asso-
ciated with peculiarities of the regional meteorological or cli-
matic features. More accumulation from increased winter
precipitation partly offsets the glacier mass wasting resulting
from significant warming during 1970-99. A slowdown in
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warming since 2000 happened in this region and may also be
responsible for the nearly balanced mass budgets, even mass
gaining, especially for the early 21st century.

Recently, glaciers in the eastern Pamir and the Hunza
catchment in the Karakoram are also reported to have been
in balance since the 1970s (Holzer and others, 2015;
Bolch and others, 2017; Zhang and others, 2016). These
results seem to suggest that the Pamir-Karakoram-WKM
glacier anomaly may extend back at least to the 1970s.
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