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The interaction of a hollow droplet impacting a solid surface occurs in several applications,
including controllable biomedicine and thermal spray coating. Understanding the physics
of the hollow droplet spreading is the key to maintaining the mass transfer process in
all relevant applications. In this work, a comprehensive experimental, numerical and
theoretical study is performed on water hollow droplets impacting a rigid surface to
better understand the flattening process of a hollow droplet. In the numerical part,
compressible Navier–Stokes equations are solved using the volume of fluid (VOF) method
in a two-dimensional (2-D)-axisymmetric model. The comparison of simulation results
with the experimental photographs shows that the numerical solution can correctly predict
the hollow droplet shape evolution. The results show that the spreading diameter and
height of the counter-jet formed after the hollow droplet impact grow with impact velocity.
Investigating the size and location of the entrapped bubble shows an optimum bubble size
that facilitates the hollow droplet flattening. It is also shown that the ripples on splats
produced by the hollow droplets with a larger bubble size are higher than those of small
bubbles. In the end, a theoretical model is developed to analyse the maximum spreading
diameter of the hollow droplet impact analytically. Its prediction is in good agreement with
the experimental and numerical results.

Key words: drops, multiphase flow

1. Introduction

Droplet impingement on a solid surface is a widely appearing phenomenon. A raindrop
falling on a leaf or the ground (Liu et al. 2015), ink-jet printing (Li et al. 2018) and
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Figure 1. Impingement of a hollow water droplet with a speed of surface Uo = 3.6 m s−1 on an aluminium
surface (Nasiri et al. 2021).

thermal spray coating (McDonald et al. 2006) are good examples of droplet impact in
nature and industry. In the past decades, the parameters affecting droplet impact outcome
have been extensively studied through experimental (Adera et al. 2013; Hao et al. 2015;
Josserand & Thoroddsen 2016; Weisensee et al. 2016; Quintero, Riboux & Gordillo
2019; García-Geijo, Riboux & Gordillo 2020), analytical (Chandra & Avedisian 1991;
Pasandideh-Fard et al. 1996; Pegg, Purvis & Korobkin 2018; Gordillo, Riboux & Quintero
2019) and numerical modelling (Hicks & Purvis 2010; Li et al. 2017) investigations. The
main influencing parameters are droplet size, droplet velocity, droplet type and surface
wetting conditions. To address the droplet impact and spreading dynamics, dimensionless
numbers such as We = ρU2

0Deq/σ , Re = ρU0Deq/μ, Oh = μ/
√

ρσDeq, Bo = ρgD2
eq/σ

and Ca = μU0/σ are employed known as the Weber, Reynolds, Ohnesorge, Bond and
capillary numbers, respectively. In these parameters, ρ, Deq, U0, σ and μ represent density,
equivalent diameter, velocity, surface tension and viscosity of the droplet, respectively.

In addition to the impingement of regular droplets on a surface, there are special cases
that deal with hollow droplets containing void inside their volume (figure 1) or droplets
containing two different liquids (compound droplets) (Blanken et al. 2021). The interaction
of hollow droplets with a rigid wall occurs in the fields of controllable biomedicine (Wang
et al. 2012; Mountford, Thomas & Borden 2015; Rapoport 2016; Sheeran et al. 2016),
thermal spray coating (Solonenko, Gulyaev & Smirnov 2008; Solonenko et al. 2015),
cavitation (Moezzi-Rafie & Nasiri 2018) and lithotripsy. It should be mentioned that the
hollow droplet is different than the bubble entrapment after droplet impact on a liquid pool
(Tran et al. 2013) or a surface (Hicks & Purvis 2010; Zhao, De Jong & van der Meer 2019).

Although there are thousands of publications on dense droplet impingement, only a few
studies have focused on the impact of a hollow droplet on a surface. Solonenko et al.
studied the deposition of hollow sphere yttria-stabilised-zirconia (YSZ) during plasma
thermal spray coating (Solonenko et al. 2008). They noticed fundamental differences in
the behaviour of dense and hollow droplets during impact on a surface. It was shown that
zirconia splats produced by the collision of hollow sphere particles to the substrate have
a more stable character compared to splats formed by dense droplets. The reason behind
this is not fully understood yet. Blanken et al. have reviewed studies on compound droplets,
and have addressed the fundamental aspects of compound drop impact and discussed the
current challenges related to experimental testing and numerical simulation of multiphase
fluid systems (Blanken et al. 2021).

Gulyaev et al. investigated the impingement of hollow glycerin droplets. They observed
the formation of a liquid counter-jet due to the hollow droplet impact on a surface for
the first time (Gulyaev & Solonenko 2013). They also developed an integral-differential
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equation for hollow droplet flattening for low and high Eu cases. For high Eu, they simplify
their equation into two equations based on droplet initial condition including infinity Re
and very low We, or low Re and infinity We numbers (Gulyaev et al. 2009; Gulyaev &
Solonenko 2013).

Kumar and Gu applied the volume of fluid (VOF) method to incompressible
Navier–Stokes equations and numerically investigated the flattening and solidification of a
hollow droplet in plasma thermal spraying conditions (Kumar & Gu 2012). A modified
VOF-based numerical method was applied by Safaei et al. to consider the effects of
gas compressibility along with liquid solidification during the high-velocity impact of a
hollow droplet (Safaei et al. 2017). Wei & Thoraval (2021) also have performed numerical
simulation of hollow droplet flattening impacting a solid surface to predict maximum
spreading of a hollow droplet. In addition, there are other studies investigating hollow
droplet behaviour after impact on a liquid pool (Deka et al. 2019; Zhu et al. 2020).

Moreover, a combined level set-volume of fluid (CLSVOF) numerical simulation was
performed to study the effects of gas pressure on the flattening of the hollow droplet (Li,
Zhang & Zheng 2019). Recently, the authors have conducted experimental and numerical
investigations on the flattening of the hollow droplet and described its differences with the
flattening of the dense droplet (Nasiri et al. 2021). It was shown that even though a portion
of liquid of hollow droplet leaves the surface as counter-jet, the maximum spreading
diameter of the hollow droplet is similar to that of the dense droplet with the same mass
(Nasiri et al. 2021).

Generally, when a hollow droplet impacts a surface, it spreads and simultaneously a
counter-jet takes shape inside the entrapped bubble (figure 1) (Nasiri et al. 2021). The
counter-jet grows during the flattening of the hollow droplet, passes through the trapped
bubble and compresses the air inside the bubble, leading to bubble rupture. This bubble
rupture induces perturbations on the surface of the spreading droplet. The counter-jet
grows and depending on the impact velocity of the hollow droplet, breaks up and detaches
from the surface or recoils towards the surface.

To better understand the flattening process of a hollow droplet, in this work, a
comprehensive experimental and numerical study is performed on hollow water droplets
impacting a surface. The effects of bubble size and location on spreading diameter,
counter-jet shape and splat thickness are investigated. Additionally, a theoretical study
is performed to calculate the maximum spreading of a hollow droplet after impact on a
surface.

2. Experiment set-up and measurements

The schematic of the experimental set-up is shown in figure 2. Impact experiments were
performed at room temperature with 40 % relative humidity in the ambient environment.
The droplets were injected from a needle with an inner diameter of 2.18 mm connected to
a syringe pump at a flow rate of 50 μL min−1 (Pico Plus, Harvard Apparatus). Another
needle was implemented inside the main needle to inject air into the liquid droplet, where
the tips of both needles were located in a line. When a droplet started to form at the tip of
the liquid needle, the second needle was used to inject an air bubble into the droplet. The
gas injection process was done with constant flow rate, manually. Liquid and air injection
were continuous until further increment in the droplet weight caused the hollow droplet
detachment from the needle tip. It should be mentioned that the proposed set-up is capable
of producing hollow droplets, but the size of hollow droplets produced vary significantly
and the experiments had to be repeated several times to produce a hollow droplet with
almost exact sizes.
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Air pump
Syringe pump

Hollow droplet

Light Diffuser Substrate High-speed camera Laptop

Figure 2. Schematic of the experimental set-up of hollow droplet impact.

The height of the needle above the surface was varied between 50 and 700 mm, resulting
in impact velocities ranging from 0.5 to 3.6 m s−1. A high-speed camera (Phantom v711,
Vision Research) recorded the impacting droplets. The process was illuminated by a lamp
enabling filming the process at a rate of 5000 fps and an exposure time of 30 μs. The video
signal was recorded in the memory of a PC, and the images were analysed using ImageJ
software (version 1.46, National Institutes of Health, Bethesda, MD).

The apparent, advancing and receding contact angles of water droplet on the aluminium
surface were measured as 85°±2°, 94°±2° and 65°±2°, respectively. The fall of hollow
droplets from 50 mm height was recorded on the video camera, and the spread droplets
were weighed on a balance accurate to 0.05 mg. From the taken images, the outer diameter
of the droplet (Dh) and the diameter of the bubble (Db−image) were measured. Considering
the density of water and calculating the total volume of the hollow droplet, the actual
diameter of the bubble (Db) was evaluated. Measurements show that, due to the fisheye
effect, Db−image is not equal to Db and it needs to be corrected. These measurements were
repeated for ten droplets and at the end, the following correlation was derived to calculate
the actual size of the bubble from token images (Nasiri et al. 2021):

Db = 0.86 × Db−image. (2.1)

The details of the hollow droplet size calculations and experimental set-up are presented
in the previously published article of Nasiri et al. (2021). To report the experimental data,
ten similar hollow droplets with less than 10 % standard deviation in the size of droplet
and bubble were measured.

3. Numerical analysis

To explain the experiments and provide a better understanding of the reasoning behind the
formation and detachment of liquid counter-jet, a numerical model has been used to solve
compressible continuum equations for the drop flattening on a surface. Figure 3 shows
schematics of a hollow droplet impacting a flat surface. Several parameters are defined to
characterise this process. The main geometrical parameters are the initial diameter of the
hollow droplet (Dh) and the initial diameter of the bubble inside the hollow droplet (Db),
which are shown in figure 3(a). The flattening of a hollow droplet is schematically shown in
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(b)(a) (c)

Figure 3. Geometrical model of a droplet impacting a flat surface: (a) hollow droplet before and after impact;
(b) dense droplet before and after impact; (c) hollow droplet spreading after impact.

Density, ρ Viscosity, μ Surface Tension, σ Thermal conductivity, k Specific Heat, Cp
(kg m−3) (kg (ms)−1) (N m−1) (W (mK)−1) (J (kgK)−1)

Water 998 8.9 × 10−4 72 × 10−3 0.6 4186
Air 1.225 1.8 × 10−5 — 0.0242 1006.43

Table 1. Properties of water and air at T = 300 K.

figure 3(c) showing the related parameters of counter-jet diameter (Dcj), counter-jet height
(hcj), counter-jet velocity (Ucj), spreading diameter (D), splat height (h) and spreading
velocity (UR). Equivalent diameter (Deq) of a hollow droplet is defined as the diameter of
a dense droplet with the same weight (figure 3b). These diameters are related to each other
by the definition of α, β parameters as

Dh = αDeq, Db = βDeq. (3.1a,b)

From (3.1), it can easily be concluded that α3 − β3 = 1. To study the impact process, a
hollow droplet with a size of Dh = 5.6 mm, Db = 4.5 mm and Deq = 4.4 mm is simulated
at different velocities. The hollow droplet vertically impacts a flat aluminium surface with
an initial temperature of 300 K. The ambient pressure and temperature are 1 atm and 300,
respectively. The properties of fluids used in this simulation are presented in table 1.

Due to the symmetry of the process, a 2-D-axisymmetric domain was used to simulate
the droplet impact on a flat surface. The computational domain and boundary conditions
are shown in figure 4. The behaviour of a hollow droplet, including spreading and bubble
ruptures, was captured in the simulations with grid numbers from 208 000 to 1 200 000.
The results were validated with extracted experimental data. Compromising the accuracy
and time, a structured grid with total grid numbers of 340 000 was chosen to simulate
all the cases. The results for mesh independency of the solution have been reported in
the previous study of the authors (Nasiri et al. 2021). With the current grid distribution,
approximately 100 cells per diameter exist inside the hollow droplet before the impact.
It should be mentioned that cells were more concentrated near the symmetry axis and
along the bottom boundary, the cells are fine and uniform at the impact location (around
0.125 mm) and the grid distribution is constant at different time steps.

The no-slip boundary condition is applied on the bottom surface and the pressure
boundary condition is zero gradient. The dynamic contact angle is used to simulate the
liquid motion on the bottom wall. The apparent, advancing and receding contact angles
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∂U/∂Z = 0, P = 1 atm, T = 300 K

30 mm

DH

DB

∂P/∂z = 0, U = 0, T = 300 K

T = 300 K

∂U/∂r = 0

30 mm

(b)(a)

Figure 4. Computational domain and boundary conditions of the specified problem.

Apparent contact angle Advancing contact angle Receding contact angle

Aluminium 85° 94° 66°

Table 2. Measured contact angles of water on different surfaces.

for water on an aluminium surface are reported in table 2. For the other side of the
domain, velocity boundary conditions are assumed to be zero gradient while the pressure
is atmospheric pressure.

The mass, momentum and energy equations are the governing equations to be solved to
simulate hollow droplet flattening with the VOF method as

∂ρ

∂t
+ ∇ · (ρ U) = 0, (3.2)

∂(ρU)

∂t
+ ∇ · (ρUU) = −∇p + ρg + ∇ · {μ[∇U + (∇U)T ]} + F vol. (3.3)

∂(ρCpT)

∂t
+ ∇ · (ρCpUT) = ∇ · (k∇T) + ∂p

∂t
−

(
∂ρK
∂t

+ ∇ · (ρUK)

)
, (3.4)

where ρ, U , P, g, K and Cp are mixture density, velocity field, pressure, gravitational
acceleration, the kinetic energy of fluid, and the specific heat, respectively. Surface tension
is considered as a source term (F vol) and can be calculated using the Brackbill method
(Brackbill, Kothe & Zemach 1992). To solve momentum equations correctly, the pressure
field can be calculated from the following equation (Miller et al. 2013):(

γ
Ψl

ρl
+ (1 − γ )

Ψg

ρg

)[
∂p
∂t

+ U · ∇p
]

+ ∇ · U = 0, (3.5)

where Ψl, Ψg, ρl, ρg and γ are the compressibility and the density of liquid and gas,
and the liquid–gas volume fraction, respectively. Defining compressibility as Ψ = ∂ρ/∂P
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Flattening of a hollow droplet impacting a solid surface

based on the ideal gas equation of state, gas compressibility and liquid compressibility
take the forms of

Ψg = 1
zRT

, Ψl = 1
a2 , (3.6a,b)

where z represents compressibility factor with the isothermal equation of state assumption.
Parameter a represents sound velocity in the liquid. It should be noted that regarding the
impact velocity of the hollow droplet (1–6 m s−1), the compressibility does not play a role
in the dynamic of hollow droplet flattening and can be ignored.

To track the interface of two fluids, the VOF equation is used (Miller et al. 2013):

∂(γ )

∂t
+ ∇ · (γ U) = −γΨl

ρl

Dp
Dt

= γ (1 − γ )ζ + γ∇ · (U)

ζ =
(

Ψl

ρl
+ Ψg

ρg

)
Dp
Dt

⎫⎪⎪⎬
⎪⎪⎭

. (3.7)

By solving the above equation, the value of γ can be obtained for each computational cell.
The cell is occupied by liquid if γ = 1, whereas the cell is occupied with gas if γ = 0. Any
value in the range of 0 < γ < 1 indicates that the cell contains a liquid–gas interface. Once
γ has been determined, the surface tension force can be calculated as follows (Brackbill
et al. 1992):

F vol = σκ(∇γ ), κ = −∇ ·
( ∇γ

|∇γ |
)

, (3.8)

where σ and κ represent the surface tension of the liquid and the surface curvature,
respectively, and ∇γ is a continuous function that is zero everywhere in the domain except
for the transitional area at the interface. The mixture properties can be expressed as

μ = γμl + (1 − γ )μg, (3.9)

ρ = γ ρl + (1 − γ )ρg, (3.10)

k = γ kl + (1 − γ )kg, (3.11)

cp = γ cp,l + (1 − γ )cp,g. (3.12)

To optimise the computational time, an adaptive time step control feature was
applied. This controller, which keeps the solution stable, was adjusted based on the
Courant–Friedrichs–Lewy (CFL) number (Co = Ui�t/�x) at the beginning of the time
iteration loop. Using the values of the velocity of the phase fractions and �t from the
previous time step, the maximum local CFL number (Co0) was calculated, and a new time
step was iteratively initiated as

�t = min
{

Comax

Co0
�t0;

(
1 + λ1

Comax

Co0

)
�t0; λ2�t0;�tmax

}
, (3.13)

where Comax and �tmax prescribe values for the CFL number and time step, respectively
(Yeganehdoust et al. 2020). It should be noted that codes of OpenFOAM open-source
solver have been used to simulate the droplet flattening.

4. Results and discussion

After impact, a dense droplet flattens on the surface until reaching its maximum spreading
diameter and then retracts towards the centre (figure 5a). This retracting liquid results in
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5.0 mm

t = 0 ms t = 0.80 ms t = 1.60 ms t = 4.40 ms t = 12.40 ms

5.0 mm

t = 0 ms t = 0.80 ms t = 1.60 ms t = 4.40 ms t = 12.40 ms

5.0 mm

t = 0 ms t = 0.80 ms t = 1.60 ms t = 4.40 ms t = 12.40 ms

(a)

(b)

(c)

Figure 5. Selected snapshots showing droplet impact on an aluminium surface: (a) dense water droplet
with Deq = 4.4 mm impacting at U0 = 3.6 m s−1(We = 790, Ca = 0.0016); (b) hollow water droplet with
Dh = 5.6 mm, Db = 4.5 mm and Deq = 4.4 mm impacting at U0 = 3.6 m s−1(We = 790, Ca = 0.0016);
(c) hollow water droplet with Dh = 5.6 mm, Db = 4.5 mm and Deq = 4.4 mm impacting at U0 = 1.0 m s−1

(We = 60, Ca = 0.0016).

an oscillating bulk of water on the surface until it stabilises. There is no liquid detachment
from the surface during the whole process. In contrast, the behaviour of a hollow droplet
impact is different (figure 5b); while a hollow droplet spreads on the surface, a counter-jet
takes shape in the axial direction.

This counter-jet crosses the upper shell of the entrapped bubble. When the hollow
droplet reaches its maximum spreading diameter, the central counter-jet is still growing
and eventually breaks away from the spreading liquid. As a result of this breakup, a portion
of liquid mass detaches from the surface while the remaining liquid stabilises and takes a
semicircular shape similar to the dense droplet.

When a dense droplet impacts a surface, the pressure of the liquid at the contact point
increases. This high pressure gradually decreases inside the droplet. The liquid located at
this high-pressure region intends to move to regions with lower pressure. Nevertheless, the
liquid cannot recoil and move upward because of the pressure gradient inside the droplet.
Therefore, the liquid can only spread in the radial direction and consequently, the dense
droplet flattens on the surface. As a result, the kinetic and surface energies of the droplet
before impact convert to the surface energy of the spreading droplet and dissipate through
viscosity. The equilibrium between these energies determines the spreading diameter of
the droplet (Nasiri et al. 2021).

However, when a hollow droplet impacts a surface, the same high-pressure region
at the impact location can be observed. The only difference is that this high-pressure
region does not gradually decrease inside the droplet. Instead, there is a pressure gap
between the high-pressure region of the droplet with the upper half of the droplet. This
pressure gap allows the pressurised liquid to move upward in addition to spreading on
the surface. Thereupon, a counter-jet forms on the surface as the hollow droplet flattens.
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Considering the equilibrium between the energy before and after impact, the spreading
portion of the hollow droplet has less energy to spread on the surface compared to the
dense droplet. Therefore, a smaller spreading diameter is observed for the hollow droplet
in comparison to the dense droplet. It should be noted that, as a result of the impact, the
pressure inside the bubble increases (Nasiri et al. 2021).

Many parameters affect the behaviour of a hollow droplet after impact on the surface,
including droplet velocity (figure 5c), type of the liquid, size and location of the entrapped
bubble. For instance, at hollow droplet impact with low velocity or high viscosity, which
can be distinguished as low Re number, the spreading diameter of the hollow droplet is
lower than that of hollow droplet impact at high Re numbers. This is due to lower kinetic
energy, which can be dissipated by a higher ratio of viscous force, surface tension and
gravitation force. The other difference concerns the formation of the counter-jet. Even
though the counter-jet forms even at impacts with low Re numbers, the length of the
counter-jet is small, there is no detachment and the counter-jet returns to the spreading
portion of the liquid. Therefore, the effects of these parameters on the behaviour of the
hollow droplet are studied through a detailed numerical investigation.

Figure 6 shows snapshots of the simulation of a hollow droplet impacting on a surface
with U0 = 3.6 m s−1. As can be seen, the flattening behaviour of the hollow droplet
predicted by the numerical simulation is similar to the captured experimental photos. The
only difference is the fingering phenomenon in the experimental images, which was not
captured due to the 2-D-axisymmetric assumption in the numerical simulations.

Moreover, two critical parameters obtained by the numerical simulation, i.e. the
spreading diameter and the counter-jet height of the hollow droplet after impact, are
compared with the measured experimental data in figure 7. As is shown, the numerical
results are in good agreement with the experimental data at different velocities.

4.1. Hollow droplet impact at different velocities
Figure 8 shows snapshots of the numerical simulations of the hollow droplet at different
velocities. The spreading and the counter-jet formation is captured at all different
velocities. By increasing the impact velocity, the length of the counter-jet becomes longer
while its width gets thinner. In addition, the spreading diameter is increased by the impact
velocity of the hollow droplet.

The characteristics of the hollow droplet impingement on a surface are demonstrated
in figures 9 and 10. Dimensionless numbers are defined to provide more comprehensive
information. Figure 9(a) shows the dimensionless spreading diameter (D∗

s = Ds/Deq) of a
hollow droplet during dimensionless time (t∗ = tU0/Deq) at different impact velocities.
The droplet spreading increases with droplet impact velocity (U0) until it reaches its
maximum value, then recoils and forms a semicircular shape.

The dimensionless counter-jet height (h∗
cj = hcj/Deq) against dimensionless time is

demonstrated in figure 9(b). The height of the counter-jet grows until it reaches a maximum
value and then starts to fall at low impact velocities. However, the height of the counter-jet
increases permanently until it detaches from the surface at high impact velocities. The
slope of counter-jet height against time at different droplet impact velocities is shown here.
Clearly, a similar slope at different impact velocities can be observed, especially at initial
instances of the counter-jet formation. Then, the slope decreases, resulting from dissipation
of energy during counter-jet formation and progress. The decrement is more evident at low
impact velocities, while the slope is almost linear during counter-jet progress, especially
at high impact velocities.
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Figure 6. Selected snapshots of experimental images and numerical simulation for a hollow water droplet
with Dh = 5.6 mm, Db = 4.5 mm, Deq = 4.4 mm impacting on an aluminium surface at Re = 17 760 and
We = 790 (corresponding to U = 3.6 m s−1 ). The experimental images are shown to be compared with the
results of the numerical simulation.

Figure 10(a) shows the dimensionless counter-jet velocity (U∗
cj = Ucj/U0) against

dimensionless time (t∗) at different impact velocities. At the impact of the hollow droplet
on the surface, a counter-jet forms, which moves perpendicular to the surface. The
velocity of the counter-jet increases with progress in time. This increment continues until
a maximum velocity. The maximum velocity point occurs before the penetration of the
counter-jet into the upper shell of the entrapped bubble (figure 11). At low Re number, the
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Figure 7. Characteristics of a hollow droplet with Dh = 5.6 mm, Db = 4.5 mm, Deq = 4.4 mm and
Ca = 0.0016 impacting at different velocities: (a) spreading diameter (D∗

s = Ds/Deq) versus time
(t∗ = tU0/Deq); (b) counter-jet height (h∗

cj = hcj/Deq) versus time.

counter-jet retracts towards the surface after reaching a peak which is shown by negative
velocity in figure 10(a). However, at high Re number, the counter-jet develops with a
constant velocity (U∗

cj = 0.4) until it detaches from the surface.
The dimensionless volume of the counter-jet (V∗

cj = Vcj/[αβVeq]) at the maximum
spreading time is demonstrated in figure 10(b) for different velocities. This volume
includes the liquid pillar from the surface which has a positive velocity in the Z direction.

As it can be seen, the volume of the counter-jet is almost Vcj = 0.3αβVeq at the
maximum spreading, no matter the hollow droplet impact velocity.

4.2. Bubble size
The other parameter that affects the hollow droplet impact characteristics is the size of
the entrapped bubble. Figure 12 shows snapshots of hollow droplets impact with different
bubble sizes. The formation of the counter-jet is the same for all droplets. Nevertheless,
the counter-jet shape is different. As the size of entrapped bubble increases, the size of
the counter-jet grows. In addition, there are oscillations on the counter-jet’s surface for
hollow droplets with small, trapped bubbles, leading to faster breakup and detachment of
the counter-jet from the surface compared to hollow droplets with larger bubbles.

To enable an accurate comparison between hollow droplet impacts with different bubble
sizes, numerical simulations are performed on hollow droplets with a diameter of Dh =
5.6 mm and different bubble sizes impacting on a surface with velocity U0 = 3.6 m s−1.
Hollow droplets with constant outer diameter (Dh = 5.6 mm) and different bubble sizes
(Db) are considered where the hollowness ratio (β/α) varies from 0.25 to 0.85. Snapshots
of numerical results for hollow droplet impact with different bubble locations are presented
in Appendix A.

Generally, hollow droplets with different bubble sizes have similar behaviour after
impact on the surface. As the size of the entrapped bubble decreases, the maximum
spreading diameter of the hollow droplet increases due to higher mass of the droplet, which
impacts the surface (figure 13a). It should be mentioned that in figure 13(a), the spreading
diameter is non-dimensional using an equivalent diameter of each specific droplet and can
be calculated by (3.1).
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Figure 8. Selected snapshots of numerical simulation of a hollow water droplet with Dh = 5.6 mm,

Db = 4.5 mm, Deq = 4.4 mm and Ca = 0.0016 impacting a surface at different Weber numbers:
(a) U0 = 1.8 m s−1(We = 198); (b) U0 = 2.4 m s−1(We = 350); (c) U0 = 3.6 m s−1(We = 790);
(d) U0 = 4.8 m s−1(We = 1410).

The other parameter which is influenced by the size of the bubble is the counter-jet
height. As is shown in figure 13(b), the height of the counter-jet increases over time
with a similar slope for all hollow droplets except for hollow droplets with hollowness
ratio parameter β/α < 0.35. This is due to the higher thickness of the bubble shell
for low-hollowness-ratio droplets, which reduces the counter-jet energy during passing
through the upper shell of the bubble. Nevertheless, the maximum height of the counter-jet
at each time does not belong to the hollow droplet with the smallest or largest bubble.
There is an optimum value for the size of the bubble, which leads to the highest counter-jet
length, which is Dh = 4.0 mm and can be calculated for any hollow droplet with the
optimised hollowness ratio parameter (β/α)∗ = 0.71.

Figure 14(a) shows the dimensionless velocity of the counter-jet during the
dimensionless time. The trend of the counter-jet velocity is similar to what was seen in
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Figure 9. Numerical simulation results of characteristics of a hollow droplet with Dh = 5.6 mm,

Db = 4.5 mm, Deq = 4.4 mm and Ca = 0.0016 impacting at different velocities: (a) spreading diameter
(D∗

s = Ds/Deq) versus time (t∗ = tU0/Deq); (b) counter-jet height (h∗
cj = hcj/Deq) versus time.
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Figure 10. Numerical simulation results of characteristics of hollow droplet Dh = 5.6 mm, Db = 4.5 mm
and Deq = 4.4 mm impacting at different velocities: (a) velocity of the counter-jet (U∗

cj = Ucj/U0) versus time
(t∗ = tU0/Deq); (b) counter-jet volume (V∗

cj = Vcj/[αβVeq]) versus droplet impact Reynolds number at the
maximum spreading time.

t = 0.8 ms t = 1.0 ms t = 1.2 ms t = 1.4 ms t = 1.6 ms

Uz(m s–1) 2.0

–3.3

Figure 11. Snapshots of the counter-jet penetration into the upper shell of the bubble for a hollow droplet with
DH = 5.6 mm and DB = 2.8 mm impacting at Re = 17 760 and We = 790 (corresponding to U = 3.6 m s−1).

figure 10(a). After formation, the counter-jet velocity increases until it reaches the upper
shell of the bubble. For hollow droplets with β/α > 0.35, the counter-jet passes through
this shell and loses a portion of its kinetic energy and continues with an average velocity
of U∗

cj = 0.4. This value is less for hollow droplets with β/α < 0.35, which justifies
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Figure 12. Selected snapshots showing hollow droplet impact at U0 = 3.6 m s−1 and Deq = 4.54 mm
(We = 790, Ca = 0.0016) with different bubble sizes: (a) Dh = 4.6 mm, Db = 0.96 mm; (b) Dh = 4.84 mm,

Db = 2.7 mm; and (c) Dh = 5.4 mm, Db = 4.0 mm.
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Figure 13. Numerical simulation results of the spreading characteristics of a hollow droplet
Dh = 5.6 mm (Ca = 0.0016) with different bubble sizes impacting on a surface at U0 = 3.6 m s−1:
(a) spreading diameter (D∗

s = Ds/Deq) versus time (t∗ = tU0/Deq); (b) counter-jet height (h∗
cj = hcj/Deq)

versus time.
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Figure 14. Numerical simulation results of the spreading characteristics of a hollow droplet Dh = 5.6 mm
(Ca = 0.0016) with different bubble sizes impacting on the surface at U0 = 3.6 m s−1: (a) velocity of the
counter-jet (U∗

cj = Ucj/U0) versus time (t∗ = tU0/Deq); (b) counter-jet volume (Vol∗cj = Volcj/[αβ Voleq])
versus hollowness ratio at maximum spreading time.

lower slopes of the counter-jet heights of these droplets in figure 13(b). The other issue
is the counter-jet level falling after the first peak. It is shown that as the hollowness ratio
(β/α) increases, the minimum point decreases and for the hollow droplets with highest
hollowness ratio (β/α), the minimum point peak is vanished.

The counter-jet velocity shows two picks during counter-jet evolution. The first picks
occurs when the counter-jet penetrates the bubble and reaches upper shell of the bubble.
At this point, the liquid in the upper portion of the hollow droplet damps the counter-jet
motion and reduces the counter-jet velocity. This pick has been observed in all cases and
it is more severe in case with low hollowness ratio, as the counter-jet has to pass a thicker
shell.

However, there is a second pick that only has been seen in cases with lower hollowness
ratio. This pick can be due to the liquid portion which is still falling after the bubble
collapse or because of bubble rupture which induces velocity to the counter-jet. In the case
of hollow droplets with low hollowness (thicker bubble shell), when the bubble ruptures,
the liquid shell moves fast towards the substrate as a ligament and joins the flattening
liquid. This liquid mass increases the counter-jet velocity again until a point where the
gravity decelerates the counter-jet. As the hollowness ratio increases, the bubble shell
becomes thinner. In droplets with high hollowness ratio, the bubble explodes and a thin
liquid shell disperse around it which cannot significantly change the counter-jet velocity.

The dimensionless counter-jet volume at the maximum spreading time is demonstrated
in figure 14(b). The size of the entrapped bubble can affect the shape, and the volume of
the counter-jet at it was reported in figure 12. Nevertheless, the dimensionless volume of
the counter-jet is in the range of 0.26 < Vol∗cj < 0.34. This variation decreases for hollow
droplets with high hollowness ratio and reaches a constant value of Vol∗cj = 0.3 or Volcj =
0.3αβ Voleq.

Plasma spraying is one of the main applications of hollow droplets due to the possibility
of producing coatings with higher porosity. This increased porosity is a result of increased
roughness on the solidified splats. Hence, the effect of bubble size on the roughness of
the splat at maximum spreading is demonstrated in figure 15. In addition to differences in
the shape of the counter-jet and the spreading diameter of hollow droplets with different
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Figure 15. Numerical simulation results of counter-jet height versus spreading radius of a hollow droplet
Dh = 5.6 mm (Ca = 0.0016) with different bubble sizes impacting on a surface at U0 = 3.6 m s−1 at maximum
spreading time.

bubble sizes, which can be seen in figure 14, the splat surface roughness is another
parameter that can distinguish the effect of bubble size (figure 15b). As can be seen,
droplets with a higher hollowness ratio have a rougher surface than the hollow droplets
with a lower hollowness ratio. This is due to a thinner bubble shell of hollow droplets with
a high hollowness ratio which can be affected by the bubble explosion that induces more
strong perturbations to the surface of the splat.

The other issue that is important to note is that when a droplet impacts a surface, a small
portion of air entraps underneath the droplet that cannot be washed off by the liquid inertia
due to the axisymmetric definition of the problem (Nasiri, Dolatabadi & Moreau 2022).

4.3. Bubble location
The location of the entrapped bubble inside the hollow droplet plays some roles in the
outcome of the droplet impact, as demonstrated in figure 16.

Four different cases are numerically simulated to investigate the effect of bubble location
accurately (figure 17). In the first case, the bubble is located at the centre, and in the last
one, it is located at the top. The dimensionless parameter δ∗ = δ/Deq shows the location
of the bubble inside the hollow droplet in which δ is the distance between the centre of
the bubble and the centre of the droplet. In this figure, the size of the hollow droplet (Dh)
and bubble (Db) are the same for all four cases. Snapshots of numerical results for hollow
droplet impact with different bubble locations are presented in Appendix B.

Figure 18 shows the characteristics of hollow droplets after impact on the surface.
As is shown, the spreading diameter of all four cases is almost the same (figure 18a).
The hollow droplet with a bubble located on the centre has a slightly higher maximum
spreading diameter. The behaviour of the hollow droplet is reversed in the case of
counter-jet height (figure 18b). Even though the slope of counter-jet height against time
is almost equal for all cases, this slope is slightly higher for the bubble located on the top.

The effect of bubble location is more obvious on the smoothness of the formed splat at
the maximum spreading time. As shown in figure 19, the hollow droplet with the bubble
located at the centre has higher roughness than the hollow droplets with the bubble on the
top. It is probably due to the higher thickness of the upper bubble shell when the droplet is
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Figure 16. Selected snapshots showing the spread of a hollow water droplet with different bubble locations
impact at U0 = 3.6 m s−1 with: (a) Dh = 4.8 mm, Db = 3.1 mm and Deq = 4.3 mm, δ∗ = 0.14;
(b) Dh = 4.92 mm, Db = 3.44 mm and Deq = 4.4 mm, δ∗ = 0.0.

Dh

δ
∗ = δ/Deq = 0 δ

∗ = δ/Deq > 0

Dh

δ
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Figure 17. Geometrical representation of the bubble location inside a hollow droplet.
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Figure 18. Numerical simulation results of characteristics of a hollow droplet (Dh = 5.6 mm and
Db = 4.5 mm) with different bubble locations impacting on a surface with U0 = 3.6 m s−1(We = 790,

Ca = 0.0016): (a) spreading diameter (D∗
s = Ds/Deq) versus time (t∗ = tU0/Deq); (b) counter-jet height

(h∗
cj = hcj/Deq) versus time.
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Figure 19. Numerical simulation results of counter-jet height versus spreading radius for a hollow
droplet Dh = 5.6 mm and Db = 4.5 mm with different bubble locations impacting on the surface with
U0 = 3.6 m s−1(We = 790, Ca = 0.0016) at maximum spreading time.

5.0 mm

t = 0 ms t = 1.0 ms t = 3.0 ms t = 8.0 ms

Figure 20. Impingement of a hollow water droplet with Dh = 4.8 mm, Db = 3.2 mm and Deq = 4.15 mm
on an aluminium surface at U0 = 3.6 m s−1.

located at the centre. When the counter-jet forms and passes through the upper shell and
then ruptures it, the thicker bubble shell transfers more oscillations to the splat’s surface,
making its surface rougher.

Due to 2-D axisymmetric numerical simulations, it is assumed that the bubble is located
on the vertical centreline of the hollow droplet. However, during experimental studies, it
was observed that any small deviation in the bubble’s location from the centre of the
droplet affects the location of the counter-jet, as shown in figure 20.

5. Theoretical analysis

In characterising the hollow droplet impact, a void water sphere with a diameter of Dh is
considered in which the diameter of the entrapped bubble is Db. The mass of this hollow
droplet is equal to the mass of a dense droplet with a diameter of Deq. After impact, the
hollow droplet divides into two portions. One portion spread on the surface in the shape
of a flat cylinder with a diameter of D and height of h, while the other portion forms a
counter-jet in the shape of a vertical cylinder with a diameter of Dcj and height of hcj. It is
assumed that no splashing occurs and the edge effects associated with the rim formation
are negligible. The droplets are considered large enough that the capillary length could be
neglected. (i.e. ρgD2

eq/γ ≈ 1). Therefore, the effect of gravity is neglected and the only
contribution to the potential energy of the drop arises from the surface tension (Amini
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2020). In addition, as impact velocity increases, the droplet kinetic energy will be much
larger than surface energy (i.e. We � 1), and surface tension and contact angle effects will
eventually become negligible (Pasandideh-Fard et al. 1996).

Before impact, the effective energies of the hollow droplet are kinetic energy (KE1),
surface energy (SE1) and gravitational energy, and the energy conservation equation of a
hollow droplet can be written as

KE1 + SE1 + GE1 = KE2s + SE2s + GE2s + W + KE2cj + SE2cj + GE2cj. (5.1)

Considering the hollow droplet exactly before the impact, the centre of the droplet is
located at hD = Deq/2. Assuming a constant surface tension, and the energy values on
the left side are given by

KE1 =
(1

2
ρU2

0

) (π

6
D3

eq

)
, (5.2)

SE1 = πD2
hΥ + πD2

bΥ = πα2D2
eqΥ + πβ2D2

eqΥ = πD2
eqΥ (α2 + β2), (5.3)

GE1 = (ρghD)
(π

6
D3

eq

)
=

(
ρg

Deq

2

) (π

6
D3

eq

)
. (5.4)

After the hollow droplet impact, a portion of the droplet spreads and the other portion
forms a counter-jet. When the spreading part reaches the maximum spreading diameter,
its kinetic energy is zero. The gravitational energy is also negligible and assumed to be
zero. The only effective energy is the splat surface energy. The surface energy can be
calculated by

KE2s = 0, (5.5)

GE2s = 0, (5.6)

SE2S = π

4
D2

maxY(1 − cos θa), (5.7)

where θa is advancing contact angle (Pasandideh-Fard et al. 1996). In addition, the work
done by viscous force can be calculated by

W =
∫ tc

0

∫ v

0
φ dΩts, (5.8)

where Ω is the volume of viscous fluid, tc is time for the droplet to reach maximum
spreading and φ is viscous dissipation function, which is estimated by

φ ∼ μ

(
U0

L

)2

. (5.9)

Here, μ is liquid viscosity and L is characteristic length estimated by the boundary layer
thickness (δ) at a solid–liquid interface.

The time required for the hollow droplet to reach the maximum spreading diameter can
be estimated by assuming the outcome of the hollow droplet impact as two different parts,
one is a cylindrical disk with the diameter of D and thickness of h responsible for the
droplet spreading, and the other one is a cylinder with a diameter of Dcj and height of hcj
responsible for counter-jet formation (figure 3). Liquid flows from the droplet into the film
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and counter-jet through an area of diameter d with velocity U0. The velocity at the edge of
the splat during spreading (UR) is given by the conservation of mass law:

U0
πd2

4
= URπDh + Ucj

πD2
cj

4
. (5.10)

Based on figures 10 and 14, velocity (Ucj), diameter (Dcj) and volume (Vcj) associated
with the counter-jet are estimated as Ucj � 0.4U0, Dcj � 0.5Db, while Db = βDeq and
Vcj � 0.3αβVeq).

The splat thickness (h) after impact can be calculated by equating the volume of hollow
droplet before impact (Vh), the volume of the spreading liquid (Vs) in the shape of a disk
with height h and diameter Dmax, and the volume of counter-jet (Vcj) as a cylinder with a
height of hcj and diameter of Dcj,

Vh = Vs + Vcj, (5.11)

4π

3
× D3

eq

8
= πD2

maxh
4

+ (1 − 0.3αβ) ×
(

4π

3
× D3

eq

8

)
, (5.12)

h = (1 − 0.3αβ) × 2
3

× D3
eq

D2
max

. (5.13)

Since d varies between 0 and Deq, an average value is assumed for d ∼ Deq/2. Substituting
h from (5.13) and the d parameter into (5.10) results in

dD
dt

= 2VR = 3
32

D2
maxU0

Deq

(
1 − 0.4β2

1 − 0.3αβ

)
, (5.14)

D2

D2
max

= 3
8

U0

Deq

(
1 − 0.4β2

1 − 0.3αβ

)
ts. (5.15)

At maximum spreading condition D = Dmax, therefore,

ts = 8
3

Deq

U0

(
1 − 0.3αβ

1 − 0.4 β2

)
. (5.16)

In addition, the volume of viscous fluid can be calculated by

Ω = πD2
maxδ

4
. (5.17)

Pasandideh-Fard et al. (1996) calculated the boundary layer thickness of a dense liquid
droplet after impact on a surface as

δ = 2
(

Deq√
Re

)
. (5.18)

Similarly, considering the assumption Vcj � 0.3αβ Veq, the volume of the liquid spreading
on the surface is (1 − 0.3αβ)Veq and the boundary layer for the hollow droplet thickness
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can be written as

δ = 2
(√

(1 − 0.3αβ) × Deq√
Re

)
, (5.19)

in which the Reynolds number is defined as Re = ρU0Deq/μ. Substituting (5.9), (5.18),
(5.13), (5.16) and (5.17) into (5.8) yields

W = π

3
ρU2

0DeqD2
max

1√
(1 − 0.3αβ) × Re

( 1 − 0.3αβ

1 − 0.4 β2

)
. (5.20)

Kinetic energy of the counter-jet at maximum spreading time can be calculated as

KE2cj = 1
2ρVcjU2

cj. (5.21)

Considering Ucj � 0.4U0 and Vcj � 0.3αβ Veq (figures 10 and 14), one can obtain

KE2cj = 1
2
ρ(0.4 × U0)

2
(π

6
× D3

eq

)
× (0.3αβ). (5.22)

However, the counter-jet surface energy can be calculated by considering the counter-jet
in the shape of a cylinder with a semi-sphere on the top:

SE2cj = SE2cj1 + SE2cj2, (5.23)

SE2cj = π

4
D2

cjY + πDcjhcjY. (5.24)

Assuming Ucj = 0.4U0, Dcj � 0.5Db, Db = βDeq and Vcj = 0.3αβVeq, we get hcj �
0.8(α/β)Deq and

SE2cj = π

2
D2

cjY + πDcjhcjY, (5.25)

SE2cj = πYD2
eq

[
β2

8
+ 0.4α

]
. (5.26)

Gravitational energy of the counter-jet at maximum spreading time can be calculated as

GE2cj = ρVcjg
hcj

2
. (5.27)

Assuming Dcj � 0.5Db, Db = βDeq and Vcj = 0.3αβVeq, we get hcj � 0.8(α/β)Deq and

GE2cj = (ρg)
(

0.3αβ × π

6
D3

eq

) (
0.4

α

β
Deq

)
. (5.28)

Substituting (5.2)–(5.7), (5.22), (5.26) and (5.28) into (5.11), and noting that α = 3
√

1 + β3

(3.1), one obtains

Dmax

Deq
=

√√√√ M We + 12N + Q Bo

3(1 − cos θa) + 4 We√
Re

× I
, (5.29)
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Figure 21. Theoretical prediction of maximum spreading diameter of a hollow droplet: (a) with Deq = 4.4 mm
Dh = 5.6 mm and Db = 4.5 mm, impacting at different We and Re numbers; (b) with Deq = 4.4 mm, impacting
on the surface with U0 = 3.6 m s−1(We = 790, Ca = 0.0016) with different hollowness ratios.

in which M, N and I are defined as

M = (1 − 0.048β
3
√

1 + β3), (5.30)

N = 3
√

(1 + β3)
2 + β2 − β2

8
− 0.4 3

√
1 + β3, (5.31)

I =
√

(1 − 0.3β 3
√

1 + β3)

(1 − 0.4β2)
, (5.32)

Q = (1 − 0.24
3
√

(1 + β3)
2
). (5.33)

The accuracy of the predicted maximum spreading from (5.29) was tested by comparison
with experimental and numerical measurements for a variety of hollow droplets impacting
a surface in a wide range of Weber and Reynolds numbers, and hollowness ratios. The
results of theoretical prediction for hollow droplet flattening are compared with numerical
data in figure 21.

The results show that the proposed model predicts maximum spreading diameter of a
dense droplet of a hollow droplet with less than 10 % error. The hollowness ratio for the
hollow droplets that have been tested varies between 0.25 and 0.85.

The magnitude of term 3(1 − cos θa) in (5.29) can be at most 6. Therefore, in cases
where (We/

√
Re)I is large in comparison, the value of the contact angle will have little

effect on the maximum spreading diameter of the hollow droplet. In addition, it can be
concluded that if We � I

√
Re, the capillary effect can be neglected during the hollow

droplet modelling. Furthermore, for the hollow droplets with Bo 	 1, the effect of the
gravity can be ignored during the modelling. It should be noted that this condition is
applicable during the simulation of hollow droplet in a thermal spraying process in which
the size of the particle is in the range of millimetres.
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Considering the value for M and N parameters, if We � 12, (5.29) reduces to

Dmax

Deq
=

√
M
4I

Re0.25. (5.34)

Based on the previous studies (Gulyaev et al. 2009; Gulyaev & Solonenko 2013), if
We → ∞,

Dmax

Deq
= 0.7

(
1 + 4

5
χ

)
+

(
0.72 − 2

3
χ

)
Re0.25(1+χ/5), (5.35)

where χ = (1 − (Dh − Db))
3.

Also, if Re → ∞, (5.29) reduces to

Dmax

Deq
=

√
M We + 12N + Q Bo. (5.36)

This is while based on the Gulyaev and Solonenko studies (Gulyaev et al. 2009; Gulyaev
& Solonenko 2013),

Dmax

Deq
= 0.75(1 + 0.8χ) + (0.53 − 0.45χ)We0.508+0.02χ . (5.37)

Based on the numerical and theoretical results for hollow droplet flattening, the
maximum spreading of the hollow droplet can be between 80 and 100 % of the
maximum spreading diameter of a dense droplet with the same mass. This percentage
varies by the initial conditions before the impact including droplet velocity, bubble
size, etc.

6. Conclusion

The flattening of hollow droplets is investigated comprehensively in the current study.
We studied the influence of different parameters that may affect the hollow droplet
characteristics after impact using experimental measurements and numerical modelling.
Comparison of simulated images with photographs shows that the numerical analysis
accurately predicts the droplet shape during deformation. The results confirm that the main
difference between the hollow and dense droplets is the formation of a counter-jet after the
hollow droplet impact. As expected, the spreading diameter increases with droplet impact
velocity increment, resulting from the higher kinetic energy of the droplet before impact.
In addition, droplet impact velocity directly affects the counter-jet length. The counter-jet
height grows as the droplet impact velocity increases. However, the counter-jet height
rate change is the same for almost all velocities. The effect of bubble size is the other
parameter that is studied and shows that for hollow droplets with the same outer diameter,
the maximum spreading increases with bubble size reduction. In addition, the formation of
the counter-jet is not dependent on the bubble size. However, there is an optimum bubble
size which results in the most extended length for the counter-jet.

Furthermore, an analytical expression is developed to estimate the hollow droplet
maximum spreading on a surface using the most influential parameters. Predictions from
this model were shown to be in good agreement with the experimental measurements
over a large range of We and Re numbers. It has been shown that the maximum
spreading diameter of the hollow droplet is approximately 90 % of the maximum spreading
of the dense droplet with the same mass and impact velocity. Furthermore, the splat
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thickness of the hollow droplet is nearly half of the splat thickness of the dense
droplet.
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Appendix A

The Mesh independency results are shown in figure 22. The spreading diameter and the
counter-jet length are shown for simulations with different numbers of meshes and the
results show that the numerical solver simulations do not depend on the number of cells.
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Figure 22. Mesh independency tests for hollow water droplet flattening with DH = 5.6 mm and DB = 4.5 mm
impacting at V = 3.6 m s−1: (a) the spreading radius versus time; (b) the counter-jet height versus time (Nasiri
et al. 2021).
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Appendix B

Figure 23 shows snapshots of the numerical simulation of a hollow water droplet impact
on a surface. The outer diameter of the droplet and the impact velocity are the same for
all cases. The only difference is the size of the entrapped bubble, which is located at the
centre of the droplet and varies from β/α = 0.5 to β/α = 0.8.
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Figure 23. Selected snapshots of numerical simulation of a hollow water droplet impact with
Dh = 5.6 mm, Ca = 0.0016 and U0 = 3.6 m s−1 with different bubble sizes: (a) β/α = 0.5; (b) β/α = 0.60;
(c) β/α = 0.71; and (d) β/α = 0.8.
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Appendix C

Figure 24 shows snapshots of numerical simulation of a hollow water droplet impact on
a surface. All impact parameters are the same except the location of the bubble, which
varies from the droplet centre (δ∗ = 0.00) to the upper half of the droplet (δ∗ = 0.09).
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Figure 24. Selected snapshots of numerical simulation of a hollow water droplet with Dh = 5.6 mm,

Db = 4.5 mm, Deq = 4.4 mm, U0 = 3.6 m s−1, We = 790 and Ca = 0.0016 with different bubble locations:
(a) bubble centre at δ∗ = 0.00; (b) bubble centre at δ∗ = 0.03; (c) bubble centre at δ∗ = 0.06; and
(d) bubble centre at δ∗ = 0.09.
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