
13 Objects

This chapter was written by Leo White and Jason Hickey.

We've already seen several tools that OCaml provides for organizing programs,

particularly modules. In addition, OCaml also supports object-oriented programming.

There are objects, classes, and their associated types. In this chapter, we'll introduce

you to OCaml objects and subtyping. In the next chapter, Chapter 14 (Classes), we'll

introduce you to classes and inheritance.

What Is Object-Oriented Programming?

Object-oriented programming (often shortened to OOP) is a programming style that

encapsulates computation and data within logical objects. Each object contains some

data stored in �elds and has method functions that can be invoked against the data

within the object (also called �sending a message� to the object). The code de�nition

behind an object is called a class, and objects are constructed from a class de�nition

by calling a constructor with the data that the object will use to build itself.

There are �ve fundamental properties that di�erentiate OOP from other styles:

Abstraction The details of the implementation are hidden in the object, and the

external interface is just the set of publicly accessible methods.

Dynamic lookup When a message is sent to an object, the method to be executed is

determined by the implementation of the object, not by some static property of

the program. In other words, di�erent objects may react to the same message

in di�erent ways.

Subtyping If an object a has all the functionality of an object b, then we may use a in

any context where b is expected.

Inheritance The de�nition of one kind of object can be reused to produce a new kind

of object. This new de�nition can override some behavior, but also share code

with its parent.

Open recursion An object's methods can invoke another method in the same object

using a special variable (often called self or this). When objects are created

from classes, these calls use dynamic lookup, allowing a method de�ned in

one class to invoke methods de�ned in another class that inherits from the

�rst.

Almost every notable modern programming language has been in�uenced by OOP,

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

224 Objects

and you'll have run across these terms if you've ever used C++, Java, C#, Ruby, Python,

or JavaScript.

13.1 OCaml Objects

If you already know about object-oriented programming in a language like Java or C++,

the OCaml object system may come as a surprise. Foremost is the complete separation

of objects and their types from the class system. In a language like Java, a class name

is also used as the type of objects created by instantiating it, and the relationships

between these object types correspond to inheritance. For example, if we implement

a class Deque in Java by inheriting from a class Stack, we would be allowed to pass a

deque anywhere a stack is expected.

OCaml is entirely di�erent. Classes are used to construct objects and support inher-

itance, but classes are not types. Instead, objects have object types, and if you want

to use objects, you aren't required to use classes at all. Here's an example of a simple

object:

open Base;;
let s = object

val mutable v = [0; 2]

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

end;;
val s : < pop : int option; push : int -> unit > = <obj>

The object has an integer list value v, a method pop that returns the head of v, and a

method push that adds an integer to the head of v.

The object type is enclosed in angle brackets < ... >, containing just the types

of the methods. Fields, like v, are not part of the public interface of an object. All

interaction with an object is through its methods. The syntax for a method invocation

uses the # character:

s#pop;;
- : int option = Some 0

s#push 4;;
- : unit = ()

s#pop;;
- : int option = Some 4

Note that unlike functions, methods can have zero parameters, since the method call

is routed to a concrete object instance. That's why the pop method doesn't have a unit

argument, as the equivalent functional version would.

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

13.2 Object Polymorphism 225

Objects can also be constructed by functions. If we want to specify the initial value

of the object, we can de�ne a function that takes the value and returns an object:

let stack init = object
val mutable v = init

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

end;;
val stack : 'a list -> < pop : 'a option; push : 'a -> unit > = <fun>

let s = stack [3; 2; 1];;
val s : < pop : int option; push : int -> unit > = <obj>

s#pop;;
- : int option = Some 3

Note that the types of the function stack and the returned object now use the

polymorphic type 'a. When stack is invoked on a concrete value [3; 2; 1], we get

the same object type as before, with type int for the values on the stack.

13.2 Object Polymorphism

Like polymorphic variants, methods can be used without an explicit type declaration:

let area sq = sq#width * sq#width;;
val area : < width : int; .. > -> int = <fun>

let minimize sq : unit = sq#resize 1;;
val minimize : < resize : int -> unit; .. > -> unit = <fun>

let limit sq = if (area sq) > 100 then minimize sq;;
val limit : < resize : int -> unit; width : int; .. > -> unit = <fun>

As you can see, object types are inferred automatically from the methods that are

invoked on them.

The type system will complain if it sees incompatible uses of the same method:

let toggle sq b : unit =
if b then sq#resize `Fullscreen else minimize sq;;

Line 2, characters 51-53:

Error: This expression has type < resize : [> `Fullscreen] -> unit;

.. >

but an expression was expected of type < resize : int -> unit;

.. >

Types for method resize are incompatible

The .. in the inferred object types are ellipses, standing for other unspeci�ed

methods that the object may have. The type < width : float; .. > speci�es an

object that must have at least a width method, and possibly some others as well. Such

object types are said to be open.

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

226 Objects

We can manually close an object type using a type annotation:

let area_closed (sq: < width : int >) = sq#width * sq#width;;
val area_closed : < width : int > -> int = <fun>

let sq = object
method width = 30
method name = "sq"

end;;
val sq : < name : string; width : int > = <obj>

area_closed sq;;
Line 1, characters 13-15:

Error: This expression has type < name : string; width : int >

but an expression was expected of type < width : int >

The second object type has no method name

Elisions Are Polymorphic

The .. in an open object type is an elision, standing for �possibly more methods.� It

may not be apparent from the syntax, but an elided object type is actually polymorphic.

For example, if we try to write a type de�nition, we get an �unbound type variable�

error:

type square = < width : int; ..>;;
Line 1, characters 1-33:

Error: A type variable is unbound in this type declaration.

In type < width : Base.int; .. > as 'a the variable 'a is

unbound

This is because .. is really a special kind of type variable called a row variable.

This kind of typing scheme using row variables is called row polymorphism. Row

polymorphism is also used in polymorphic variant types, and there is a close re-

lationship between objects and polymorphic variants: objects are to records what

polymorphic variants are to ordinary variants.

An object of type < pop : int option; .. > can be any object with a method

pop : int option; it doesn't matter how it is implemented. When the method #pop

is invoked, the actual method that is run is determined by the object. Consider the

following function.

let print_pop st = Option.iter ~f:(Stdio.printf "Popped: %d\n")
st#pop;;

val print_pop : < pop : int option; .. > -> unit = <fun>

We can run it on the stack type we de�ned above, which is based on linked lists.

print_pop (stack [5;4;3;2;1]);;
Popped: 5

- : unit = ()

But we could also create a totally di�erent implementation of stacks, using Base's

array-based Stack module.

let array_stack l = object
val stack = Stack.of_list l
method pop = Stack.pop stack

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

13.4 When to Use Objects 227

end;;
val array_stack : 'a list -> < pop : 'a option > = <fun>

And print_pop will work just as well on this kind of stack object, despite having a

completely di�erent implementation.

print_pop (array_stack [5;4;3;2;1]);;
Popped: 5

- : unit = ()

13.3 Immutable Objects

Many people consider object-oriented programming to be intrinsically imperative,

where an object is like a state machine. Sending a message to an object causes it to

change state, possibly sending messages to other objects.

Indeed, in many programs this makes sense, but it is by no means required. Let's

de�ne a function that creates immutable stack objects:

let imm_stack init = object
val v = init

method pop =
match v with
| hd :: tl -> Some (hd, {< v = tl >})
| [] -> None

method push hd =
{< v = hd :: v >}

end;;
val imm_stack :

'a list -> (< pop : ('a * 'b) option; push : 'a -> 'b > as 'b) = <fun>

The key parts of this implementation are in the pop and pushmethods. The expression

{< ... >} produces a copy of the current object, with the same type, and the speci�ed

�elds updated. In other words, the push hdmethod produces a copy of the object, with

v replaced by hd :: v. The original object is not modi�ed:

let s = imm_stack [3; 2; 1];;
val s : < pop : (int * 'a) option; push : int -> 'a > as 'a = <obj>

let r = s#push 4;;
val r : < pop : (int * 'a) option; push : int -> 'a > as 'a = <obj>

s#pop;;
- : (int * (< pop : 'a; push : int -> 'b > as 'b)) option as 'a =

Some (3, <obj>)

r#pop;;
- : (int * (< pop : 'a; push : int -> 'b > as 'b)) option as 'a =

Some (4, <obj>)

There are some restrictions on the use of the expression {< ... >}. It can be used

only within a method body, and only the values of �elds may be updated. Method

implementations are �xed at the time the object is created; they cannot be changed

dynamically.

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

228 Objects

13.4 When to Use Objects

You might wonder when to use objects in OCaml, which has a multitude of alternative

mechanisms to express similar concepts. First-class modules are more expressive (a

module can include types, while classes and objects cannot). Modules, functors, and

data types also o�er a wide range of ways to express program structure. In fact, many

seasoned OCaml programmers rarely use classes and objects, if at all.

Objects have some advantages over records: they don't require type de�nitions, and

their support for row polymorphism makes them more �exible. However, the heavy

syntax and additional runtime cost means that objects are rarely used in place of

records.

The real bene�ts of objects come from the class system. Classes support inheritance

and open recursion. Open recursion allows interdependent parts of an object to be

de�ned separately. This works because calls between the methods of an object are

determined when the object is instantiated, a form of late binding. This makes it

possible (and necessary) for one method to refer to other methods in the object without

knowing statically how they will be implemented.

In contrast, modules use early binding. If you want to parameterize your module

code so that some part of it can be implemented later, you would write a function or

functor. This is more explicit, but often more verbose than overriding a method in a

class.

In general, a rule of thumb is: use classes and objects in situations where open

recursion is a big win. Two good examples are Xavier Leroy's Cryptokit1 , which

provides a variety of cryptographic primitives that can be combined in building-block

style; and the Camlimages2 library, which manipulates various graphical �le formats.

Camlimages also provides a module-based version of the same library, letting you

choose between functional and object-oriented styles depending on your problem

domain.

We'll introduce you to classes, and examples using open recursion, in Chapter 14

(Classes).

13.5 Subtyping

Subtyping is a central concept in object-oriented programming. It governs when an

object with one type A can be used in an expression that expects an object of another

type B. When this is true, we say that A is a subtype of B. More concretely, subtyping

restricts when the coercion operator e :> t can be applied. This coercion works only

if the type of e is a subtype of t.

1 http://gallium.inria.fr/~xleroy/software.html#cryptokit
2 http://cristal.inria.fr/camlimages/

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

http://gallium.inria.fr/~xleroy/software.html#cryptokit
http://cristal.inria.fr/camlimages/
https://doi.org/10.1017/9781009129220.015

13.5 Depth Subtyping 229

13.5.1 Width Subtyping

To explore this, let's de�ne some simple object types for geometric shapes. The generic

type shape just has a method to compute the area.

type shape = < area : float >;;
type shape = < area : float >

Now let's add a type representing a speci�c kind of shape, as well as a function for

creating objects of that type.

type square = < area : float; width : int >;;
type square = < area : float; width : int >

let square w = object
method area = Float.of_int (w * w)
method width = w

end;;
val square : int -> < area : float; width : int > = <fun>

A square has a method area just like a shape, and an additional method width. Still,

we expect a square to be a shape, and it is. Note, however, that the coercion :> must

be explicit:

(square 10 : shape);;
Line 1, characters 2-11:

Error: This expression has type < area : float; width : int >

but an expression was expected of type shape

The second object type has no method width

(square 10 :> shape);;
- : shape = <obj>

This form of object subtyping is called width subtyping. Width subtyping means

that an object type A is a subtype of B, if A has all of the methods of B, and possibly

more. A square is a subtype of shape because it implements all of the methods of

shape, which in this case means the area method.

13.5.2 Depth Subtyping

We can also use depth subtyping with objects. Depth subtyping allows us to coerce an

object if its individual methods could safely be coerced. So an object type < m: t1 >

is a subtype of < m: t2 > if t1 is a subtype of t2.

First, let's add a new shape type, circle:

type circle = < area : float; radius : int >;;
type circle = < area : float; radius : int >

let circle r = object
method area = 3.14 *. (Float.of_int r) **. 2.0
method radius = r

end;;
val circle : int -> < area : float; radius : int > = <fun>

Using that, let's create a couple of objects that each have a shape method, one

returning a shape of type circle:

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

230 Objects

let coin = object
method shape = circle 5
method color = "silver"

end;;
val coin : < color : string; shape : < area : float; radius : int > >

= <obj>

And the other returning a shape of type square:

let map = object
method shape = square 10

end;;
val map : < shape : < area : float; width : int > > = <obj>

Both these objects have a shape method whose type is a subtype of the shape type,

so they can both be coerced into the object type < shape : shape >:

type item = < shape : shape >;;
type item = < shape : shape >

let items = [(coin :> item) ; (map :> item)];;
val items : item list = [<obj>; <obj>]

Polymorphic Variant Subtyping

Subtyping can also be used to coerce a polymorphic variant into a larger polymorphic

variant type. A polymorphic variant type A is a subtype of B, if the tags of A are a

subset of the tags of B:

type num = [`Int of int | `Float of float];;
type num = [`Float of float | `Int of int]

type const = [num | `String of string];;
type const = [`Float of float | `Int of int | `String of string]

let n : num = `Int 3;;
val n : num = `Int 3

let c : const = (n :> const);;
val c : const = `Int 3

13.5.3 Variance

What about types built from object types? If a square is a shape, we expect a square

list to be a shape list. OCaml does indeed allow such coercions:

let squares: square list = [square 10; square 20];;
val squares : square list = [<obj>; <obj>]

let shapes: shape list = (squares :> shape list);;
val shapes : shape list = [<obj>; <obj>]

Note that this relies on lists being immutable. It would not be safe to treat a square

array as a shape array because it would allow you to store non-square shapes into

what should be an array of squares. OCaml recognizes this and does not allow the

coercion:

let square_array: square array = [| square 10; square 20 |];;
val square_array : square array = [|<obj>; <obj>|]

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

13.5 Variance Annotations 231

let shape_array: shape array = (square_array :> shape array);;
Line 1, characters 32-61:

Error: Type square array is not a subtype of shape array

The second object type has no method width

We say that 'a list is covariant (in 'a), while 'a array is invariant.

Subtyping function types requires a third class of variance. A function with type

square -> string cannot be used with type shape -> string because it expects its

argument to be a square and would not know what to do with a circle. However, a

function with type shape -> string can safely be used with type square -> string:

let shape_to_string: shape -> string =
fun s -> Printf.sprintf "Shape(%F)" s#area;;

val shape_to_string : shape -> string = <fun>

let square_to_string: square -> string =
(shape_to_string :> square -> string);;

val square_to_string : square -> string = <fun>

We say that 'a -> string is contravariant in 'a. In general, function types are con-

travariant in their arguments and covariant in their results.

Variance Annotations

OCaml works out the variance of a type using that type's de�nition. Consider the

following simple immutable Either type.

module Either = struct
type ('a, 'b) t =
| Left of 'a
| Right of 'b

let left x = Left x
let right x = Right x

end;;
module Either :

sig

type ('a, 'b) t = Left of 'a | Right of 'b
val left : 'a -> ('a, 'b) t

val right : 'a -> ('b, 'a) t

end

By looking at what coercions are allowed, we can see that the type parameters of the

immutable Either type are covariant.

let left_square = Either.left (square 40);;
val left_square : (< area : float; width : int >, 'a) Either.t =

Either.Left <obj>

(left_square :> (shape,_) Either.t);;
- : (shape, 'a) Either.t = Either.Left <obj>

The story is di�erent, however, if the de�nition is hidden by a signature.

module Abs_either : sig
type ('a, 'b) t
val left: 'a -> ('a, 'b) t
val right: 'b -> ('a, 'b) t

end = Either;;
module Abs_either :

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

232 Objects

sig

type ('a, 'b) t

val left : 'a -> ('a, 'b) t

val right : 'b -> ('a, 'b) t

end

In this case, OCaml is forced to assume that the type is invariant.

(Abs_either.left (square 40) :> (shape, _) Abs_either.t);;
Line 1, characters 2-29:

Error: This expression cannot be coerced to type (shape, 'b)
Abs_either.t;

it has type (< area : float; width : int >, 'a) Abs_either.t

but is here used with type (shape, 'b) Abs_either.t

Type < area : float; width : int > is not compatible with type

shape = < area : float >

The second object type has no method width

We can �x this by adding variance annotations to the type's parameters in the

signature: + for covariance or - for contravariance:

module Var_either : sig
type (+'a, +'b) t
val left: 'a -> ('a, 'b) t
val right: 'b -> ('a, 'b) t

end = Either;;
module Var_either :

sig

type (+'a, +'b) t

val left : 'a -> ('a, 'b) t

val right : 'b -> ('a, 'b) t

end

As you can see, this now allows the coercion once again.

(Var_either.left (square 40) :> (shape, _) Var_either.t);;
- : (shape, 'a) Var_either.t = <abstr>

For a more concrete example of variance, let's create some stacks containing shapes

by applying our stack function to some squares and some circles:

type 'a stack = < pop: 'a option; push: 'a -> unit >;;
type 'a stack = < pop : 'a option; push : 'a -> unit >

let square_stack: square stack = stack [square 30; square 10];;
val square_stack : square stack = <obj>

let circle_stack: circle stack = stack [circle 20; circle 40];;
val circle_stack : circle stack = <obj>

If we wanted to write a function that took a list of such stacks and found the total

area of their shapes, we might try:

let total_area (shape_stacks: shape stack list) =
let stack_area acc st =
let rec loop acc =
match st#pop with
| Some s -> loop (acc +. s#area)
| None -> acc

in

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

13.5 Variance Annotations 233

loop acc
in

List.fold ~init:0.0 ~f:stack_area shape_stacks;;
val total_area : shape stack list -> float = <fun>

However, when we try to apply this function to our objects, we get an error:

total_area [(square_stack :> shape stack); (circle_stack :> shape
stack)];;

Line 1, characters 13-42:

Error: Type square stack = < pop : square option; push : square ->

unit >

is not a subtype of

shape stack = < pop : shape option; push : shape -> unit >

Type shape = < area : float > is not a subtype of

square = < area : float; width : int >

The first object type has no method width

As you can see, square stack and circle stack are not subtypes of shape stack.

The problem is with the push method. For shape stack, the push method takes an

arbitrary shape. So if we could coerce a square stack to a shape stack, then it would

be possible to push an arbitrary shape onto square stack, which would be an error.

Another way of looking at this is that < push: 'a -> unit; .. > is contravariant

in 'a, so < push: square -> unit; pop: square option > cannot be a subtype of

< push: shape -> unit; pop: shape option >.

Still, the total_area function should be �ne, in principle. It doesn't call push, so it

isn't making that error. To make it work, we need to use a more precise type that indi-

cates we are not going to be using the pushmethod. We de�ne a type readonly_stack

and con�rm that we can coerce the list of stacks to it:

type 'a readonly_stack = < pop : 'a option >;;
type 'a readonly_stack = < pop : 'a option >

let total_area (shape_stacks: shape readonly_stack list) =
let stack_area acc st =
let rec loop acc =
match st#pop with
| Some s -> loop (acc +. s#area)
| None -> acc

in
loop acc

in
List.fold ~init:0.0 ~f:stack_area shape_stacks;;

val total_area : shape readonly_stack list -> float = <fun>

total_area [(square_stack :> shape readonly_stack); (circle_stack :>
shape readonly_stack)];;

- : float = 7280.

Aspects of this section may seem fairly complicated, but it should be pointed out

that this typing works, and in the end, the type annotations are fairly minor. In most

typed object-oriented languages, these coercions would simply not be possible. For

example, in C++, a STL type list<T> is invariant in T, so it is simply not possible

to use list<square> where list<shape> is expected (at least safely). The situation

is similar in Java, although Java has an escape hatch that allows the program to fall

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

234 Objects

back to dynamic typing. The situation in OCaml is much better: it works, it is statically

checked, and the annotations are pretty simple.

13.5.4 Narrowing

Narrowing, also called down casting, is the ability to coerce an object to one of its

subtypes. For example, if we have a list of shapes shape list, we might know (for

some reason) what the actual type of each shape is. Perhaps we know that all objects

in the list have type square. In this case, narrowing would allow the recasting of the

object from type shape to type square. Many languages support narrowing through

dynamic type checking. For example, in Java, a coercion (Square) x is allowed if

the value x has type Square or one of its subtypes; otherwise the coercion throws an

exception.

Narrowing is not permitted in OCaml. Period.

Why? There are two reasonable explanations, one based on a design principle, and

another technical (the technical reason is simple: it is hard to implement).

The design argument is this: narrowing violates abstraction. In fact, with a struc-

tural typing system like in OCaml, narrowing would essentially provide the ability to

enumerate the methods in an object. To check whether an object obj has some method

foo : int, one would attempt a coercion (obj :> < foo : int >).

More pragmatically, narrowing leads to poor object-oriented style. Consider the

following Java code, which returns the name of a shape object:

String GetShapeName(Shape s) {
if (s instanceof Square) {
return "Square";

} else if (s instanceof Circle) {
return "Circle";

} else {
return "Other";

}
}

Most programmers would consider this code to be awkward, at the least. Instead of

performing a case analysis on the type of object, it would be better to de�ne a method

to return the name of the shape. Instead of calling GetShapeName(s), we should call

s.Name() instead.

However, the situation is not always so obvious. The following code checks whether

an array of shapes looks like a barbell, composed of two Circle objects separated by

a Line, where the circles have the same radius:

boolean IsBarbell(Shape[] s) {
return s.length == 3 && (s[0] instanceof Circle) &&
(s[1] instanceof Line) && (s[2] instanceof Circle) &&

((Circle) s[0]).radius() == ((Circle) s[2]).radius();
}

In this case, it is much less clear how to augment the Shape class to support this

kind of pattern analysis. It is also not obvious that object-oriented programming is

well-suited for this situation. Pattern matching seems like a better �t:

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

13.5 Subtyping Versus Row Polymorphism 235

type shape = Circle of { radius : int } | Line of { length: int };;
type shape = Circle of { radius : int; } | Line of { length : int; }

let is_barbell = function
| [Circle {radius=r1}; Line _; Circle {radius=r2}] when r1 = r2 ->
true

| _ -> false;;
val is_barbell : shape list -> bool = <fun>

Regardless, there is a solution if you �nd yourself in this situation, which is to

augment the classes with variants. You can de�ne a method variant that injects the

actual object into a variant type.

type shape = < variant : repr >
and circle = < variant : repr; radius : int >
and line = < variant : repr; length : int >
and repr =
| Circle of circle
| Line of line;;

type shape = < variant : repr >

and circle = < radius : int; variant : repr >

and line = < length : int; variant : repr >

and repr = Circle of circle | Line of line

let is_barbell = function
| [s1; s2; s3] ->
(match s1#variant, s2#variant, s3#variant with
| Circle c1, Line _, Circle c2 when c1#radius = c2#radius ->
true
| _ -> false)

| _ -> false;;
val is_barbell : < variant : repr; .. > list -> bool = <fun>

This pattern works, but it has drawbacks. In particular, the recursive type de�nition

should make it clear that this pattern is essentially equivalent to using variants, and

that objects do not provide much value here.

13.5.5 Subtyping Versus Row Polymorphism

There is considerable overlap between subtyping and row polymorphism. Both mecha-

nisms allow you to write functions that can be applied to objects of di�erent types. In

these cases, row polymorphism is usually preferred over subtyping because it does not

require explicit coercions, and it preserves more type information, allowing functions

like the following:

let remove_large l =
List.filter ~f:(fun s -> Float.(s#area <= 100.)) l;;

val remove_large : (< area : float; .. > as 'a) list -> 'a list = <fun>

The return type of this function is built from the open object type of its argument,

preserving any additional methods that it may have, as we can see below.

let squares : < area : float; width : int > list =
[square 5; square 15; square 10];;

val squares : < area : float; width : int > list = [<obj>; <obj>;

<obj>]

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

236 Objects

remove_large squares;;
- : < area : float; width : int > list = [<obj>; <obj>]

Writing a similar function with a closed type and applying it using subtyping does

not preserve the methods of the argument: the returned object is only known to have

an area method:

let remove_large (l: < area : float > list) =
List.filter ~f:(fun s -> Float.(s#area <= 100.)) l;;

val remove_large : < area : float > list -> < area : float > list =

<fun>

remove_large (squares :> < area : float > list);;
- : < area : float > list = [<obj>; <obj>]

There are some situations where we cannot use row polymorphism. In particular,

row polymorphism cannot be used to place di�erent types of objects in the same

container. For example, lists of heterogeneous elements cannot be created using row

polymorphism:

let hlist: < area: float; ..> list = [square 10; circle 30];;
Line 1, characters 50-59:

Error: This expression has type < area : float; radius : int >

but an expression was expected of type < area : float; width :

int >

The second object type has no method radius

Similarly, we cannot use row polymorphism to store di�erent types of object in the

same reference:

let shape_ref: < area: float; ..> ref = ref (square 40);;
val shape_ref : < area : float; width : int > ref =

{Base.Ref.contents = <obj>}

shape_ref := circle 20;;
Line 1, characters 14-23:

Error: This expression has type < area : float; radius : int >

but an expression was expected of type < area : float; width :

int >

The second object type has no method radius

In both these cases we must use subtyping:

let hlist: shape list = [(square 10 :> shape); (circle 30 :>
shape)];;

val hlist : shape list = [<obj>; <obj>]

let shape_ref: shape ref = ref (square 40 :> shape);;
val shape_ref : shape ref = {Base.Ref.contents = <obj>}

shape_ref := (circle 20 :> shape);;
- : unit = ()

https://doi.org/10.1017/9781009129220.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.015

