Appendix C

Useful formulae

C-1 Numerics

Conversion factors (h = ¢ = kg = 1):

1GeV!' =6.582122 x 1072 s 1GeV = 1.16 x 103 K
=0.197327 fm =178 x 107* g.

Physical constants (A = ¢ = 1):

G, = 1.1663787(6) x 1075 GeV 2 Gy'? = Mp = 1.2 x 10" GeV
a~! = 137.035999074(44) sin> 6MS (M) = 0.23125(16)
my = 80.385(15) GeV my =91.1876(21) GeV
m, = 0.510998928(11) MeV m, = 938.272046(21) MeV
F, = 92.2(2)MeV Fx = 110.4(8) MeV
Ine_| =2.232(11) x 1073 Inoo| = 2.220(11) x 1072,

CKM matrix elements:

[Vaa] = 0.97427(15) |Vis| = 0.22534(65)  |Vi| = 0.00351 790001

[Veal = 0.22520(65) |Ves| = 0.97344(16) | Vip| = 00412750001

|Vial = 0.00867F00027 | Vig| = 0.0404T0000L | Vip| = 0.999146 1000003t

C-2 Notations and identities

Metric tensor:

1 0 0 O
0 -1 0 O
gt = 0 0 -1 0 gh, =4 (2.1)
0 0 0 -1
535
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536 Useful formulae
Totally antisymmetric four-tensor:

+1 {u, v, a, B} even permutation of {0, 1, 2, 3}
e"f — {1 odd permutation
0 otherwise

gl 1 g g g

R T S L (22)

Euvaﬁe Vel gva’gav’gﬁﬂ’ +gvu g
"

— g g g — g g g

Totally antisymmetric three-tensor:

+1 {i, j, k} even permutation of {1, 2, 3}
€jjk = y —1 odd permutation
0 otherwise

ik = —€0ijk = ek = €ijk
€ijk€itm = 8j18km — 8 jmbki. (2.3)
Pauli matrices:
ook = 8% 4+ ie/Mo! (G, k,1=1,2,3)
o) o) =28448pe — 8updea  (a.b,c.d =1,2). (2.4)

Dirac matrices:

ys = —tyoyly2y3
o = 5 [, v']
yry Y =gty 4 gyt — gyt — i€ Pypys
yrly’ =T, (T =1, 9" y"ys. 0™
yriyl=-1; (@ =ys). (2.5)
Trace relations:
Tr (y*) =0
Tr (y5) =0

Tr (y"y") = 4g""
Tr (y"y"ys) =0
Tr (v*y"v*y?) =4 (g"'g™ — g"“g"" + g"Pg"™)
Tr (ysy"y"y*yP) = 4iet™?
Tr (ﬂl---ﬁznﬂ) 0
Tr (¢31 ---ﬁzn) Tr (¢32n -ﬁ])- (2.6)
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C-2 Notations and identities 537

Plane wave solutions:

The Dirac spinor u(p, s) is a positive-energy eigenstate of the momentum p and
energy E = /p? + m?2. Antifermions are described in terms of the Dirac spinor
v(p, 5). The adjoint solutions are denoted by i = u'y® and v = v7y°. Note that
our normalization of Dirac spinors behaves smoothly in the massless limit.

(p —mu(p,s) =0
i(p,s)(p—m)=0
(P +mv(p,s) =0
v(p,s)(p+m)=0
u(p, up, s) = 2mé,
U(p, Nv(p, 5) = —2md,,
u'(p, ru(p, s) = 2E8,
vi(p. rv(p, s) = 2E8,,

> u(p, 9)i(p,s) =p+m

N

Y v, $)B(p,s) =p—m. 2.7)

N

Gordon decomposition for a fermion of mass m:

(p' +p)" N io" (p'—p),
2m

w(p',r)y"up,s)=up,r)

o )u(p, s). (2.8

Dirac representation:

o (1 0 (0 o (0 -1
Y _<0 —1) ”‘(—a o) V5_<—1 0) 29)

o-p
s Xs
ulp,s) =vE+m o-p vp,s) =vVE+m| E+m
Xs s
E+m

(2.10)

Fierz relations:

The anticommutativity of fermion fields and the algebra of Dirac matrices imply
the (particularly useful) Fierz relations,

Uiy (L + )ty (L+ ys) s = Uiy (1 + ys)Yadrs v (1 + ys)vn
Uiy (L4 y) Yoty (L — y)vs = =291 (1 — ys)yuds (1 + ys)yn.  (2.11)
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538 Useful formulae

Propagators:
The propagators associated with fields ¢(x), ¥ (x), W, (x) having spins 0, 1/2, 1
and masses u, m, M are, respectively,

4 .
d*p Zipx i

(2m)* ¢ p?—u*+ie
—ip-x i(p'i‘m)ﬂa
pr—m?+ie

iAF(x) = (0|T (p(x)p"(0)) [0) = /

i Srpa(x) = (O|T (Y5 (x) ¥4 (0)) |0) = / p e
(2m)*

i Dpy(x) = (0| (W*(x)W™(0)) |0)

d'p iyt 8wt (L= Opapu/ (p? — M + i)

= , (2.12
2m)4 p?>— M? +ie 2.12)
where £ is a gauge-dependent parameter.
Feynman parameterization:
1 C(n+m) [! X" —x)m !
= X P (n,m > 0)
arbm rmrm) J [ax + b(1 — x)]
1 : ! 1
— =2 xdx | d . 2.13)
abc /0 /(; Y [a(l — x) + bxy +cx(1 — y)]? (

C-3 Decay lifetimes and cross sections

Parameters of choice for quantum fields:

The literature reveals a variety of conventions employed in quantum field theory.
We can characterize all of these with certain parameters of choice, J;, K;, L;
(i = B, F distinguishes bosons from fermions), occurring in the normalization of
spin zero and spin one-half fields,

3
o(x) = / dj—k (ate ™ + at(k)e' ™)

B

d? . . .
Y=Y / J—Fp (b, u. )™ +d" . HvE. "), G.D)

in momentum space algebraic relations, e.g.,

[a(k),a"(K)] = Kps’(k — K,
b, r).b" (. 5)} = Kr8,,8°(p—p), (3.2)

and in the normalization of single-particle states

k) = Lpa' (K)|0), P, s)r = Lrb'(p, $)]0). (3.3)
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C-3 Decay lifetimes and cross sections 539

It is convenient to introduce an additional parameter Ny to characterize the choice
of fermion spinor normalization,

u'(p, ru(p, s) = Np2Eys,,. (3.4)
For uniformity of notation, we also define Ny = 1. The constants J;, K;, N; are
constrained by the canonical commutation or anticommutation relations to obey
KiN; 1
J2  (2n)32E

1

(i=B,F). (3.5)

Using the above, one can express the single-particle expectation value of the quan-
tum mechanical probability density as
K;L?
@)

The conventions employed in this book, together with the implied normalization
for boson or fermion single-particle states, are

o = (i = B, F). (3.6)

Lg=Lpr=Np=Np=1, Jg=Jp =K =Kp=2EQn)*,
(p, slp, r) = 2Ep8,,(2)*8% (p' — p), (3.7)

where r, s are spin labels. This choice, although somewhat unconventional for
fermions,! has the advantages that bosons and fermions are treated symmetrically
throughout the formalism, the zero-mass limit presents no difficulty, and matrix
elements are free of cumbersome kinematic factors.

Lifetimes:

From the decay law N (1) = N(0)e~"/7, the inverse mean life 7! is seen to be the
transition rate per decaying particle, ' = t~! = —N/N. For decay of a particle
of energy E; into a total of n — 1 bosons and/or fermions, the S-matrix amplitude
can be written in terms of a reduced (or invariant) amplitude My as

KiL
(FIS = 1]i) = =i 2m)*8D (pr — p2 - — p) ]_[( ‘ k)

1

1/2
=—mmWWm—m~—mﬂ1( ) Ms, (3.8

2Ey Ny

where the index k labels the individual particles as to whether they are bosons or
fermions. The inverse lifetime is computed from the squared S-matrix amplitude
per spacetime volume VT and incident particle density p;, integrated over final-
state phase space. The choice of phase space is already fixed by our analysis. Thus,

1 Another book sharing this convention is [ChL 84].
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540 Useful formulae

defining a parameter of choice A(p) for the (momentum) phase space per particle,

Ph ticl / I’k 3.9
ase space per particle = | ——, .
pace per p AK)
the application of completeness to Eq. (3.7) yields
’ d3k / 2 3
(plp) = [ —~({plkklp) = A=KL"=@2r)p. (3.10)

The inverse lifetime (or decay width) is then given by
11 LN S— 1}
T = — l_[ Pk | |5
prZ > (27'[)3 Ok VT

d’ pi 404 2
27)*S — =, 2,
ZEIN]Z ( (2n)32EN>(n> (p1 p)Z|Mh|

nt
(3.11)

where Z = ]_[ n;!1is a statistical factor accounting for the presence of n ; identical
particles of type j in the final state, and the sum ‘int’ is over internal degrees of
freedom such as spin and color.

Cross sections:
For the reaction 1 + 2 — 3 + ...n, the cross section o is the transition rate per
incident flux. The incident flux f,. can be represented as

P1P2

Sine = P12V — V2| = [(p1 - p2)* — mim3]'/2, (3.12)
E\E;
and the cross section becomes
. 1 1
-z 12
4((p1 - p2)* — mimd)
n d3p
k 4od 2
— ] 27)%6 — = M;gle. (3.13
X/(g (M)QEka) @m)*s*(p1 + p2 m%} il (3.13)

Watson’s theorem:

The scattering operator S is unitary, STS = 1. Thus, the transition operator 7,
defined by S = 1 —iT, obeys i(T — T') = T'T. With the aid of the relation
(fITT)iy = (i|T|f)*, we obtain the unitarity constraint for matrix elements,

Z (3.14)
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C—4 Field dimension 541

where 7 = (f|71i). This constraint implies the existence of phase relations
between the various intermediate-state amplitudes. For example, consider a weak
transition followed by a strong final-state interaction for which there is a unique
intermediate state identical to the final state,

A — BC — BC, (3.15)

weak strong

ie,i = A,n = f = BC. In this circumstance, time-reversal invariance of the
hamiltonian implies Tz = T, so the left-hand side of the unitarity relation reduces
to —2Im7;s and both sides of Eq. (3.14) are real-valued. Denoting the weak and
strong matrix elements as | Ty |e’® and |Ty|e'%, it then follows that 8, = &;.

C—4 Field dimension

We consider a limit in which the theory is invariant under the set of scale trans-
formations x* — Ax" (A > 0) of the spacetime coordinates. Associate with each
such coordinate transformation a unitary operator U (A) whose effect on a generic
quantum field @ is given by U(M)® (x)UT (1) = 1% d (Ax), where do is the dimen-
sion of the field ®. From the canonical commutation relation obeyed by a boson
field ¢ or the canonical anticommutation relation obeyed by a fermion field v,

00,0, =i8'®.  [¥0.%, vjO)] =558, @D

it follows that the canonical field dimensions are d, = 1 and dy, = 3/2. Com-
posites built from products of these fields carry a dimension of their own, e.g.,
all fermion bilinears ¥ Iy (I is a 4 x 4 matrix) have canonical dimension 3.
Unless protected by some kind of algebraic relation, a field dimension will gen-
erally be modified from the canonical value by interaction-dependent anomalous
dimensions. Field dimensions are particularly useful in ordering the terms con-
tained in a short-distance expansion,

AWBO) —> Y cu(x)On. (4.2)

where A, B, O, are local quantum fields. From the scale invariance of the short-
distance limit, it follows that c,(x) ~ x?on=4a=ds_Thus, the fields O, of lowest
dimension have the most singular coefficient functions.

C-5 Mathematics in d dimensions

Dirac algebra:
The following set of rules, generally referred to as NDR (naive dimensional regu-
larization), is the one most commonly used in the literature. We employ a metric
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542 Useful formulae

guv corresponding to a spacetime of continuous dimension ¢ and maintain certain
d = 4 properties of the Dirac matrices such as the trace relations of Eq. (2.6). In the
following, I, is a diagonal d-dimensional matrix with Tr /;, =4 and e = (4—d)/2.

gl =d
{y;u Vv} = Zg;wld
yuy" =d I

Yub v =Qe—-2)p
Yubd v =4p-qlai—2€p g
Yubd 1y =-2Fqp+2pgr
b4t +Hgp =2p-qf +2q -rp —2p-rh
{vu, s} =0. (5.1

Note that in NDR, ys5 anticommutes with the gamma matrices. This will suffice
for the calculations appearing in this book, but is not valid for all amplitudes (e.g.
closed odd-parity fermion loops).

Integrals:
For the following integrals, we define the denominator function

D =mix +m;(1 —x) — g*x(1 — x) — ie, (5.2)
take n, np > 1, and denote i€ as the infinitesimal Feynman parameter.
d‘p 1
Q) [(p—q)* —m? +ie]" [p2 —m3 +ie]™
i Tmi+n—d/2) 1d xM= (1 = x)m!

— (__1\h1tn2
- (4m)dr? ['(n)I'(n2) 0 * Dnitny—d/2 (5.3a)
d’p Pt
(27T)d [(p _ q)z _ m% + ié]nl [p2 _ m% n ie]nz
] r - 2 1 nl — no—1
— (_l)n]-i-nz P 1 (ny+np,—4d/2) 4 x"( x) 53

(4m)d/? L'(n)IM'(ny) 0 * Dritna—d/2
d’p p"p’
Q) [(p—q)2 —m} +ie]" [p* —m3 +ie]”
i (—])n1+n2 B /1 xn1+1(1 _x)YlZ*l
= ‘T —d)/2 d
(47T)d/2 F(l’ll)r(l’lz) |:C] g (nl T / ) 0 X Drit+n2—d/2

xnlfl(l _ x)n21:|

v

2

(5.3¢)

1
Ly +ny—1— d/Z)A dx Dnit+na—1-d/2
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d’p pp'p*
Qm)! [(p—q) +ie]" [p2 —m] +i€]™
i (_1)n1+n2 X"'+2(1 _ _x)nz—l

1
— nw v A o
- 4m)42 T (n)T (n2) |:q q°q"T'(ny +m d/Z)/O dx PDnit+na—d/2

1 1
__( “”q)‘—i—g’”‘q”—kg”)‘q”)r(nl+n2—1—d/2)/dx
0

XM (1 _ x)nz—l
2 9

Dn1+n2717d/2

(5.3d)

VoA O

d‘p pp'ptp
Qm)d [(p—q@)?—m]+ ie]n1 [p? —m3+ ie]"
i (—1)mtn2
~ (4m)2 T ()T (n2)

2

1 n+3 ny—1
3 X (1 —x)
[q“q”q q°T(m +nz—d/2)/0 A — s nan

n]+1(1 _ x)nzfl

1 Lox
-5 (g’”qkq“ + g"q"q° +4perm.) F'(ny+ny—1-— d/2)/0 dxm

1 Y Ao A vo 1O GVA\ 2_d/2 ld xnlil(l_x)nzil
+Z(g g +g87g " +g g) (ny +ny — _/)/0 XW'
(5.3e)
Solid angle:

k4 T 2 2JTd/2

Qd 2/ ded—l Sind_2 Qd_1 .. [ d92 SiHQQ/ d91 = .

0 0 0 I'(d/2)
Q) =27, Q3=4dm, Q=27%.... (5.4)

Gamma, psi, beta, and hypergeometric functions:

o0
mo:/ dt e 177! (Re z > 0),
0

Frz+D)=z'x)=zz-DI'z—-1) =---=2!,
=)
n!

'(—n+e¢)= [é +vn+1)+ 0(6)] (n integer),

dl(z)/dz =T (2)¥(z) where ¥ (z+ 1) =¥ (z) + 1/z,

1 1
Y(l) =—-y =— lim <1+§+---+——lnn):—0.5772,
n

dy(z+ D/dz=vy'(z+ 1) =¢/(z) — 1/z* with y'(1) = 7%/6,

_@Qr(w) 2/00d 121
0

P = Terw T Y E

(Re z, Rew > 0),
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['(c) ] b=1q _ pye=b—l/1 _ _.\—a
F(b)F(c—b)/Odtt (1—1) (1—2z1)

(Rec > Reb > 0),
I'c)I'(c —a —b)
I'(c—a)(c—b)’

dF(a,b;c; b
—(“d G2 b bt iet ). (5.5)
Z C

F(a,b;c;z) =

F(a,b;c; 1) =
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