Appendix C

Useful formulae

C-1 Numerics

Conversion factors $\left(\hbar=c=k_{B}=1\right)$:

$$
\begin{array}{rlrl}
1 \mathrm{GeV}^{-1} & =6.582122 \times 10^{-25} \mathrm{~s} & 1 \mathrm{GeV} & =1.16 \times 10^{13} \mathrm{~K} \\
& =0.197327 \mathrm{fm} & & =1.78 \times 10^{-24} \mathrm{~g} .
\end{array}
$$

Physical constants $(\hbar=c=1)$:

$$
\begin{aligned}
G_{\mu} & =1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2} & G_{N}^{-1 / 2} & =M_{\mathrm{Pl}}=1.2 \times 10^{19} \mathrm{GeV} \\
\alpha^{-1} & =137.035999074(44) & \sin ^{2} \theta_{\mathrm{w}}^{\frac{\mathrm{MS}}{}}\left(M_{Z}\right) & =0.23125(16) \\
m_{W} & =80.385(15) \mathrm{GeV} & m_{Z} & =91.1876(21) \mathrm{GeV} \\
m_{e} & =0.510998928(11) \mathrm{MeV} & m_{p} & =938.272046(21) \mathrm{MeV} \\
F_{\pi} & =92.2(2) \mathrm{MeV} & F_{K} & =110.4(8) \mathrm{MeV} \\
\left|\eta_{+-}\right| & =2.232(11) \times 10^{-3} & \left|\eta_{00}\right| & =2.220(11) \times 10^{-3} .
\end{aligned}
$$

CKM matrix elements:

$$
\left.\begin{array}{lll}
\left|V_{\mathrm{ud}}\right|=0.97427(15) & \left|V_{\mathrm{us}}\right|=0.22534(65) & \left|V_{\mathrm{ub}}\right|=0.00351_{-0.00014}^{+0.00015} \\
\left|V_{\mathrm{cd}}\right|=0.22520(65) & \left|V_{\mathrm{cs}}\right|=0.97344(16) & \left|V_{\mathrm{cb}}\right|=0.0412_{-0.0005}^{+0.0011} \\
\left|V_{\mathrm{td}}\right|=0.00867_{-0.00031}^{+0.00029} & & \left|V_{\mathrm{ts}}\right|=0.0404_{-0.0005}^{+0.0011}
\end{array} \quad \right\rvert\, \begin{array}{|l}
V_{\mathrm{tb}} \mid=0.999146_{-0.000046}^{+0.000021} .
\end{array}
$$

C-2 Notations and identities

Metric tensor:

$$
g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.1}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad g_{\mu}^{\mu}=4
$$

Totally antisymmetric four-tensor:

$$
\begin{align*}
\epsilon^{\mu \nu \alpha \beta}= & \left\{\begin{aligned}
+1 & \{\mu, \nu, \alpha, \beta\} \text { even permutation of }\{0,1,2,3\} \\
-1 & \text { odd permutation } \\
0 & \text { otherwise }
\end{aligned}\right. \\
\epsilon^{\mu \nu \alpha \beta} \epsilon_{\mu}^{\nu^{\prime} \alpha^{\prime} \beta^{\prime}}= & g^{\nu \alpha^{\prime}} g^{\alpha \nu^{\prime}} g^{\beta \beta^{\prime}}+g^{\nu \nu^{\prime}} g^{\alpha \beta^{\prime}} g^{\beta \alpha^{\prime}}+g^{\nu \beta^{\prime}} g^{\alpha \alpha^{\prime}} g^{\beta \nu^{\prime}} \\
& -g^{\nu \nu^{\prime}} g^{\alpha \alpha^{\prime}} g^{\beta \beta^{\prime}}-g^{\nu \beta^{\prime}} g^{\alpha \nu^{\prime}} g^{\beta \alpha^{\prime}}-g^{\nu \alpha^{\prime}} g^{\alpha \beta^{\prime}} g^{\beta \nu^{\prime}} . \tag{2.2}
\end{align*}
$$

Totally antisymmetric three-tensor:

$$
\begin{align*}
\epsilon_{i j k} & =\left\{\begin{array}{cl}
+1 & \{i, j, k\} \text { even permutation of }\{1,2,3\} \\
-1 & \text { odd permutation } \\
0 & \text { otherwise }
\end{array}\right. \\
\epsilon^{0 i j k} & =-\epsilon_{0 i j k}=\epsilon^{i j k}=\epsilon_{i j k} \\
\epsilon_{i j k} \epsilon_{i l m} & =\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} . \tag{2.3}
\end{align*}
$$

Pauli matrices:

$$
\begin{align*}
\sigma^{j} \sigma^{k} & =\delta^{j k} I+i \epsilon^{j k l} \sigma^{l} & & (j, k, l=1,2,3) \\
\sigma_{a b}^{j} \sigma_{c d}^{j} & =2 \delta_{a d} \delta_{b c}-\delta_{a b} \delta_{c d} & & (a, b, c, d=1,2) \tag{2.4}
\end{align*}
$$

Dirac matrices:

$$
\begin{align*}
\gamma_{5} & =-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \\
\sigma^{\mu \nu} & =\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} & =g^{\mu \nu} \gamma^{\alpha}+g^{\nu \alpha} \gamma^{\mu}-g^{\alpha \mu} \gamma^{\nu}-i \epsilon^{\mu \nu \alpha \beta} \gamma_{\beta} \gamma_{5} \\
\gamma^{0} \Gamma_{i}^{\dagger} \gamma^{0} & =\Gamma_{i} \quad\left(\Gamma_{i}=1, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}, \sigma^{\mu \nu}\right) \\
\gamma^{0} \Gamma_{i}^{\dagger} \gamma^{0} & =-\Gamma_{i} \quad\left(\Gamma_{i}=\gamma_{5}\right) . \tag{2.5}
\end{align*}
$$

Trace relations:

$$
\begin{align*}
\operatorname{Tr}\left(\gamma^{\mu}\right) & =0 \\
\operatorname{Tr}\left(\gamma_{5}\right) & =0 \\
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right) & =4 g^{\mu \nu} \\
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right) & =0 \\
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}\right) & =4\left(g^{\mu \nu} g^{\alpha \beta}-g^{\mu \alpha} g^{\nu \beta}+g^{\mu \beta} g^{\nu \alpha}\right) \\
\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}\right) & =4 i \epsilon^{\mu \nu \alpha \beta} \\
\operatorname{Tr}\left(\not \ell_{1} \ldots \not \ell_{2 n+1}\right) & =0 \\
\operatorname{Tr}\left(\not \phi_{1} \ldots \not t_{2 n}\right) & =\operatorname{Tr}\left(\not \phi_{2 n} \ldots \not \phi_{1}\right) . \tag{2.6}
\end{align*}
$$

Plane wave solutions:
The Dirac spinor $u(\mathbf{p}, s)$ is a positive-energy eigenstate of the momentum \mathbf{p} and energy $E=\sqrt{\mathbf{p}^{2}+m^{2}}$. Antifermions are described in terms of the Dirac spinor $v(\mathbf{p}, s)$. The adjoint solutions are denoted by $\bar{u} \equiv u^{\dagger} \gamma^{0}$ and $\bar{v} \equiv v^{\dagger} \gamma^{0}$. Note that our normalization of Dirac spinors behaves smoothly in the massless limit.

$$
\begin{align*}
(p p-m) u(\mathbf{p}, s) & =0 \\
\bar{u}(\mathbf{p}, s)(\not p-m) & =0 \\
(\not p+m) v(\mathbf{p}, s) & =0 \\
\bar{v}(\mathbf{p}, s)(\not p+m) & =0 \\
\bar{u}(\mathbf{p}, r) u(\mathbf{p}, s) & =2 m \delta_{r s} \\
\bar{v}(\mathbf{p}, r) v(\mathbf{p}, s) & =-2 m \delta_{r s} \\
u^{\dagger}(\mathbf{p}, r) u(\mathbf{p}, s) & =2 E \delta_{r s} \\
v^{\dagger}(\mathbf{p}, r) v(\mathbf{p}, s) & =2 E \delta_{r s} \\
\sum_{s} u(\mathbf{p}, s) \bar{u}(\mathbf{p}, s) & =\not p+m \\
\sum_{s} v(\mathbf{p}, s) \bar{v}(\mathbf{p}, s) & =\not p-m . \tag{2.7}
\end{align*}
$$

Gordon decomposition for a fermion of mass m :

$$
\begin{equation*}
\bar{u}\left(\mathbf{p}^{\prime}, r\right) \gamma^{\mu} u(\mathbf{p}, s)=\bar{u}\left(\mathbf{p}^{\prime}, r\right)\left(\frac{\left(p^{\prime}+p\right)^{\mu}}{2 m}+\frac{i \sigma^{\mu \nu}\left(p^{\prime}-p\right)_{v}}{2 m}\right) u(\mathbf{p}, s) \tag{2.8}
\end{equation*}
$$

Dirac representation:

$$
\begin{gather*}
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \boldsymbol{\gamma}=\left(\begin{array}{cc}
0 & \sigma \\
-\sigma & 0
\end{array}\right) \quad \gamma_{5}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \tag{2.9}\\
u(\mathbf{p}, s)=\sqrt{E+m}\binom{\chi_{s}}{\frac{\sigma \cdot \mathbf{p}}{E+m} \chi_{s}} \quad v(\mathbf{p}, s)=\sqrt{E+m}\binom{\frac{\sigma \cdot \mathbf{p}}{E+m} \chi_{s}}{\chi_{s}} . \tag{2.10}
\end{gather*}
$$

Fierz relations:
The anticommutativity of fermion fields and the algebra of Dirac matrices imply the (particularly useful) Fierz relations,

$$
\begin{align*}
& \bar{\psi}_{1} \gamma^{\mu}\left(1+\gamma_{5}\right) \psi_{2} \bar{\psi}_{3} \gamma_{\mu}\left(1+\gamma_{5}\right) \psi_{4}=\bar{\psi}_{1} \gamma^{\mu}\left(1+\gamma_{5}\right) \psi_{4} \bar{\psi}_{3} \gamma_{\mu}\left(1+\gamma_{5}\right) \psi_{2} \\
& \bar{\psi}_{1} \gamma^{\mu}\left(1+\gamma_{5}\right) \psi_{2} \bar{\psi}_{3} \gamma_{\mu}\left(1-\gamma_{5}\right) \psi_{4}=-2 \bar{\psi}_{1}\left(1-\gamma_{5}\right) \psi_{4} \bar{\psi}_{3}\left(1+\gamma_{5}\right) \psi_{2} \tag{2.11}
\end{align*}
$$

Propagators:
The propagators associated with fields $\varphi(x), \psi(x), W_{\lambda}(x)$ having spins $0,1 / 2,1$ and masses μ, m, M are, respectively,

$$
\begin{align*}
i \Delta_{F}(x) & =\langle 0| T\left(\varphi(x) \varphi^{\dagger}(0)\right)|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{i}{p^{2}-\mu^{2}+i \epsilon} \\
i S_{F \beta \alpha}(x) & =\langle 0| T\left(\psi_{\beta}(x) \bar{\psi}_{\alpha}(0)\right)|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{i(p+m)_{\beta \alpha}}{p^{2}-m^{2}+i \epsilon} \\
i D_{F \lambda \nu}(x) & =\langle 0| T\left(W^{\lambda}(x) W^{\dagger \nu}(0)\right)|0\rangle \\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{i\left(-g_{\lambda \nu}+(1-\xi) p_{\lambda} p_{v} /\left(p^{2}-\xi M^{2}+i \epsilon\right)\right.}{p^{2}-M^{2}+i \epsilon} \tag{2.12}
\end{align*}
$$

where ξ is a gauge-dependent parameter.
Feynman parameterization:

$$
\begin{align*}
\frac{1}{a^{n} b^{m}} & =\frac{\Gamma(n+m)}{\Gamma(n) \Gamma(m)} \int_{0}^{1} d x \frac{x^{n-1}(1-x)^{m-1}}{[a x+b(1-x)]^{n+m}} \quad(n, m>0) \\
\frac{1}{a b c} & =2 \int_{0}^{1} x d x \int_{0}^{1} d y \frac{1}{[a(1-x)+b x y+c x(1-y)]^{3}} \tag{2.13}
\end{align*}
$$

C-3 Decay lifetimes and cross sections

Parameters of choice for quantum fields:
The literature reveals a variety of conventions employed in quantum field theory. We can characterize all of these with certain parameters of choice, J_{i}, K_{i}, L_{i} ($i=B, F$ distinguishes bosons from fermions), occurring in the normalization of spin zero and spin one-half fields,

$$
\begin{align*}
& \varphi(x)=\int \frac{d^{3} k}{J_{B}}\left(a(\mathbf{k}) e^{-i k \cdot x}+a^{\dagger}(\mathbf{k}) e^{i k \cdot x}\right) \\
& \psi(x)=\sum_{s} \int \frac{d^{3} p}{J_{F}}\left(b(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i p \cdot x}+d^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i p \cdot x}\right) \tag{3.1}
\end{align*}
$$

in momentum space algebraic relations, e.g.,

$$
\begin{align*}
{\left[a(\mathbf{k}), a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right] } & =K_{B} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \\
\left\{b(\mathbf{p}, r), b^{\dagger}\left(\mathbf{p}^{\prime}, s\right)\right\} & =K_{F} \delta_{r s} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \tag{3.2}
\end{align*}
$$

and in the normalization of single-particle states

$$
\begin{equation*}
|\mathbf{k}\rangle_{B}=L_{B} a^{\dagger}(\mathbf{k})|0\rangle, \quad|\mathbf{p}, s\rangle_{F}=L_{F} b^{\dagger}(\mathbf{p}, s)|0\rangle \tag{3.3}
\end{equation*}
$$

It is convenient to introduce an additional parameter N_{F} to characterize the choice of fermion spinor normalization,

$$
\begin{equation*}
u^{\dagger}(\mathbf{p}, r) u(\mathbf{p}, s)=N_{F} 2 E_{\mathbf{p}} \delta_{r s} . \tag{3.4}
\end{equation*}
$$

For uniformity of notation, we also define $N_{B} \equiv 1$. The constants J_{i}, K_{i}, N_{i} are constrained by the canonical commutation or anticommutation relations to obey

$$
\begin{equation*}
\frac{K_{i} N_{i}}{J_{i}^{2}}=\frac{1}{(2 \pi)^{3} 2 E} \quad(i=B, F) \tag{3.5}
\end{equation*}
$$

Using the above, one can express the single-particle expectation value of the quantum mechanical probability density as

$$
\begin{equation*}
\rho_{i}=\frac{K_{i} L_{i}^{2}}{(2 \pi)^{3}} \quad(i=B, F) \tag{3.6}
\end{equation*}
$$

The conventions employed in this book, together with the implied normalization for boson or fermion single-particle states, are

$$
\begin{align*}
L_{B}=L_{F} & =N_{B}=N_{F}=1, \quad J_{B}=J_{F}=K_{B}=K_{F}=2 E(2 \pi)^{3}, \\
\left\langle\mathbf{p}^{\prime}, s \mid \mathbf{p}, r\right\rangle & =2 E_{\mathbf{p}} \delta_{r s}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}^{\prime}-\mathbf{p}\right), \tag{3.7}
\end{align*}
$$

where r, s are spin labels. This choice, although somewhat unconventional for fermions, ${ }^{1}$ has the advantages that bosons and fermions are treated symmetrically throughout the formalism, the zero-mass limit presents no difficulty, and matrix elements are free of cumbersome kinematic factors.

Lifetimes:
From the decay law $N(t)=N(0) e^{-t / \tau}$, the inverse mean life τ^{-1} is seen to be the transition rate per decaying particle, $\Gamma=\tau^{-1}=-\dot{N} / N$. For decay of a particle of energy E_{1} into a total of $n-1$ bosons and/or fermions, the \mathcal{S}-matrix amplitude can be written in terms of a reduced (or invariant) amplitude $\mathcal{M}_{\mathrm{fi}}$ as

$$
\begin{align*}
\langle f| \mathcal{S}-1|i\rangle & =-i(2 \pi)^{4} \delta^{(4)}\left(p_{1}-p_{2} \cdots-p_{n}\right) \prod_{k=1}^{n}\left(\frac{K_{k} L_{k}}{J_{k}}\right) \mathcal{M}_{\mathrm{fi}} \\
& =-i(2 \pi)^{4} \delta^{(4)}\left(p_{1}-p_{2} \cdots-p_{n}\right) \prod_{k=1}^{n}\left(\frac{\rho_{k}}{2 E_{k} N_{k}}\right)^{1 / 2} \mathcal{M}_{\mathrm{fi}} \tag{3.8}
\end{align*}
$$

where the index k labels the individual particles as to whether they are bosons or fermions. The inverse lifetime is computed from the squared S-matrix amplitude per spacetime volume $V T$ and incident particle density ρ_{1}, integrated over finalstate phase space. The choice of phase space is already fixed by our analysis. Thus,

[^0]defining a parameter of choice $A(\mathbf{p})$ for the (momentum) phase space per particle,
\[

$$
\begin{equation*}
\text { Phase space per particle } \equiv \int \frac{d^{3} \mathbf{k}}{A(\mathbf{k})}, \tag{3.9}
\end{equation*}
$$

\]

the application of completeness to Eq. (3.7) yields

$$
\begin{equation*}
\left\langle\mathbf{p}^{\prime} \mid \mathbf{p}\right\rangle=\int \frac{d^{3} k}{A}\left\langle\mathbf{p}^{\prime} \mid \mathbf{k}\right\rangle\langle\mathbf{k} \mid \mathbf{p}\rangle \Rightarrow A=K L^{2}=(2 \pi)^{3} \rho \tag{3.10}
\end{equation*}
$$

The inverse lifetime (or decay width) is then given by

$$
\begin{align*}
\tau^{-1} & =\Gamma=\frac{1}{\rho_{1}} \frac{1}{\mathcal{Z}} \int\left(\prod_{k=2}^{n} \frac{d^{3} p_{k}}{(2 \pi)^{3} \rho_{k}}\right) \frac{|\mathcal{S}-1|_{\mathrm{fi}}^{2}}{V T} \\
& =\frac{1}{2 E_{1} N_{1}} \frac{1}{\mathcal{Z}} \int\left(\prod_{k=2}^{n} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k} N_{k}}\right)(2 \pi)^{4} \delta^{4}\left(p_{1}-\cdots-p_{n}\right) \sum_{\mathrm{int}}\left|\mathcal{M}_{\mathrm{fi}}\right|^{2} \tag{3.11}
\end{align*}
$$

where $\mathcal{Z}=\prod_{j} n_{j}!$ is a statistical factor accounting for the presence of n_{j} identical particles of type j in the final state, and the sum 'int' is over internal degrees of freedom such as spin and color.

Cross sections:
For the reaction $1+2 \rightarrow 3+\ldots n$, the cross section σ is the transition rate per incident flux. The incident flux $f_{\text {inc }}$ can be represented as

$$
\begin{equation*}
f_{\mathrm{inc}}=\rho_{1} \rho_{2}\left|\mathbf{v}_{1}-\mathbf{v}_{2}\right|=\frac{\rho_{1} \rho_{2}}{E_{1} E_{2}}\left[\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right]^{1 / 2} \tag{3.12}
\end{equation*}
$$

and the cross section becomes

$$
\begin{align*}
\sigma= & \frac{1}{\mathcal{Z}} \frac{1}{4\left(\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right)^{1 / 2}} \\
& \times \int\left(\prod_{k=3}^{n} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k} N_{k}}\right)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-\cdots-p_{n}\right) \sum_{\mathrm{int}}\left|\mathcal{M}_{\mathrm{fi}}\right|^{2} . \tag{3.13}
\end{align*}
$$

Watson's theorem:
The scattering operator S is unitary, $S^{\dagger} S=1$. Thus, the transition operator \mathcal{T}, defined by $S=1-i \mathcal{T}$, obeys $i\left(\mathcal{T}-\mathcal{T}^{\dagger}\right)=\mathcal{T}^{\dagger} \mathcal{T}$. With the aid of the relation $\langle f| \mathcal{T}^{\dagger}|i\rangle=\langle i| \mathcal{T}|f\rangle^{*}$, we obtain the unitarity constraint for matrix elements,

$$
\begin{equation*}
i\left(\mathcal{T}_{\mathrm{fi}}-\mathcal{T}_{\text {if }}^{*}\right)=\sum_{n} \mathcal{T}_{\mathrm{nf}}^{*} \mathcal{T}_{\mathrm{ni}}, \tag{3.14}
\end{equation*}
$$

where $\mathcal{T}_{\text {fi }} \equiv\langle f| \mathcal{T}|i\rangle$. This constraint implies the existence of phase relations between the various intermediate-state amplitudes. For example, consider a weak transition followed by a strong final-state interaction for which there is a unique intermediate state identical to the final state,

$$
\begin{equation*}
A \underset{\text { weak }}{\longrightarrow} B C \underset{\text { strong }}{\longrightarrow} B C \tag{3.15}
\end{equation*}
$$

i.e., $i=A, n=f=B C$. In this circumstance, time-reversal invariance of the hamiltonian implies $\mathcal{T}_{\text {fi }}=\mathcal{T}_{\text {if }}$, so the left-hand side of the unitarity relation reduces to $-2 \operatorname{Im} \mathcal{T}_{\text {if }}$ and both sides of Eq. (3.14) are real-valued. Denoting the weak and strong matrix elements as $\left|T_{\mathrm{w}}\right| e^{i \delta_{\mathrm{w}}}$ and $\left|T_{\mathrm{s}}\right| e^{i \delta_{\mathrm{s}}}$, it then follows that $\delta_{\mathrm{w}}=\delta_{\mathrm{s}}$.

C-4 Field dimension

We consider a limit in which the theory is invariant under the set of scale transformations $x^{\mu} \rightarrow \lambda x^{\mu}(\lambda>0)$ of the spacetime coordinates. Associate with each such coordinate transformation a unitary operator $U(\lambda)$ whose effect on a generic quantum field Φ is given by $U(\lambda) \Phi(x) U^{\dagger}(\lambda)=\lambda^{d_{\Phi}} \Phi(\lambda x)$, where d_{Φ} is the dimension of the field Φ. From the canonical commutation relation obeyed by a boson field φ or the canonical anticommutation relation obeyed by a fermion field ψ_{α},

$$
\begin{equation*}
[\varphi(0, \mathbf{x}), \dot{\varphi}(0)]=i \delta^{3}(\mathbf{x}), \quad\left\{\psi_{\alpha}(0, \mathbf{x}), \psi_{\beta}^{\dagger}(0)\right\}=\delta_{\alpha \beta} \delta^{3}(\mathbf{x}) \tag{4.1}
\end{equation*}
$$

it follows that the canonical field dimensions are $d_{\varphi}=1$ and $d_{\psi}=3 / 2$. Composites built from products of these fields carry a dimension of their own, e.g., all fermion bilinears $\bar{\psi} \Gamma \psi$ (Γ is a 4×4 matrix) have canonical dimension 3 . Unless protected by some kind of algebraic relation, a field dimension will generally be modified from the canonical value by interaction-dependent anomalous dimensions. Field dimensions are particularly useful in ordering the terms contained in a short-distance expansion,

$$
\begin{equation*}
A(x) B(0) \underset{x \rightarrow 0}{\longrightarrow} \sum_{n} c_{n}(x) O_{n}, \tag{4.2}
\end{equation*}
$$

where A, B, O_{n} are local quantum fields. From the scale invariance of the shortdistance limit, it follows that $c_{n}(x) \sim x^{d_{O_{n}}-d_{A}-d_{B}}$. Thus, the fields O_{n} of lowest dimension have the most singular coefficient functions.

C-5 Mathematics in d dimensions

Dirac algebra:
The following set of rules, generally referred to as NDR (naive dimensional regularization), is the one most commonly used in the literature. We employ a metric
$g_{\mu \nu}$ corresponding to a spacetime of continuous dimension d and maintain certain $d=4$ properties of the Dirac matrices such as the trace relations of Eq. (2.6). In the following, I_{d} is a diagonal d-dimensional matrix with $\operatorname{Tr} I_{d}=4$ and $\epsilon \equiv(4-d) / 2$.

$$
\begin{align*}
g_{\mu}^{\mu} & =d \\
\left\{\gamma_{\mu}, \gamma_{v}\right\} & =2 g_{\mu \nu} I_{d} \\
\gamma_{\mu} \gamma^{\mu} & =d I_{d} \\
\gamma_{\mu} \not p \gamma^{\mu} & =(2 \epsilon-2) \not p \\
\gamma_{\mu} \not p \not q \gamma^{\mu} & =4 p \cdot q I_{d}-2 \epsilon \not p \not q \\
\gamma_{\mu} p \phi \nmid r \gamma^{\mu} & =-2 r \not q p p+2 \epsilon \not p \not q \nmid \\
p p q r+r q p p & =2 p \cdot q r+2 q \cdot r p p-2 p \cdot r q \\
\left\{\gamma_{\mu}, \gamma_{5}\right\} & =0 \tag{5.1}
\end{align*}
$$

Note that in NDR, γ_{5} anticommutes with the gamma matrices. This will suffice for the calculations appearing in this book, but is not valid for all amplitudes (e.g. closed odd-parity fermion loops).

Integrals:
For the following integrals, we define the denominator function

$$
\begin{equation*}
\mathcal{D} \equiv m_{1}^{2} x+m_{2}^{2}(1-x)-q^{2} x(1-x)-i \epsilon \tag{5.2}
\end{equation*}
$$

take $n_{1}, n_{2} \geq 1$, and denote $i \epsilon$ as the infinitesimal Feynman parameter.

$$
\begin{align*}
& \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{1}{\left[(p-q)^{2}-m_{1}^{2}+i \epsilon\right]^{n_{1}}\left[p^{2}-m_{2}^{2}+i \epsilon\right]^{n_{2}}} \\
& =(-1)^{n_{1}+n_{2}} \frac{i}{(4 \pi)^{d / 2}} \frac{\Gamma\left(n_{1}+n_{2}-d / 2\right)}{\Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right)} \int_{0}^{1} d x \frac{x^{n_{1}-1}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-d / 2}} \tag{5.3a}\\
& \int \frac{p^{d} p}{(2 \pi)^{d}} \frac{d^{d^{2}}}{\left[(p-q)^{2}-m_{1}^{2}+i \epsilon\right]^{n_{1}}\left[p^{2}-m_{2}^{2}+i \epsilon\right]^{n_{2}}} \\
& =(-1)^{n_{1}+n_{2}} q^{\mu} \frac{i}{(4 \pi)^{d / 2}} \frac{\Gamma\left(n_{1}+n_{2}-d / 2\right)}{\Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right)} \int_{0}^{1} d x \frac{x^{n_{1}}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-d / 2}} \tag{5.3b}\\
& \int \frac{p^{\mu} p^{\nu}}{(2 \pi)^{d}} \frac{d^{d} p}{\left[(p-q)^{2}-m_{1}^{2}+i \epsilon\right]^{n_{1}}\left[p^{2}-m_{2}^{2}+i \epsilon\right]^{n_{2}}} \\
& =\frac{i}{(4 \pi)^{d / 2}} \frac{(-1)^{n_{1}+n_{2}}}{\Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right)}\left[q^{\mu} q^{\nu} \Gamma\left(n_{1}+n_{2}-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}+1}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-d / 2}}\right. \\
& \left.\quad-\frac{g^{\mu \nu}}{2} \Gamma\left(n_{1}+n_{2}-1-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}-1}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-1-d / 2}}\right] \tag{5.3c}
\end{align*}
$$

$$
\begin{align*}
& \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{p^{\mu} p^{v} p^{\lambda}}{[(p-q)+i \epsilon]^{n_{1}}\left[p^{2}-m_{2}^{2}+i \epsilon\right]^{n_{2}}} \\
&= \frac{i}{(4 \pi)^{d / 2}} \frac{(-1)^{n_{1}+n_{2}}}{\Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right)}\left[q^{\mu} q^{v} q^{\lambda} \Gamma\left(n_{1}+n_{2}-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}+2}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-d / 2}}\right. \\
&\left.\quad-\frac{1}{2}\left(g^{\mu \nu} q^{\lambda}+g^{\mu \lambda} q^{\nu}+g^{\nu \lambda} q^{\mu}\right) \Gamma\left(n_{1}+n_{2}-1-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-1-d / 2}}\right], \\
& \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{p^{\mu} p^{\nu} p^{\lambda} p^{\sigma}}{\left[(p-q)^{2}-m_{1}^{2}+i \epsilon\right]^{n_{1}}\left[p^{2}-m_{2}^{2}+i \epsilon\right]^{n_{2}}} \tag{5.3d}\\
&= \frac{i}{(4 \pi)^{d / 2}} \frac{(-1)^{n_{1}+n_{2}}}{\Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right)}\left[q^{\mu} q^{\nu} q^{\lambda} q^{\sigma} \Gamma\left(n_{1}+n_{2}-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}+3}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-d / 2}}\right. \\
&- \frac{1}{2}\left(g^{\mu \nu} q^{\lambda} q^{\sigma}+g^{\mu \lambda} q^{v} q^{\sigma}+4 \text { perm. }\right) \Gamma\left(n_{1}+n_{2}-1-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}+1}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-1-d / 2}} \\
&+\left.\frac{1}{4}\left(g^{\mu \nu} g^{\lambda \sigma}+g^{\mu \lambda} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \lambda}\right) \Gamma\left(n_{1}+n_{2}-2-d / 2\right) \int_{0}^{1} d x \frac{x^{n_{1}-1}(1-x)^{n_{2}-1}}{\mathcal{D}^{n_{1}+n_{2}-2-d / 2}}\right] . \tag{5.3e}
\end{align*}
$$

Solid angle:

$$
\begin{align*}
& \Omega_{d}=\int_{0}^{\pi} d \theta_{d-1} \sin ^{d-2} \theta_{d-1} \ldots \int_{0}^{\pi} d \theta_{2} \sin \theta_{2} \int_{0}^{2 \pi} d \theta_{1}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \\
& \Omega_{2}=2 \pi, \quad \Omega_{3}=4 \pi, \quad \Omega_{4}=2 \pi^{2}, \ldots \tag{5.4}
\end{align*}
$$

Gamma, psi, beta, and hypergeometric functions:

$$
\begin{aligned}
\Gamma(z) & =\int_{0}^{\infty} d t e^{-t} t^{z-1} \quad(\operatorname{Re} z>0) \\
\Gamma(z+1) & =z \Gamma(z)=z(z-1) \Gamma(z-1)=\cdots=z! \\
\Gamma(-n+\epsilon) & =\frac{(-)^{n}}{n!}\left[\frac{1}{\epsilon}+\psi(n+1)+\mathcal{O}(\epsilon)\right] \quad(n \text { integer }) \\
d \Gamma(z) / d z & =\Gamma(z) \psi(z) \text { where } \psi(z+1)=\psi(z)+1 / z \\
\psi(1) & =-\gamma=-\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right) \simeq-0.5772
\end{aligned}
$$

$$
d \psi(z+1) / d z \equiv \psi^{\prime}(z+1)=\psi^{\prime}(z)-1 / z^{2} \text { with } \psi^{\prime}(1)=\pi^{2} / 6
$$

$$
B(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)}=2 \int_{0}^{\infty} d t \frac{t^{2 z-1}}{\left(t^{2}+1\right)^{z+w}} \quad(\operatorname{Re} z, \operatorname{Re} w>0)
$$

$$
\begin{align*}
F(a, b ; c ; z)= & \frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} d t t^{b-1}(1-t)^{c-b-1}(1-z t)^{-a} \\
& (\operatorname{Re} c>\operatorname{Re} b>0) \\
F(a, b ; c ; 1)= & \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \\
\frac{d F(a, b ; c ; z)}{d z}= & \frac{a b}{c} F(a+1, b+1 ; c+1 ; z) . \tag{5.5}
\end{align*}
$$

[^0]: 1 Another book sharing this convention is [ChL 84].

