COMPOSITIO MATHEMATICA

On the complexity of a putative counterexample
to the p-adic Littlewood conjecture

Dmitry Badziahin, Yann Bugeaud, Manfred Einsiedler and Dmitry Kleinbock

Compositio Math. 151 (2015), 1647-1662.

doi:10.1112/50010437X 15007393

QA LONDON
FOUNDATION Y}'\_\K MATHEMATICAL
COMPOSITIO A K |society
MATHEMATICA 5 | 150 vears

https://doi.org/10.1112/50010437X15007393 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X15007393
https://doi.org/10.1112/S0010437X15007393

</\ Compositio Math. 151 (2015) 1647-1662

% doi:10.1112/S0010437X15007393

W

On the complexity of a putative counterexample
to the p-adic Littlewood conjecture

Dmitry Badziahin, Yann Bugeaud, Manfred Einsiedler and Dmitry Kleinbock

ABSTRACT

Let || - || denote the distance to the nearest integer and, for a prime number p, let |- |,
denote the p-adic absolute value. Over a decade ago, de Mathan and Teulié [Problémes
diophantiens simultanés, Monatsh. Math. 143 (2004), 229-245] asked whether infg>q
q - |lge| - |glp = 0 holds for every badly approximable real number « and every
prime number p. Among other results, we establish that, if the complexity of the
sequence of partial quotients of a real number a grows too rapidly or too slowly, then
their conjecture is true for the pair (a,p) with p an arbitrary prime.

1. Introduction

A famous open problem in simultaneous Diophantine approximation is the Littlewood conjecture
which claims that, for every given pair (o, 3) of real numbers,

inf ¢ - [[qal| - [lgB]] = 0, (1.1)
q=1

where || - || denotes the distance to the nearest integer. The first significant contribution on this
question goes back to Cassels and Swinnerton-Dyer [CS55] who showed that (1.1) holds when «
and (3 belong to the same cubic field. Despite some recent remarkable progress [PV00, EKLO6],
the Littlewood conjecture remains an open problem.

Let D = (di)r>1 be a sequence of integers greater than or equal to 2. Set eg = 1 and, for any

n>=1,
II -

1<k<n
For an integer g, set
wp(q) =sup{n >0:q € e, Z}
and
lgp = 1/ewD(q) = inf{l/e, : q € e,Z}.
When D is the constant sequence equal to p, where p is a prime number, |- |p is the usual p-adic

value |- |,, normalised by [p|, = p~!. In analogy with the Littlewood conjecture, de Mathan and
Teulié [dMT04] proposed in 2004 the following conjecture.

MIXED LITTLEWOOD CONJECTURE. For every real number a and every sequence D of integers
greater than or equal to 2,

inf ¢ |lqa - |glp = 1.2
inf g+ flqell - lglp =0 (1.2)

holds for every real number «.
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Obviously, (1.2) holds if « is rational or has unbounded partial quotients. Thus, we only
consider the case where « is an element of the set Bad of badly approximable numbers, where

Bad = {a eR:inf q-|qal > O}.
=1
De Mathan and Teulié proved that (1.2) and even the stronger statement
liminf ¢ -logq - |lqa|| - |g]p < +o0 (1.3)
q—+00

hold for every quadratic irrational a when the sequence D is bounded.
We highlight the particular case where D is the constant sequence equal to a prime number.

p-ADIC LITTLEWOOD CONJECTURE. For every real number o and every prime number p,
inf ¢ - [lqe| - |glp = 0. (1.4)
g=1

Einsiedler and Kleinbock [EKO07] established that, for every given prime number p, the set
of real numbers « such that the pair (o, p) does not satisfy (1.4) has zero Hausdorff dimension.
They also explained how to modify their proof to get an analogous result when D is the constant
sequence equal to d > 2 (not necessarily prime).

In an opposite direction, by means of a subtle Cantor-type construction, Badziahin and
Velani [BV11] established that, for every sequence D of integers greater than or equal to 2, the
set of real numbers « such that

inf ¢ -logq-loglogq - |lqa| - |g|lp >0
q=3

has full Hausdorff dimension. Moreover, they showed that, for D = (22"),>1, the set of real
numbers «a such that

inf ¢-loglogq-logloglogq - |qal - |g|lp >0
q=16

has full Hausdorff dimension.

Regarding explicit examples of real numbers « satisfying (1.4), it was proved in [BDAMO7]
that, if the sequence of partial quotients of the real number « contains arbitrarily long
concatenations of a given finite block, then the pair (o, p) satisfies (1.4) for any prime number
p. A precise statement is as follows.

THEOREM BDM. Let o = [ag;a1,a2,...] be in Bad. Let T > 1 be an integer and by, ..., br
be positive integers. If there exist two sequences (my)r>1 and (hg)g>1 of positive integers with
(hg)k>1 being unbounded and

Amy+j+nT = bj, forevery j=1,...,T and everyn =0,...,h — 1,

then the pair (o, p) satisfies (1.4) for any prime number p.

The main purposes of the present paper are to give new combinatorial conditions ensuring
that a real number satisfies the p-adic (Theorem 2.1) and the mixed (Corollary 2.4) Littlewood
conjectures and to study the complexity of the continued fraction expansion of a putative
counterexample to (1.2) or (1.4); see Theorem 2.1 and Corollary 2.4 below. Furthermore, in §3
we make a connection between the mixed Littlewood conjecture and a problem on the evolution
of the sequence of the Lagrange constants of the multiples of a given real number. Proofs of our
results are given in §§4-6.
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Throughout the paper, we assume that the reader is familiar with the classical results from
the theory of continued fractions.

2. New results on the mixed and the p-adic Littlewood conjectures

To present our results, we adopt a point of view from combinatorics on words. We look at the
continued fraction expansion of a given real number « as an infinite word.

For an infinite word w = wjws ... written on a finite alphabet and for an integer n > 1, we
denote by p(n, w) the number of distinct blocks of n consecutive letters occurring in w, that is,

p(n, w) := Card{wy41 ... weyn : £ = 0}.
The function n — p(n,w) is called the complezity function of w. For a badly approximable real
number « = [ag; a1, ag, . . .|, we set
p(n,a) :=p(n,a1az...), n=>1,

and we call n — p(n, ) the complezity function of a. Observe that, for all positive integers n,n’,
we have
p(n+n',a) < pn,a) - prn',a),
thus, the sequence (log p(n, @)),>1 is subadditive and the sequence ((log p(n,a))/n),>1 converges.
In the present paper we show that if the real number « is a counterexample to the p-adic
Littlewood conjecture, then its complexity function n — p(n, «) can neither increase too slowly
nor too rapidly as n tends to infinity.

2.1 High-complexity case
For a positive integer K, set
Badg :={a = [ap;a1,0a2,...] 1a; < K,i > 1}

and observe that the set of badly approximable numbers is the union over all positive integers
K of the sets Badg. It immediately follows from the definition of the complexity function
n — p(n,«) that, for every o in Bady and every n > 1,

p(n,a) < K"

Consequently, the complexity function of the continued fraction of any number a in Bad grows
at most exponentially fast. Our first result shows that a putative counterexample to the p-adic
Littlewood conjecture must satisfy a much more restrictive condition.

THEOREM 2.1. Let a be a real number satisfying

]
lim og p(n, )

n—00 n

> 0. (2.1)
Then, for every prime number p,
inf q - : = 0.
inf g llgal - laly
In other words the complexity of the continued fraction expansion of every potential
counterexample to the p-adic Littlewood conjecture must grow subexponentially.
Our proof relies on a p-adic generalisation of the measure classification result in [LINOG6]
(provided by [EL15]), the connection between such dynamical results and the Diophantine

approximation problem as was used previously in [EKL06, EK07], and the observation that
one counterexample actually gives rise to many more counterexamples (see Proposition 4.1).
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2.2 Low-complexity case

A well-known result of Morse and Hedlund [MH38, MH40] asserts that p(n,w) > n+1 forn > 1,
unless w is ultimately periodic (in which case there exists a constant C' such that p(n,w) < C
for n > 1). Infinite words w satisfying p(n,w) = n + 1 for every n > 1 do exist and are called
Sturmian words. In the present paper we show that if « is a counterexample to the p-adic (or,
even, to the mixed) Littlewood conjecture, then the lower bound for the complexity function of
« must be stronger than this estimate. Before stating our result we give a classical definition
(see, for example, [AS03]).

DEFINITION 2.2. An infinite word w is recurrent if every finite block occurring in w occurs
infinitely often.

Classical examples of recurrent infinite words include periodic words, Sturmian words, the
Thue—Morse word, etc.

THEOREM 2.3. Let (ax)r>1 be a sequence of positive integers. If there exists an integer m > 0
such that the infinite word Gm+1Gm+2 ... iS recurrent, then, for every sequence D of integers
greater than or equal to 2, the real number « := [0;ay, as, . ..] satisfies

inf g gl - lglp = 0.

As a particular case, Theorem 2.3 asserts that (1.2) holds for every quadratic number o and
every sequence D of integers greater than or equal to 2, including unbounded sequences (unlike
in [dMTO04], where D is assumed to be bounded). Unlike in [dMTO04], our proof does not use
p-adic analysis.

Theorem 2.3 implies a non-trivial lower bound for the complexity function of the continued
fraction expansion of a putative counterexample to (1.2).

COROLLARY 2.4. Let D be a sequence of integers greater than or equal to 2 and « be a real
number such that the pair (o, D) is a counterexample to the mixed Littlewood conjecture (i.e.,
does not satisfy (1.2)). Then the complexity function of « satisfies
lim p(n,a) —n = +4o0.
n—+oo
The next corollary highlights a special family of infinite recurrent words. A finite word
wi ... Wy is called a palindrome if wy11—; =w; fori=1,... n.

COROLLARY 2.5. Let (ar)r>1 be a sequence of positive integers. If there exists an increasing
sequence (n;);j>1 of positive integers such that ay...ay; is a palindrome for j > 1, then, for
every sequence D of integers greater than or equal to 2, the real number « := [0;ay,az,...]
satisfies

inf g gl - lglp = 0.

As shown in §6, our approach allows us to give an alternative proof to (1.3) when « is
quadratic irrational and D is bounded. Furthermore, we are able to quantify Theorem 2.3 for a
special class of recurrent words.

DEFINITION 2.6. We say that an infinite word w is linearly recurrent if there exists C' > 1 such

that the distance between two consecutive occurrences of any finite block W occurring in w is
bounded by C times the length of W.

We obtain the following quantitative result.
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THEOREM 2.7. Let (a)k>1 be a bounded sequence of positive integers. If there exists an integer
m 2= 0 such that the infinite word ap,11am+2 - - . is linearly recurrent, then, for every sequence D
of integers greater than or equal to 2, the real number « := [0; a1, as, .. .| satisfies

liminf ¢ - (loglogq)"/* - lqa| - |q|p < +o0.
q—+00

2.3 Comparison with the Littlewood conjecture

According to [dMTO04, §5], the initial motivation for the introduction of the mixed Littlewood
conjecture was the study of a problem quite close to the Littlewood conjecture, but seemingly
a little simpler, with the hope to find new ideas suggesting a possible approach towards the
resolution of the Littlewood conjecture itself.

We are not aware of any relationship between both conjectures. For instance, a real number
a being given, we do not know any connection between the two statements ‘(1.2) holds for every
sequence D’ and ‘(1.1) holds for every real number 3’.

The interested reader is directed to [BUG14] for a survey of recent results and developments
on and around the Littlewood conjecture and its mixed analogue. The reader will notice that
the state of the art regarding the Littlewood and the p-adic Littlewood conjectures is essentially,
but not exactly, the same.

For instance, [LIN10, Theorem 5] asserts that for every real number o with (2.1),

inf g flgodl - 451l =0,

for every real number 5. This is the exact analogue to Theorem 2.1 above. However, the low-
complexity case remains very mysterious for the Littlewood conjecture, since we even do not
know whether or not it holds for the pair (v/2,/3).

3. On the Lagrange constants of the multiples of a real number

Our main motivation was the study of the p-adic and the mixed Littlewood conjectures. However,
the proof of Theorem 2.3 actually gives us much stronger results on the behaviour of the Lagrange
constants of the multiples of certain real numbers.

DEFINITION 3.1. The Lagrange constant c¢(«) of an irrational real number « is the quantity
¢(a) :=liminf ¢ - ||g¢]|.
q—+00

Clearly, v is in Bad if and only if ¢(a) > 0. A classical theorem of Hurwitz (see [Per29,
BUGO04]) asserts that c¢(a) < 1/4/5 for every irrational real number a.
For any positive integer n and any badly approximable number «, we have

c(a) < ¢(na) < ne(a). (3.1)
n
To see this, note that
o=l = nfo -4
no——| =nla—=-
q q
and
’ Pl_L|,0_m
ngl  n nqgl’

The first general result on the behaviour of the sequence (c¢(na))n>1 is Theorem 1.11 of
Einsiedler et al. [EFS11], reproduced below.
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THEOREM EFS. Every badly approximable real number « satisfies

1111;% c(na) = 0.

Theorem EFS motivates the following question.

PROBLEM 3.2. Prove or disprove that every badly approximable real number « satisfies

lim ¢(na) =0. (3.2)

n—+o00

There is a clear connection between Problem 3.2 and the mixed Littlewood conjecture.
Indeed, if « satisfies (3.2) and if D is as in §1, then, keeping the notation from this section,
for every € > 0, there exists a positive integer n such that c(e,a) < e. Consequently, there are
arbitrarily large integers ¢ with the property that

q-llgencll <e,
thus,
qeén - qunaH ' |qen|D <§g,

since |gen|p < 1/e,. This proves that (1.2) holds for the pair (a, D).
Our proof of Theorem 2.3 actually gives the following stronger result.

THEOREM 3.3. Let (ax)r>1 be a sequence of positive integers. If there exists an integer m > 0
such that the infinite word a,,11Gm+2 ... is recurrent, then the real number « := [0; a1, ag, .. ]
satisfies (3.2) and, moreover,

84m
c(na) < —=, forn > 1,
n
where q,, denotes the denominator of the rational number [0; a1, ..., am].

In view of the left-hand inequality of (3.1), the conclusion of Theorem 3.3 is nearly best
possible.

Using the same arguments as for the proof of Corollary 2.4, we establish that the complexity
function of a real number which does not satisfy (3.2) cannot be too small.

COROLLARY 3.4. Let o be a real number such that

sup nc(na) = +oo.
n=1

Then the complexity function of « satisfies

lim p(n,a) —n = +oo.
n——+0o0o

4. High-complexity case

We follow the interpretation of the p-adic Littlewood conjecture used by Einsiedler and Kleinbock
in [EK07] and consider the following more general problem.

GENERALISED p-ADIC LITTLEWOOD CONJECTURE. For every prime number p and for every pair
(U7U) € R>0 X Qpa

inf b} - Jaw — b - lav — b, = 0. 4.1
o L max{lal. bl) - fou b - av — B, (1)
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Clearly « satisfies the p-adic Littlewood conjecture (i.e. (1.4)) if and only if —a satisfies
the p-adic Littlewood conjecture. For that reason we restrict our attention to positive numbers.
Moreover, one can check (see, for example, the discussion after [EK07, Theorem 1.2]) that if «
is a counterexample to the p-adic Littlewood conjecture then (a~!,0) is a counterexample to
the above generalised p-adic Littlewood conjecture. The next proposition goes further and shows
that one counterexample « to the p-adic Littlewood conjecture provides a countable collection
of counterexamples to the generalised p-adic Littlewood conjecture.

PROPOSITION 4.1. Let p be a prime number and o > 0 an irrational number. Let ¢ be in (0,1/2]
and assume that

inf g - : .

inf g llgall -lalp > €

Then )
inf max{a,b}-a-”qn&u—b‘-a-<qn )—i—b >€—7 (4.2)
a€N, beNU{0} lgn—1c|| qn-1 , 4
where (qi)r>1 Is the sequence of the denominators of the convergents to «.
Note that, writing o = [ag; a1, as, . . ],
q qn®
" = [0;an,an-1,--.,a1] and gna]l = [0; an+t1,an2,...] € (0,1),
Gn—1 lgn—1c]|

for every n > 1.

Proof of Proposition 4.1. We assume that ||ga| - ||, > €/q for every integer ¢ > 1. We use the
classical estimate from the theory of continued fractions

lgnerll < gy < (angn) ™
This implies that g, ||g,| < a,! and hence a,, < e~!. In other words,
a € Bady, where N:=[¢7'] and ¢, < (N +1)g,_1.
Now choose some a > 1, b > 0, and modify the left-hand side of (4.2):

|C.7n laH dn—1

max{a, b}

B lgn—1c| - |Qn—1|p

max{a,b} -

p

allgnell = bllgn-1ell| - lagn + bgn—1y.

Since ||gn_10|| < (an-1qn—1)"1 < q;il, the first term in this product is bounded from below by
max{a, b} - ¢,_1, which in turn is greater than or equal to (N + 1)~! - max{agn, bg,_1}. The
second term is estimated as follows:

‘a gnall = b llgn- 10‘”‘ = |(agn + bgn—1)a — (apn + bpn-1)| = [[(agqn + bgn—1)c||.

Therefore, a lower bound of the whole product is

maX{GQm anfl}
(N+1)

€ max{agn, bgn_1} - €
TNH1 age+bgr C 2N+1)
Since N +1 < e ! + 2 and € < 1/2, this proves the proposition. O

: H(GQn + anfl)aH : ’CLQn + an71|p
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In [EKO07] the authors showed that the set of counterexamples to the generalised p-adic
Littlewood conjecture is rather small. More precisely, the following theorem [EK07, Theorem 5.2]
was stated there, along with a scheme of proof.

THEOREM EK. Let p be a prime number. Then the set of pairs (u,v) € R x Q, which do not
satisfy

liminf |a| - —b- —bl,=0 4.3
iminf[a] - [au — b| - Jav — B, (4.3)

)

Is a countable union of sets of box dimension zero.

The outlined proof was based on a theorem due to Einsiedler and Lindenstrauss [EL15] which
at the time of publication of [EK07] had not appeared yet. In the present paper we re-examine the
methods of [EK07] and provide a more precise result regarding the set of pairs (u,v) € [0, 1] X Z,,
which do not satisfy (4.1).

THEOREM 4.2. For every prime number p, the set of pairs (u,v) € [0, 1] x Z,, which do not satisfy
(4.1) is a countable union of sets of box dimension zero. Moreover, for every € > 0, the set of
(u,v) € [0,1] x Z,, which satisfy

inf bl - —bl- —bl, > 4.4
g iE ma{a,B) - fau b o — bl > < (4.4)

has box dimension zero.

The proof of Theorem 4.2 is postponed to §5.
Roughly speaking, this theorem together with Proposition 4.1 implies that for every
counterexample a = [0;aq,az,...] to the p-adic Littlewood conjecture the set

{10; am, am+1,...] :m > 1}
has box dimension zero. Let us now show that this in turn implies the statement of Theorem 2.1.

Proof of Theorem 2.1. We will prove the contrapositive of the theorem. So assume that « is a
counterexample to (1.4). By the homogeneity of (1.4) we may assume that « = [ag;aq,...] is
positive. By Proposition 4.1 this leads to a countable collection

B = {(an,ﬂn) = ([O;an+1,an+2,...], dn ) n>= 1}

dn—1

of pairs in [0,1] x Q, that all satisfy (4.2). By Theorem 4.2, the set
BN0,1] x Zy, = {(an, Bn) :n>1 and |gn—1]|p = 1}

has box dimension zero.
Let N > 1 be such that a, € {1,..., N} for all n > 1. We set

S = {021 lgel =1}

Let 6 > 0 be arbitrary and let 7 : [0, 1] X Z,, — [0, 1] denote the projection to the real coordinate.
Then the definition of box dimension shows that, for all sufficiently large n, the set

B' ={ay: L€ S} =nm0(BN[0,1] X Zy)

can be covered by s, < e intervals Iy, ..., I, of size (1 + N)~2".
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We also define another disjoint collection of intervals. To any word w = wy ... wy, in {1,...,
N1}™ we associate the interval [w] composed of the real numbers in (0,1) whose first n partial
quotients are wy, ..., w,. The basic properties of continued fractions show that the length of [w]
is at most 272 and at least (1 + N)72". It follows that a given interval I; from the above
list can intersect at most two (neighbouring) intervals of the form [w] for w € {1,..., N}". This
implies that

Card{ags1 ... appn: L€ S} <25, < 2.

To remove the restriction £ € S” in the above counting, we note that ¢ ¢ S” implies £ + 1 € S’
since gp_1 and ¢y are coprime, by the properties of continued fractions. Therefore,

p(n,a) = Card{agy1 ... apin : £ >0} < 25, +2Ns, 1 < 2(14 N)e™

As § > 0 was arbitrary, the theorem follows. O

5. Measure rigidity and the proof of Theorem 4.2

We follow the strategy outlined in [EK07] (which in turn generalises the argument from [EKLO06]).
For this, we set

G =SLy(R) x SLo(Q,), T =SLa(Z[1/p]), X =G/, (5.1)

where Z[1/p] is embedded diagonally via a — (a,a) in R x Q. In other words, for (A, B) € G,
points # = (A, B)I' € X are identified with unimodular lattices (A, B)Z[1/p] in R?* x Q2 that
are generated by the column vectors of A and B.

We also set
aon=((5 965 )

for (t,n) € R x Z, and define the cone
C={(t,n)|n=0c¢ep™=>1}. (5.3)

Furthermore, for (u,v) € R x Q,, we define the coset (which we will think of as a point)

o= (D)2

Compact subsets of X can be characterised by the analogue of Mahler’s compactness criterion
(see [EKO07, Theorem 2.1]) so that a subset K C X has compact closure if and only if there exists
some § > 0 so that K C Kg, with

R2 Q2
Ks={gT € K : gZ[1/p]* N B, "7 = {0}},

where Bs denotes the ball of radius § centred at zero.
In [EKO07, Proposition 2.2], a connection between unboundedness of the cone orbit

PY(C)xyw = {0t n)zyy = (t,n) € C}
and (4.3) is given. However, we will need to show the following refinement.

PROPOSITION 5.1. Let (u,v) € (0,1) x Z, and 0 < ¢ < 1 be arbitrary. If (u,v) satisfies (4.4),
then (C)wy,, C Ks for § = (¢/2)1/3.
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We note that in [EK07] the converse of the above implication, in a slightly different form,
has also been claimed (without a proof). But the other direction is not clear and luckily is also
not needed for the proof of our results (or the results of [EK07]).

Proof of Proposition 5.1. Take § = (¢/2)'/® and suppose that (C)xy,y is not contained in Kjy;

that is, there exists a pair (¢,n) with n > 0 and e'p™" > 1 such that (¢, n)z, ,Z[1/p] contains

. R?2x Q2
a non-zero element in B 5 P,

Clearly, ¢ (t,n)z,, is generated by

(@) GPe)) ot ((2)- ()

However, since ¢ (t,n)z,, is a Z[1/p]-module, the vectors

() (o))t (i) (o))

are also generators. Therefore, there exists some non-zero (a,b) € Z[1/p]? such that

<(etz?e_’”‘t(l;_l:i b)) ’ (p‘Z”(Zv - b)>> €R*xQ,

is 0-small. In particular, |a|, is less than ¢, which implies that a € Z. Since n > 0 and v € Z,,
the inequality
p*av = blp = [p~*"(av = b)|, < 6 (5.4)

shows that b € Z as well. Also, since |u| < 1, the inequalities ¢ > 0, |e"'p~"a| < § and
lefp™"(au — b)| < & (5.5)
imply that
e 'p " max{|al, |b|} < 26. (5.6)

By taking the product of the inequalities (5.4)—(5.6), we arrive at
max{|al, |b|} - |au — b| - |av — b|, < 26% = ¢.

Also note that u > 0, (5.5) and e’p~™ > 1 imply that a and b have the same sign (in the sense
that ab > 0). Without loss of generality we may assume a,b > 0. Similarly, b = 0 implies a = 0
and contradicts our choice of (a,b). However, a > 1 and b > 0 contradict (4.4). Consequently,
(C)xy,p is contained in K. O

We also need the following partial measure classification result.

THEOREM 5.2. The Haar measure is the only v-invariant and ergodic probability measure p
on X for which some (t,n) € R x Z has positive entropy h, (1 (t,n)) > 0.

Theorem 5.2 follows from [EL15, Theorem 1.3], recalled below. We write oo for the
archimedean place of Q and Q. = R. Moreover, for a finite set S of places we define Qg =
[I,cs Qo for the corresponding product of the local fields.
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THEOREM EL. Let G be a Q-almost simple linear algebraic group, let S be a finite set of places
containing the archimedean place oo, let I' < G = G(Qg) be an arithmetic lattice, and let X =
G/T. Finally, let A be the direct product of maximal Q,-diagonalisable algebraic subgroups
of G(Qy) for v € S. Let 1 be an A-invariant and ergodic probability measure on X. Suppose
in addition that p is not supported on any periodic orbit gL(Qg)I" for any g € G and proper
reductive Q-subgroup L < G, that rank(A) > 2, and that hy,(a) > 0 for some a € A. Then there
is a finite index subgroup L < G so that u is L-invariant and supported on a single L-orbit.

Proof of Theorem 5.2. We let G,T", X be as in (5.1). In the special case (¢,n) = (¢,0) this follows
directly from [LIN06, Theorem 1.1]. The method of proof of [LIN06, Theorem 1.1] would in
principle also give the general case of Theorem 5.2, but we will instead derive it from the more
general Theorem EL.

Assume now that p is a 1-invariant and ergodic probability measure with positive entropy for
some (t,n) € R xZ. Strictly speaking Im(¢)) = /(R x Z) does not equal the product A of the full
diagonal subgroup of SL(R) and the full diagonal subgroup of SL(Q,). However, K = A/Im(v))
is compact which allows us to define the A-invariant and ergodic measure pg = [y a,pud(alm(v))
with positive entropy for ¥ (¢, n).

Note that a proper non-trivial reductive subgroup L of SLs must be a diagonalisable
subgroup. However, if ;14 were supported on a single orbit gL(Qg)I" this would mean that py4 is
supported on a single periodic orbit for A and would force entropy to be equal to zero. Therefore,
all assumptions in Theorem EL are satisfied and it follows that p4 is invariant under a finite
index subgroup of G. However, G does not have any proper finite index subgroup and so pa
must be the Haar measure on X. The definition of pu4 now expresses the Haar measure as
a convex combination of i-invariant measures. By ergodicity of the Haar measure under the
action of ¥(R x Z) this implies that u equals the Haar measure on X also. O

Finally, for the proof of Theorem 4.2, we need to quote another result highlighting a
connection between entropy and box dimension. Recall that, given g € G, the unstable
horospherical subgroup for g is the maximal subgroup of G such that each of its elements h
satisfies g7/hg’ — 1 as j — oo. What follows is a special case from [EK07, Proposition 4.1]
(cf. also [EKLO06, Proposition 9.1]):

ProrosiTiION EK. Let G,T", X be as in (5.1), ¢ be as in (5.2) and C as in (5.3). Take (t,n) € C
and let Y C X be a compact set such that no -invariant and ergodic probability measure
supported on Y has positive entropy for 1 (t,n). Then, for any compact subset B of the unstable
horospherical subgroup for 1(t,n) and any x € X, the set

{ue B:¢y(Clux C Y}
has box dimension zero.

Proof of Theorem 4.2. Fix some ¢ > 0, and let § = /3 and ¥ = K5 C X. Also pick ¢ > 0
such that (¢,1) € C. Note that {z,, : (u,v) € R x Q,} is the unstable horospherical subgroup
for 1(t,1). By Theorem 5.2 and since Y is a proper closed subset of X, there is no ¢-invariant and
ergodic probability measure supported on Y, which is precisely the assumption of Proposition
EK. By that result we obtain that the set of (u,v) € [0,1] x Z,, with ¥(C)z,, C Y has box
dimension zero. However, by Proposition 5.1, this implies that the set of (u,v) € (0,1) x Z,
satisfying (4.4) has box dimension zero, and Theorem 4.2 follows. a
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6. Low-complexity case

6.1 Auxiliary results
We begin with two classical lemmas on continued fractions, whose proofs can be found, for
example, in Perron’s book [Per29].

For positive integers ay,...,ay, denote by K,(ai,...,a,) the denominator of the rational
number [0;ay,...,ay]. It is commonly called a continuant.
LEMMA 6.1. For any positive integers aq,...,a, and any integer k with 1 <k <n —1,

Ky(ay,...,an) = Kyp(an,...,a1)

and
Ki(ay,...,a)  Kn_g(agi1, ... an) < Kp(ag, ..., an)
<2Kg(ar, ... a) - Knog(akst, ..o an).
LEMMA 6.2. Let o = [0;a1,as2,...] and = [0;b1,ba,...] be real numbers. Assume that there
exists a positive integer n such that a; = b; for any ¢ = 1,...,n. We then have

|Od - 5| < Kn(ab' : 'aan)_2'

A homogeneous linear recurrence sequence with constant coefficients (recurrence sequence
for short) is a sequence (uy)n>0 of complex numbers such that

Up+d = Vd—1Un+d—1 + Vd—2Untd—2 + -+ - + VolUn (n = 0),

for some complex numbers vg, v1,...,vq_1 With vy # 0 and with initial values ug, ..., uq_1 not
all zero. The positive integer d is called the order of the recurrence.

LEMMA 6.3. Let (un)n>1 be a recurrence sequence of order d of rational integers. Then, for every
prime number p and every positive integer k, the period of the sequence (uy)n>1 modulo pF s
at most equal to (p? — 1)pF~1.

Proof. See Everest et al. [EVAPSWO03, p. 47]. O
LEMMA 6.4. Let o = [ag;a1,...,ar-1,b0,b1,...,bs—1,b0,...,bs—1,...] be a quadratic irrational
number and denote by (py/qn)n>0 the sequence of its convergents. Then there exists an integer
t such that

Int2s — tnts + (=1)°¢, =0
for n > r. In particular, the sequence (qp)n>0 satisfies a linear recurrence with constant integral
coefficients.

Proof. This result is included in the proof of [LS93, Theorem 1]. O

6.2 Proofs

Preliminaries. Without any loss of generality, we consider real numbers in (0,1). We associate
to every real irrational number « := [0;ay, ag, ...] the infinite word a := ajasg ... formed by the
sequence of the partial quotients of its fractional part. Set

p-1=q=1 po=qg-1=0

and
Pn

=1[0;a1,...,a,], forn>1.
qn
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By the theory of continued fractions, we have
dn
dn—1

= lan;an-1,...,a1].
This is one of the key tools of our proofs.

Proof of Theorems 2.3 and 3.3. Assume that the infinite word a,,41G,+2 - .. is recurrent. Then,
there exists an increasing sequence of positive integers (n;);>1 such that

Am4+1@m+2 - - - Gmn; 18 a suffix of ami1am2 ... @min,,, for j = 1.
Suppose that there are finite words V7, Vs, ... such that

Am+10m+2 - - - am+n]-+1 - ‘/jam+1am+2 <. am-l—nja for .7 = 1.

Actually, these properties are equivalent.
Let £ > 2 be an integer. Let k > 2 + 1 be an integer. By Dirichlet’s Schubfachprinzip, there
exist integers ¢, 7 with 1 < i < j < k such that

m+n; = dm+n; (mod £),  gmtn;—1 = dm+n;—1 (mod )
and j is minimal with this property.
Setting
Q = ’qm“rniqm"{‘nj—l - qm—‘,—m—lQm—i—nj ’7

we observe that

¢ divides @, (6.1)

and we derive from Lemma 6.2 that
dm+n;—1 _ dm+n;—1

0<@= dm+n;dm+n;
Qm+nj Qm—l—ni

< QerniQeran(aernp L) ,am+1)_27
since the n; first partial quotients of gmin;—1/@m+n; a0d @min,—1/Gm+n; are the same, namely

Qmtngs - - - s Gm1. Furthermore, we have

Qo < ||Qm+ni(Qm+nj—1a)” + ||Qm+ni—1(Qm+nja)” < 2Qm+niq;z}-nj-

Using that
Gm+n; < 20m K (@mgn,, - - Gmt1),
by Lemma 6.1, we finally get
Q- [|Qa < g, (6.2)
It then follows from (6.1) and (6.2) that
Q- [1Qall - Qle < 8gmt ™, (6.3)

where |Q| is equal to £~ if ¢* divides Q but £**! does not. Since £ can be an arbitrary prime
power, this proves Theorem 2.3.
Our proof shows that there are arbitrarily large integers ¢ such that

gt - |la(ta)ll < 8q,,

which implies that
8

< Am
c(la) < 7

and establishes Theorem 3.3.
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Proof of Corollary 2.4. Let a be an infinite Sturmian word. We first claim that every prefix of
finite length of a occurs infinitely often in a. Indeed, otherwise, there would exist a positive integer
n, a finite word W and an infinite word a’ such that a = Wa’ and p(n,a’) < n, which would
imply that a’ is ultimately periodic, a contradiction with the assumption that a is Sturmian.
Let a be an infinite word on a finite alphabet A such that there are positive integers k and
ng with
p(n,a) =n+k, forn > ng.

Then, by a result of Cassaigne [CAS97], there exist finite words W, Wy, W; on A and a Sturmian
word s on {0, 1} such that

a=We(s),
where ¢(s) denotes the infinite word obtained by replacing in s every 0 by Wy and every 1 by
W1. We conclude by applying Theorem 2.3 with m being the length of W. a

Proof of Corollary 2.5. 1t is sufficient to note that, ifa; ...a, and a; . . . a, are palindromes with
n' > 2n, then ap_py1...Gp =ap...a1 =aq...a,. The corollary then follows from Theorem 2.3
applied with m = 0.

Proof of (1.3) when « is a quadratic irrationality and D is bounded. Since D is bounded, every
product e, =[] <k<n di 18 divisible by a finite collection of prime numbers. Let p1, ..., pp be these
primes and denote by S the set of integers which are divisible only by primes from {pi,...,pn}.
Let a be a quadratic real number. By Lemma 6.4, the sequence (g,)n>0 of denominators of
convergents to « is eventually a recurrence sequence of positive integers. By Lemma 6.3, there
exists a positive integer C such that, fori =1,..., hand v > 1, the sequence (g )n>0 is eventually
periodic modulo p}, with period length at most equal to Cp; .

Consequently, there exists a positive integer C such that, for every positive integer ¢ in .S,
the sequence (g, )n>1 modulo ¢ is eventually periodic of period at most Cal.

We need to slightly modify the proof of Theorem 2.3. Take ¢ = e, € S. Denote by m the
length of the preperiod of (¢,)n>1 and by d the length of the period of (¢, )n>1 modulo £. Observe
that

Gm = Gm+d  (mod £),  gmi1 = gmid+1  (mod £).
We then set
Q = |gmPm+d+1 — Gm+19m-+dl

and proceed exactly as in the proof of Theorem 2.3 to get that

Q- HQaH < 2(172n+1-

Noticing that |Q[p < ¢! and Q < Cf, for some integer C3 depending only on py,...,py, this
establishes (1.3). O

Proof of Theorem 2.7. We retain the notation of the proof of Theorem 2.3. By assumption, we
can select a suitable sequence (n;);>1 with the property that n; < CY for some integer Cy > 2
and every j > 1. Then there are positive constants Cs, C'3, depending only on C7, such that

M +15
Q< CQ Ju

thus,
loglog Q < Cf?,

since i and j are at most equal to £2 + 1. Combined with (6.3), this proves the theorem. O
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