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In the present paper, the sloshing flow in a cuboid tank forced to oscillate horizontally is
investigated with both experimental and numerical approaches. The filling depth chosen
is h/L = 0.35 (with h the water depth and L the tank height), which is close to the
critical depth. According to Tadjbakhsh & Keller (J. Fluid Mech., vol. 8, issue 3, 1960,
pp. 442–451), as the depth passes through this critical value the response of the resonant
sloshing dynamics changes from ‘hard spring’ to ‘soft spring’. The experimental tank has a
thickness of 0.1L, reducing three-dimensional effects. High-resolution digital camera and
capacitance wave probes are used for time recording of the surface elevation. By varying
the oscillation period and the amplitude of the motion imposed on the tank, different
scenarios are identified in terms of free-surface evolution. Periodic and quasi-periodic
regimes are found in most of the frequencies analysed but, among these, sub-harmonic
regimes are also identified. Chaotic energetic regimes are found with motions of greater
amplitude. Typical tools of dynamical systems, such as Fourier spectra and phase maps,
are used for the regime identification, while the Hilbert–Huang transform is used for
further insight into doubling-frequency and tripling-period bifurcations. For the numerical
investigation, an advanced and well-established smoothed particle hydrodynamics method
is used to aid the understanding of the physical phenomena involved and to extend the
range of frequencies investigated experimentally.
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1. Introduction

Sloshing is a violent movement of a liquid within a container. It may be important to
consider the interaction with support structures. When the surge and/or pitch period
of the support structure is close to the first sloshing natural period, strong oscillation
nonlinearities occur (see e.g. Faltinsen & Timokha 2021).

Due to the high local and global loads associated with the impact of waves against
the sidewall, sloshing flows have several implications from a practical point of view.
For example, in the naval framework, knowledge of the flow characteristics that occur
during the violent motion of liquids within confined spaces (Silverman & Abramson
1966), is a fundamental issue for the safety of liquid natural gas carriers. Since these
ships operate with different tank filling conditions, it is important to understand in depth
the main features of the phenomena involved. In particular, the filling height of the
tank can drastically change the regimes observed when the tank is almost completely
(Rognebakke & Faltinsen 2005), partially (Colagrossi et al. 2006; Jin et al. 2020) or
barely filled (Bouscasse et al. 2007; Antuono et al. 2012a, 2014). Violent free-surface flows
can occur when the energy spectrum of the vessel’s motion is focused in the region near
the lowest natural mode of the tank. Then, large slamming loads (Faltinsen, Landrini &
Greco 2004; Lugni, Brocchini & Faltinsen 2006a) may occur, with possible air entrapment
(Lugni, Brocchini & Faltinsen 2010a; Lugni et al. 2010b), which also compromises the
integrity of the structure (Lugni et al. 2014). In this condition, an appropriate prediction
of the impulsive loads and their duration can be useful for an adequate estimate of the
fluid–structure interactions (see e.g. Marrone et al. 2017; Fang et al. 2022; Pilloton et al.
2022).

Although correct modelling of the local evolution of the flow field is crucial for
the description of the fluid loads, it is also extremely important to consider the global
characteristics of the flow during the tank motion. Typically, they are classified with
respect to the occurring wave patterns. A first classification was given for sloshing flows
in shallow water by Olsen & Johnsen (1975). It is well known that the low filling depth
condition can induce strong nonlinear effects leading to four different scenarios: (a) a
standing wave; (b) a combination of standing and travelling wave systems; (c) a hydraulic
jump, characterizing the propagation of breaking waves; (d) a pure travelling wave. For the
latter case, the interaction of the wave train with the lateral walls of the tank can lead to the
formation of ascending water jets which climb the vertical wall with consequent rundown
and trapping of air bubbles (Bouscasse et al. 2013).

In general, in sloshing flows induced by purely periodic lateral motion, the free surface
moves with a period strictly related to the excitation frequency. When the latter approaches
resonant conditions, superharmonic components appear, induced by the nonlinear effects.
In addition to this, the identification of peculiar behaviours of nonlinear sloshing flow such
as subharmonic or chaotic modes requires the analysis of several conditions that vary with
filling heights, amplitudes and frequencies of the tank motion.

This approach was adopted during the first experimental campaign at CNR-INM
(formerly INSEAN) in 2003. The experimental set-up of a similar campaign conducted
in the 1970s by Olsen (1970) was reproduced. The same tank dimensions, i.e. squared
L × L with L = 1 m, and the same filling depth, i.e. h/L = 0.35 close to the critical one,
were considered.

According to Tadjbakhsh & Keller (1960), the sloshing dynamics at a frequency close
to resonance has been shown to produce a response that changes from a ‘hard-spring’
to a ‘soft-spring’ response as the depth passes through a critical value, theoretically
evaluated as h/L = 1.07/π � 0.3406 (where h is the water depth; see also Kovacic &
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Brennan 2011). Fultz (1962) reports an experimental confirmation of these results and
underlines that the frequency effect reversal appears to occur at a depth ratio of h/L =
0.88/π � 0.28, somewhat less than the theoretical value. This discrepancy is related to the
effect of a non-infinitesimal forcing amplitude. The difference between the value of 0.28
found by Fultz (1962) and 0.34 of Kovacic & Brennan (2011) is not crucial for the present
work, while what is really relevant is that the filling depth adopted, i.e. h = 0.35L, is
sufficiently close to and above the critical depth to guarantee a clear soft-spring behaviour
in the sloshing dynamics investigated. The theoretical value of critical depth has been
estimated (calculated) theoretically by many authors, and the interested reader can also
refer to e.g. Ockendon & Ockendon (1973), Waterhouse (1994), Faltinsen et al. (2000)
and Faltinsen & Timokha (2009). Incidentally, the hard-spring behaviour was previously
studied experimentally and numerically in Antuono et al. (2012a) and Bouscasse et al.
(2013) with filling depths ranging from 0.03 to 0.125. There, simulations were performed
using a smoothed particle hydrodynamics (SPH) model as in the present work.

As in Olsen (1970), in order to limit the three-dimensional (3-D) effects, the thickness
of the tank was set equal to 0.1L. In Olsen (1970), the surface elevation was measured
with a wire probe positioned 5 cm from one of the vertical sides of the tank. In addition
to this, another three wire probes were used in the CNR-INM campaign. In particular, a
wire probe was positioned 5 cm from the other vertical side of the tank to check for any
non-symmetrical flow behaviour.

During each test, a sinusoidal movement with prescribed amplitude and frequency was
imposed on the tank. A range of different frequencies and amplitudes was investigated
through analysis of the surface elevation, measured locally by the wire probes and globally
by video recording. Following the experimental procedure detailed in Olsen (1970),
300 s of motion were recorded to attain a stable regime condition. In Colagrossi (2005)
and Colagrossi et al. (2004), the experimental matrix test was also studied numerically
through a SPH model. The maxima of the numerical time signals were identified and
compared with the experimental data of Olsen (1970) and with the theoretical results
predicted by the multi-modal approach of Faltinsen & Timokha (2001). In particular, three
amplitudes of oscillation A = 0.025L, A = 0.050L, A = 0.100L were analysed and the
data were compared against the numerical outcomes, showing a good agreement with the
experimental data.

Following the same path, in the present work a more accurate analysis of the surface
elevation is carried out for A = 0.01L and A = 0.03L, by considering the time signals of
different wave probes near the vertical walls of the tank. In addition to the values of the
maxima taken into account by Olsen (1970), the full time history of the surface elevation
is investigated, identifying the regimes attained by the flow motion.

Similarly to Durante, Rossi & Colagrossi (2020) and Durante, Giannopoulou &
Colagrossi (2021), where regime identification for flow past a NACA profile or a circular
cylinder was considered, periodic monochromatic, non-monochromatic, quasi-periodic
and chaotic regimes are found. Furthermore, as observed in Lugni, Colicchio & Colagrossi
(2006b), for some values of the oscillation frequency, the nonlinear nature of the
time signals can trigger the onset of sub-harmonics or super-harmonics, leading to
doubling-frequency or tripling-period bifurcations.

In the present analysis, the experimental data obtained for A = 0.03L are compared
with numerical simulations obtained with the δ-large eddy simulation (LES)-SPH model.
This model was selected because it represents an improvement of the classic SPH and is
able to overcome the main drawbacks of the standard SPH formulation (for more details
see Sun et al. 2019; Antuono et al. 2021a). The reliability of the δ-LES-SPH model for
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this type of problem comes from many validations obtained from simulations of violent
sloshing flows in Marrone et al. (2021a,b, 2023), Michel et al. (2022) and Malan et al.
(2022). In the present work, an extensive numerical campaign is carried out to complete
the experimental database with a wider frequency range and a greater number of analysed
frequencies. In order to investigate the effect of the motion amplitude, a lower amplitude
database (A/L = 0.01) is also provided, where similar analyses were performed.

From the present investigation, it appears that some regimes do not behave
symmetrically when comparing left and right wave probes, as observed by Colagrossi
et al. (2004) and further emphasized in Faltinsen & Timokha (2009). For this reason, this
phenomenon is investigated here through the correlation function and the cross-correlation
frequency distribution is obtained.

The article is organized as follows. Section 2 reports a short description of
the experimental set-up. Section 3 is dedicated to a brief recall of the numerical
solver. Section 4 addresses the observed phenomena through a detailed numerical and
experimental investigation. In § 5 the Hilbert–Huang transform is exploited, similarly
to Lugni et al. (2006b), to clarify the physics behind the doubling-frequency and
tripling-period bifurcations. A discussion about the non-symmetric cases is addressed in
§ 7. In § 8 the dissipation mechanism related to the different sloshing flows is evaluated
and the rate of the dissipated energy is reported against the oscillation frequency for both
amplitudes. Finally, in Appendix A, the time costs of the present numerical simulations are
detailed and in § 6 a comparison between experiments and a 3-D simulation is discussed
for one specific case in order to clarify a disagreement between experimental data and the
two-dimensional (2-D) simulations.

2. Experimental set-up

The tank used for the experimental campaign at CNR-INM is L = 1 m long and tall,
D = 0.1 m wide and filled with water up to hFS = 0.35 m. The total mass of the liquid
is therefore equal to ml = 34.76 Kg. Based on the filling height hFS selected, the natural
sloshing periods can be derived from (Faltinsen & Timokha 2009)

Tn = 2π√
gnπ

L
tanh

nπhFS

L

n = 1, 2, . . . (2.1)

by setting n equal to the selected mode. For example, by considering that g is the
gravitational acceleration, the period of the first mode is T1 = 1.265 s.

To guarantee a purely sinusoidal lateral movement, x(t) = A sin (2πt/T), an ad hoc
mechanical system was designed; A and T are the amplitude and period of the prescribed
motion, respectively. The small breadth of the tank, i.e. D = 0.1 m, ensures an almost 2-D
flow in the sloshing plane. Five capacitive wire probes are positioned inside the tank. The
first two are located at a distance of 1 cm and 5 cm from the left side. Two other probes are
positioned symmetrically on the right side, while the last wire probe is located in the centre
of the tank (i.e. 50 cm from both sides of the tank). The corresponding dimensionless
measurements of the surface elevations hi are indicated as ηi = (hi − hFS)/L with i =
1, 5, 50, 95, 99.

During the tests, flow visualizations are obtained through a digital video camera JAI
CV-M2. This camera has a spatial resolution of 1600 × 1200 pixels and a frame frequency
of 15 Hz. It is positioned in front of the tank, far enough away from it to record the
entire flow pattern. A wire potentiometer was used to evaluate the position of the tank.
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Figure 1. Experimental box sketch with highlight of the filled volume. (a) A photo of the experimental
set-up; (b) a sketch of the experimental arrangement of the probes.

A synchronizer is used to trigger the start of all acquisition systems, which are
characterized by different sampling rates. A sketch of the experimental set-up is given
in figure 1.

Multiple tests were performed with the same parameters to verify the repeatability of
the results. The wave heights measured by the capacitive wire probes were also verified
with those extracted from the videos in the time windows in which the digital images were
archived. Since this is a medium-sized experimental apparatus, no critical issues emerged
in the movement regimes studied. The mechanical limits are mainly related to the range of
oscillation frequencies allowed by the electric motor and mechanical guide used to enforce
the movement of the tank.

The results of the CNR-INM experimental campaign were also published in the book
by Faltinsen & Timokha (2021). In the present work, the experimental data were used in
synergy with the numerical outcomes for a detailed analysis of peculiar nonlinear sloshing
regimes.

3. Numerical solver

In the present work a 2-D fluid domain Ω is considered with boundaries which are
composed of the tank walls ∂ΩB and the free surface ∂ΩF. Only the liquid phase is
considered and modelled as a barotropic weakly compressible medium. The tank moves
along the x-axis and the equations are formulated in the non-inertial frame of reference
(Ni-FoR). According to these assumptions, the flow evolution is described as

Dρ

Dt
= −ρ div(u),

Du
Dt

= div(T)

ρ
+ g − atank(t) e1

De
Dt

= T : D

ρ
,

Dr
Dt

= u, p = f (ρ),

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

with D/Dt the Lagrangian derivative, r the local position, u the flow velocity, ρ the fluid
density, e the specific internal energy, T the stress tensor, D the rate of strain tensor, g the
acceleration related to the gravitational field, atank(t) the tank acceleration and e1 the unit
vector of the x-axis,
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The fluid is assumed Newtonian and the flow isothermal, while the surface tension
is neglected, i.e. T = [−p + λ div(u)] I + 2μD, where μ and λ are the primary and
secondary dynamic viscosities of the liquid and I the identity tensor.

Within the single-phase model, all the physics related to the air entrapment in the fluid
domain are neglected. This assumption may appear inappropriate for violent sloshing
simulations. However, in Marrone et al. (2016) and Malan et al. (2022), it was shown
that the energy dissipation in violent flows can be evaluated with sufficient precision even
in the single-phase hypothesis. Further confirmation can also be found in Bouscasse et al.
(2014a,b), where the study of mechanical energy dissipation induced by sloshing and wave
breaking in a fully coupled angular motion system was investigated. In this work, the
single-phase model was shown to be able to predict experimental results with reasonable
accuracy.

By considering that the temperature is assumed constant, since the effects of its variation
are negligible with good approximation, it is assumed that the pressure p depends on the
density, only. Furthermore, since a weakly compressible condition is assumed, a simple
linear equation of state can be considered

p = c2
0(ρ − ρ0), (3.2)

where c0 plays the role of a constant speed of sound of the liquid and ρ0 is the density at
the free surface (where p is assumed to be equal to zero).

The weakly compressible hypothesis implies the following constraint:

c0 � max

(
�Umax,

√
�pmax

ρ0

)
, (3.3)

where �Umax and �pmax are, respectively, the maximum fluid speed and the maximum
pressure variations expected in Ω during the time evolution. Considering that the temporal
integration is carried out with a time step linked to the value of c0, the latter is always set
lower than its physical counterpart. Constraint (3.3), however, must be verified to ensure
compliance with the weakly compressible regime.

In the present paper, the whole set of numerical simulations spans from Re = 3 × 104

to Re = 3 × 105, where the Reynolds number is defined as

Re = 2πA
T

L
νw

, (3.4)

where νw = 10−6 m2 s−1 is the kinematic viscosity of the water, A is the amplitude of tank
oscillation, T the excitation period and L the tank length (1 m in the present investigations).
By considering the Reynolds numbers involved, a sub-grid model is needed. Similarly to
the articles of Christensen & Deigaard (2001) and Christensen (2006), a LES with a classic
Smagorinsky model is adopted for simulating breaking waves.

The LES model is adopted in the SPH framework by several authors see e.g. Lo
& Shao (2002), Rogers & Dalrymple (2005), Violeau & Issa (2007), Di Mascio et al.
(2017) and Meringolo et al. (2019). In this work, the δ-LES-SPH model of Antuono et al.
(2021a) is used, the peculiarity of which is that the LES model was introduced within a
quasi-Lagrangian formalism.

3.1. Brief recall of the δ-LES-SPH model
Within the SPH model the fluid domain Ω is discretized in a finite number of particles. The
differential equations for the motion of those fluid particles come from the discretization
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of the governing equations (3.1) according to the δ-LES-SPH model

dρi

dt
=
∑

j

[−ρi(uji + δuji) + (ρjδuj + ρiδui)
] · ∇iWijVj + Dρ

i

dui

dt
= 1

ρi

∑
j

[−( pj + pi) I + ρ0(uj ⊗ δuj + ui ⊗ δui)
] · ∇iWijVj

+ F v
i + g − atank(t) e1

dri

dt
= ui + δui, Vi(t) = mi/ρi(t), p = c2

0(ρ − ρ0),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

where the index i refers to the considered particle and j refers to neighbouring particles of
i. The vector F v

i is the net viscous force acting on the particle i. The notation uji in (3.5)
indicates the differences (uj − ui) and the same holds for δuji and rji. The spatial gradients
are approximated through the convolution with a kernel function Wij. Following Antuono
et al. (2021a), a C2-Wendland kernel is adopted in the present work.

In order to recover a regular spatial distribution of particles and consequently an accurate
approximation of the SPH operators (Quinlan, Lastiwka & Basa 2006; Nestor et al. 2009),
a particle shifting technique is used (see also e.g. Lind et al. 2012). For the sake of brevity,
the specific expression of the shifting velocity δu is not reported here, but the interested
reader may refer to Marrone et al. (2021b) and Michel et al. (2022), where violent sloshing
problems were investigated.

The time derivative d/dt used in (3.5) indicates a quasi-Lagrangian derivative, i.e.
d(•)

dt
:= ∂(•)

∂t
+ ∇(•) · (u + δu), (3.6)

since the particles are moving with the modified velocity (u + δu) and the first two
equations of (3.5) are written following an arbitrary Lagrangian–Eulerian approach. Due
to this, the continuity and the momentum equations contain terms with spatial derivatives
of δu (for details, the interested reader is referred to Antuono et al. 2021b).

The mass mi of the ith particle is assumed to be constant during its motion. The particles
are set initially on a Cartesian lattice with spacing �r, and hence, the volumes Vi are
initially set as �r2. The particle masses mi are calculated through the initial density field
(using the equation of state and the initial pressure field). While the particle masses mi
remain constant during the time evolution, the volumes Vi change over time in accordance
with the particle density (see bottom line of (3.5)).

To avoid instability in the pressure field, the diffusive term Dρ
i , introduced by Antuono,

Colagrossi & Marrone (2012b), is added into the continuity equation. For brevity, Dρ
i is

not reported here, the interested reader can also find more details in Antuono et al. (2021a)
and in Meringolo et al. (2019), where the intensity of this term is determined dynamically
in space and time.

The viscous forces F v are expressed as

F v
i := K

∑
j

(μ + μT
ij )πij∇iWijVj K := 2(n + 2)

πij := uij · rij

||rji||2 μT
ij := 2

μT
i μT

j

μT
i + μT

j
μT

i := ρ0(CS l)2 ||Di||,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.7)

where n is the number of spatial dimensions, l = 4�r is the radius of the support of the
kernel W for two spatial dimensions and represents the length scale of the filter adopted for
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the LES sub-grid model; CS is the so-called Smagorinsky constant, set equal to 0.18 (as in
Smagorinsky 1963; Bailly & Comte-Bellot 2015) and ||D|| is a rescaled Frobenius norm,
namely ||D|| = √

2D : D. The viscous term (3.7) contains both the effect of the physical
viscosity μ as well as of the turbulent stresses μT

i . In order to dump the turbulent eddies
near the wall boundaries, a classical van Driest damping function is employed (Van Driest
1956) (for more details, see also Pilloton et al. 2023).

A fourth-order Runge–Kutta scheme is adopted to integrate in time the system (3.5).
The time step �t is obtained as the lowest among the following constraints, related to the
Courant–Friedrichs–Lewy conditions

�tv = 0.5 min
i

�r2ρi

(μ + μT
i )

, �ta = 0.3 mini

√
�r
‖ai‖ , �tc = 2.0

(
�r
c0

)

�t = min(�tv, �ta, �tc),

⎫⎪⎬
⎪⎭ (3.8)

where ‖ai‖ is the particle acceleration, �tv is the time step related to viscosity, �ta is the
advective time step and �tc is the acoustic time step (see e.g. Colagrossi et al. 2016). For
the cases studied in this work, the last two constraints (involving �ta and �tc) are always
the most critical.

3.2. Enforcement of the boundary conditions
The governing equations (3.1) require appropriate boundary conditions to be applied on
the free surface and on the tank walls. As clarified in Colagrossi, Antuono & Le Touzé
(2009) and Colagrossi et al. (2011), the kinematic and dynamic boundary conditions at
free surface are intrinsically satisfied with SPH methods.

The no-slip boundary condition on the solid surface is enforced with a ghost-fluid
approach (see e.g. Macia et al. (2011), Antuono et al. (2023) and also Antuono et al.
(2021b) and Oger et al. (2016), where a quasi-Lagrangian formulation is used). It requires
that at least five particles should be present within the boundary layer region. High
spatial resolution simulations are designed in such a way as to fulfil the above constraint.
An estimation of the wall boundary layer thickness (WBT) can be obtained by using
the Blasius equation. Considering the Reynolds number regime studied in this work,
it results that the WBT is around 1.5 cm. The finest spatial resolution adopted for the
current simulations is N = H/�r = 200, i.e. the particle size is 0.175 cm. It follows that
approximately eight SPH particles fall into the boundary layer. The above estimations were
numerically verified a posteriori.

Some of the simulations discuss in the present work are characterized by a strong
fragmentation of the free surface which can lead to non-negligible volume conservation
errors. These errors can accumulate in time, becoming relevant in long-time simulations.
For the above reason, following the work by Pilloton et al. (2024), the volume errors were
monitored and controlled in time.

3.3. Evaluation of the slosh dissipation
Following the analysis performed in Marrone et al. (2021b) and Michel et al. (2022), the
δ-LES-SPH energy balance, in terms of power, can be written as

ĖK + ĖP − PNF = PV + P turb
V + PN

EK(t) = 1
2
∑

i
miu2

i , EP(t) = ∑
i

migyi, PNF = ∑
i

miatank(t) e1 · ui,

⎫⎪⎬
⎪⎭ (3.9)
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Different scenarios in sloshing flows

where, on the left-hand side, EK and EP are the kinetic and potential energy of the particle
system in the Ni-FoR moving with the tank. The vertical position of the generic ith
particle is indicated with yi. Finally, PNF is the power related to non-inertial forces. The
potential energy related to the compressibility of the liquid is negligible under the weakly
compressible assumption, therefore it is not considered in the energy balance (for more
details see Antuono et al. 2015).

The right-hand side of the energy balance (3.9) contains the dissipation term related to
the physical viscosity PV and to the eddy viscosity P turb

V , while PN takes into account the
numerical effect of the density diffusion and of the particle shifting δu (see also Michel
et al. 2023; Sun et al. 2023). The power related to the viscous forces is directly evaluated
through the expression (3.7)

PV + P turb
V = 5

∑
i

∑
j

(μ + μT
ij )πijuij · ∇iWijViVj, (3.10)

where the quantity P turb
V refers to the viscous dissipation of the modelled sub-grid scales.

The energy dissipated by the fluid is then evaluated by integrating in time equation (3.9)

[EK + EP](t) − [EK + EP](t0) − WNF(t) = Ediss(t) (3.11a)

WNF(t) =
∫ t

t0

[∑
i

mi(−atank(t) e1 · ui)

]
dt, Ediss(t) =

∫ t

t0

(
PV + P turb

V + PN

)
dt,

(3.11b)
where WNF is the work performed by the non-inertial forces and [EK + EP](t0) is the
mechanical energy at the initial instant t0.

The energy dissipated by the fluid can be either evaluated by the left-hand side of top
equation (3.11a,b), or by the direct estimate of Ediss with the bottom expression in (3.11a,b).
As performed in Malan et al. (2022) and in Marrone et al. (2023), both these approaches
can be adopted in order to verify that a specific SPH model is able to close the energy
balance accurately.

Considering that the fluid is initially at rest, the energy balance (3.11a,b) can be reshaped
as

EK(t) + mlg
[
yG(t) − yG(t0)

]+ ml

∫ t

t0
ẋG(t) atank(t) dt = Ediss(t)

xG(t) :=
∑

i mixi(t)
ml

yG(t) :=
∑

i miyi(t)
ml

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

where xG and yG are the horizontal and vertical coordinates of the liquid centre of mass in
the Ni-FoR, with ml = ∑

i mi the total mass of the liquid inside the tank.
Assuming that the tank oscillates with a harmonic law, after a sufficiently long transient

a periodic or quasi-periodic regime can be attained. It may take several periods to reach
this condition, due to the highly nonlinear behaviour of the sloshing phenomenon. In the
‘quasi-periodic’ condition, the mechanical energy becomes negligible compared with the
work WNF, which almost coincides with the dissipated energy.

In particular, the energy dissipated during the kth period can be evaluated as

E (k)
diss = ml

∫ kT+T

kT
ẋG(τ ) atank(τ ) dτ. (3.13)

As shown in § 8, after the transitory stage lasting NP0 periods, E (k)
diss remains almost

constant for k > NP0, hence, it is possible to associate an average dissipation power during
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Np periods as

P̄diss = ml

NPT

∫ (NP0+NP)T

NP0T
ẋG(τ ) atank(τ ) dτ. (3.14)

The above equation highlights the role of the motion of the centre of mass of the fluid in
the Ni-FoR concerning the energy dissipated by the liquid sloshing. The phase lag between
the horizontal tank motion xtank(t) and the fluid centre of mass xG(t) plays a crucial role in
the slosh dissipation (see e.g. Marrone et al. 2021a,b; Malan et al. 2022). As is clear from
(3.14), high dissipation is obtained when ẋG(t) and atank(t) are in anti-phase, whereas low
dissipation occurs when they are in quadrature (see also Malan et al. 2022; Saltari et al.
2022; Marrone et al. 2023).

4. Discussion on results

The present research activity considered a wide range of oscillation frequencies for the
motion of the tank, at a prescribed filling depth of h/L = 0.35. The oscillation period T
of the sinusoidal motion of the tank is made non-dimensional with the natural period of
the first sloshing mode T1. During the numerical campaign, the period T is approximately
varied between T = 0.5T1 and T = 1.6T1. The considered amplitudes of the tank motion
are A = 0.01L, numerical only, and A = 0.03L for both numerical and experimental
campaigns.

One of the first experimental approaches to the problem was performed by Olsen (1970)
and Olsen & Johnsen (1975), where an experimental set-up similar to the present study
was adopted for recording the maximum surface elevation during the acquisition time. The
surface elevation was considered on one side of the tank (η5, i.e. 0.05 m from the left side
of the tank, see § 2), but its time signal was not recorded and the maximum free-surface
height was the only experimental data available.

The experimental and numerical campaigns carried out at CNR-INM by Lugni et al.
(2006b) and Colagrossi et al. (2006) have shown that the time signals of the free-surface
elevation can be rather complex for some specific amplitude A or period T because of the
presence of nonlinear phenomena such as wave breaking, formation of water jets, water
impacts, etc. (see figure 2). As a consequence, a significant scattering of the signal maxima
appears when doubling-frequency, tripling-period or quasi-periodic (i.e. periodic with a
chaotic modulation) time behaviours are triggered.

In figure 3, an example of time signal of the surface elevation η5(t) is reported.
As evident, the maxima of the time signal are rather widespread so that considering only

the highest values, as in Olsen (1970), may not be significant. Furthermore, it should be
considered that isolated spikes may occur, which could distort the evaluation of the data.

Following these considerations, in this investigation the average of the maxima
within an appropriate time window and the associated standard deviation are taken into
consideration. The time windows are framed after the initial transient (which usually lasts
approximately 80 oscillation periods, see for example § 8), where the time signal is very
energetic and less significant for describing the system behaviour.

The averaged maxima wave elevation frequency distributions (WEFDs) are then built
for both horizontal oscillation amplitudes. For the most interesting cases, Fourier spectra
and phase maps are also shown.

To evaluate the reliability of the numerical approach in reproducing the correct WEFDs,
lower-amplitude simulations are first discussed and compared with linear theory. Next,
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(a) (b)

Figure 2. Examples of the found regimes for different oscillation frequency. (a) A breaking wave for
A = 0.03L and T = 1.022T1. (b) A jet emerging from wave for A = 0.03L and T = 0.944T1.

60

–0.2

0

0.2

0.4

0.6

80

t/T

η5

100 120

Figure 3. Time signal of free-surface height due to a tank oscillation with an amplitude A = 0.03L and a
period T = 1.098T1. Maxima are highlighted with red squares.

larger-amplitude numerical predictions are compared with experiments and theoretical
multimodal modelling.

4.1. Amplitude 0.01L
Experiments with an oscillation amplitude of 1 cm are only numerical, because the
physical limits of the experimental apparatus do not allow amplitudes smaller than 3 cm.

The WEFD for this oscillation amplitude, reporting the time averages of the free-surface
elevation maxima η̄5max and their standard deviations, is shown in figure 4. The
free-surface elevation signal is analysed after 80 periods of oscillation in order to avoid
spurious effects from the initial transient.

As clarified in Faltinsen & Timokha (2001), the maximum surface elevation is not
obtained for T = T1, as expected from the theoretical predictions of the linear theory
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0.6

A = 0.01L
H = 0.35L

0

0.1

0.2

0.3

η–
5
m

ax

0.4

0.8 1.0 1.2

1.20

0.02

0.04

1.25

Linear theory
Doubling freq.
Quasi periodic
Periodic non mono
Periodic mono

1.30 1.35

T/T1

T3/T1

2T3/T1

2T2/T1

1.4 1.6

Figure 4. The WEFDs for tank oscillations of 0.01 m and varying frequency with different symbols and
colours the different regimes. For every point, the standard deviation is indicated with a vertical error
bar. In the legend, the reference to different wave elevation time signals is marked. Left triangle: periodic
monochromatic signal. Diamond: periodic non-monochromatic signal. Square: quasi-periodic signal. Circle:
doubling-frequency mode. Dashed: linear theory prediction.

described in Ibrahim (2005), where the free-surface elevation is expressed as a sine
expansion.

Faltinsen et al. (2000) demonstrated that nonlinear effects modify the WEFDs similarly
to soft-spring solutions of the Duffing equation (Kovacic & Brennan 2011) when the filling
height h is greater than the critical depth (while for h less than critical depth the WEFDs
changes like a hard-spring solution; see e.g. Antuono et al. 2012a; Bouscasse et al. 2013).

The dynamic behaviour of soft spring described by Faltinsen et al. (2000) is also
discussed in Colagrossi (2005) for sloshing experiments near the critical depth. The
amplitude response vs the oscillation period shows two stable branches with a turning
point between them. The set of turning points for different excitation amplitudes defines
jumps from the lower to the upper branch and can be found from a cubic secular equation
given in Faltinsen et al. (2000).

The WEFD resulting from linear theory is drawn in figure 4 with a dashed line, where
the theoretical predictions are taken from the book of Ibrahim (2005). The departure from
linear theory of numerical WEFDs, shown in figure 4, is actually due to nonlinear effects.
In particular, in that figure the abscissas relating to T = T3, 2T3, 2T2 (see formula (2.1))
are highlighted with vertical lines.

The peak on the left side is related to the resonance of the third sloshing mode, whose
period is T3 = 0.517T1. Nonlinear effects lower the amplitude of η̄5 max to ≈0.1 and shift
the period to T ≈ 0.55T1.

The first sloshing mode leads to a maximum peak of the WEFD observed at T =
1.044T1 with η̄5max ≈ 0.344. It should be emphasized that the mode 2T3 is very close
to the first resonance, as highlighted in figure 4, so a combination between T1 and 2T3 is a
possible explanation for the rightward bending of the WEFD peak.

The second mode, and in general all the even modes, is not directly excited when the
tank moves horizontally, but it appears because of nonlinear effects. From the WEFD
in figure 4, a little jump in the low-frequency (i.e. long period) branch is found at
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Different scenarios in sloshing flows

T = 2T2, where T2 = 0.64T1 is the second sloshing period. The jump is evidenced with a
magnification of the WEFD in the range T ∈ [1.2T1–1.35T1].

Once the sloshing amplitude is assigned, different sloshing regimes are observed
for different frequencies and they are indicated in figure 4 with different symbols
(similar to Durante et al. 2020). The regimes found at the smallest amplitude (A =
0.01L) are: periodic monochromatic, periodic non-monochromatic, doubling-frequency
and quasi-periodic regimes. Figure 5 shows the time histories and the corresponding
Fourier transform spectra of η5 for four different cases:

(i) T = 1.50T1 periodic monochromatic;
(ii) T = 1.01T1 periodic non-monochromatic;

(iii) T = 1.28T1 doubling-frequency mode;
(iv) T = 0.55T1 quasi-periodic mode.

At low frequencies (T > 1.4T1) η5 behaves as a monochromatic signal. As shown in
panel (a,e) of figure 5, the time signal resembles a simple sinusoidal function and, indeed,
the Fourier transform shows a single dominant peak at f ∗ = Tf = 1. The blue circle at f ∗

1 =
T/T1 = 1.50 represents the natural oscillation frequency of the tank and it is dominant
during the transient. In the selected time window, the latter is lower than 10−4, so that it
can reasonably be assumed negligible and the regime may be considered as unaffected by
the transient spurious components.

Increasing the oscillation frequency, a periodic non-monochromatic time signal appears.
In figure 5(b, f ) the signal at T = 1.01T1, where the oscillation frequency is forced close
to the first resonance, is shown. The Fourier transform shows a main peak, corresponding
to the excitation frequency, at f ∗ = 1 and a sharp peak at every integer multiple.

When the excitation period T is such that T = 2T2, the second even mode appears
because of nonlinear effects. This mode leads to the onset of a doubling-frequency
bifurcation, clearly visible in figure 5(c,g), where the time signal η5 presents two peaks in
a period. As a consequence, a second peak at f ∗ = 2, the intensity of which is comparable
to the one at f ∗ = 1, occurs in the Fourier transform. Similarly, nonlinear effects induce a
similar behaviour for f ∗ = 3 and f ∗ = 4.

At high frequency, when the period T is close to T3, a quasi-periodic regime is achieved.
A quasi-periodic signal is a periodic signal modulated by a chaotic component (see e.g.
Bailador, Trivino & van der Heide 2008; Durante et al. 2021). In figure 5(d,h), the time
signal and the Fourier transform of η5 is shown at T = 0.55T1. The Fourier transform
presents a dominant peak for f ∗ = 1 while the rest of the spectrum is continuous, typical
of chaotic signals (see e.g. Durante et al. 2020, 2021; Durante, Pilloton & Colagrossi
2022).

The final motion of the tank is attained after a ramp, during which, besides the
forcing frequency 1/T , a continuous spectrum of modes is excited. The first natural mode
(i.e. the first resonance) of period T1 is the most energetic (among them) during the
initial transient phase, while the others typically weaken rather quickly, unless they are
strengthened by mutual nonlinear interactions. In fact, the first natural mode behaves like
a modulation of the time signals that, in some cases, decays after long transients during
which the corresponding component remains as a distinct peak in the Fourier spectrum.
To demonstrate that the simulations are long enough to make this effect negligible within
the analysed time windows, a blue dot corresponding to the amplitude of the first natural
mode is drawn in the Fourier spectra of figure 5. As visible, it is always associated
with amplitudes approximately 2 orders of magnitude smaller than the amplitude of the
excitation frequency.

984 A73-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

25
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.259


A. Bardazzi, C. Lugni, O.M. Faltinsen, D. Durante and A. Colagrossi

182

–0.1
–5

–4

–3

–2

–1

0

0

0.1

187 192 197 0 1 2 3

f ∗

4
t/T

η5

102
–0.05

–5

–6

–4

–3

–2

–1

0

0.05

107 112 117 0 1 2 3

f ∗

54

η5

102

–0.15

–4

–5

–3

–2

–1

0

0

0.03

0.15

107 112 117 0 1 2 3

f ∗

54

η5

82
–0.01

–6

–7

–5

–4

–2

–3

–1

0

0.01

87 92 97

0

1 2 3

f ∗

54

η5

log10 |η5|

log10 |η5|

log10 |η5|

log10 |η5|

(a) (e)

(b) ( f )

(c) (g)

(d) (h)

Figure 5. Time signals (a,b,c,d) and corresponding Fourier transform spectra (e, f,g,h) for different sloshing
regimes at oscillation amplitude of 0.01 m; (a,e) T/T1 = 1.50 – periodic monochromatic, (b, f ) T/T1 = 1.01
– periodic non-monochromatic, (c,g) T/T1 = 1.28 – doubling frequency, (d,h) T/T1 = 0.55 – quasi-periodic.
The non-dimensional frequency is f ∗ = Tf . The blue circle indicates the amplitudes related to first natural
frequency f ∗

1 = T/T1.
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Figure 6. Phase maps for different sloshing regimes at oscillation amplitude of 0.01 m. Cases (a,d) of
figure 5 on the left and cases (b,c) on the right.

Figure 6 shows the phase maps (η5, η̇5). For case (a) the periodic monochromatic signal
is represented, as expected, by an elliptical orbit in figure 6(a). Panel (b) of figure 6 reports
the phase map of case (b), where the periodic non-monochromatic behaviour leads to an
orbit that is an elliptical shape distorted by the nonlinearities. The thickness of the set
of curves indicates the presence of a weak modulation that does not preserve a single
stable orbit. The doubling-frequency regime of case (c) is represented in figure 6(c) by a
knotted orbit with the internal little loop relating to the lower peak within the signal period.
The quasi-periodic phase map, case (d), is shown in figure 6(d) and is characterized by
nearly circular orbits, where the unpredictable amplitude modulation gives rise to a severe
scattering of the same.

Finally, in figure 7, three configurations of the free surface for the different regimes
analysed are schematized. Being trivial, the monochromatic case (a) is not shown.
Cases (b), (c) and (d) are shown in the left, central and right panels of the figure,
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Figure 7. Free-surface evolution for different sloshing regimes at oscillation amplitude of 0.01 m. From left
to right: cases (b–d) of figure 5. The time evolution is depicted through colours in the temporal sequence: red,
green and blue.

respectively. Case (b), close to the first resonance, shows large amplitudes of the
free-surface oscillations. Case (c), in which the second natural mode is excited, exhibits
a central wave relating to the wavenumber k = 2π/L. Case (d), in which a quasi-periodic
regime is reached, is characterized by an oscillation period T close to the third natural
period T3. As a result, waves with wavenumber k = 3π/L develop. The steepness of these
waves is quite high and leads, during some cycles, to breaking events. As clarified in
Antuono et al. (2014), the wave breaking causes a partial redistribution of the flow energy
over a continuous frequency spectrum, resulting in a chaotic dynamics. As a result, the
quasi-periodic behaviour of the time signal η5 follows.

4.2. Amplitude 0.03L
Experimental and numerical campaigns were carried out for A = 0.03L. The numerical
and experimental WEFD is drawn in figure 8, together with the identification of the
different regimes, given consistently with the classification of § 4.1. For comparison, the
theoretical WEFDs resulting from the adaptive multimodal method (AMM) of Faltinsen
& Timokha (2001) is overlaid on the experimental and numerical results. Although the
AMM curve refers to A = 0.025L, it is still included because no significant differences
are expected with respect to the amplitude A = 0.03L adopted in the experiments and
it is helpful to the discussion. The AMM based on potential-flow model is unable to
account for singular events such as breaking or wave impacts, so high-frequency cases
cannot be adequately predicted. Despite this, as visible by the dashed line of figure 8(a),
the numerical results are quite close to the multimodal data, at least in the range T/T1 ∈
[0.67–1.6). Regardless of the slightly different reference amplitude, the multimodal curve
exhibits a bifurcation around T = 1.1T1 and a doubling-frequency jump at T = 2T2 (for a
more detailed discussion see also Faltinsen & Timokha 2009). In contrast, the numerical
results reveal a chaotic surface elevation time signal in the range T/T1 ∈ [0.50–0.67),
where the multimodal solution shows a high peak related to the third resonance T3/T1 and
is therefore unable to predict such behaviour.

Figure 8(b) reports the comparison between the experimental data and the multimodal
approach.

In the period ranges T/T1 ∈ (0.79, 1.00) and T/T1 ∈ (1.14, 1.34), the numerical results
are in good agreement with the experimental data in terms of mode classification, value
of η̄5max and its related standard deviation. In particular, the doubling-frequency regime
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Figure 8. The WEFDs for tank oscillations of 0.03 m and varying frequency. With different symbols and
colours for the different regimes. (a) Numerical simulations. (b) Experiments. In the legend, the reference
to different wave elevation time signals is marked. Left triangle: periodic monochromatic signal. Diamond:
periodic non-monochromatic signal. Square: quasi-periodic signal. Circle: doubling-frequency mode. Dashed:
linear theory prediction.

is found experimentally and numerically near T = 2T2, similarly to what was observed
for amplitude A = 0.01L, discussed in § 4.1. At T = 0.867T1, a tripling-period bifurcation
is identified by both δ-LES-SPH and experiments. This peculiar case and some aspects
related to its nonlinear behaviour are discussed in § 5 with the aid of the Hilbert–Huang
transform.

In order to stress better the similarities between numerical predictions and experimental
data, figure 9 compares the free surface extracted from camera acquisitions with the
δ-LES-SPH particle configuration at T = 0.944T1. Two different time instants were
considered, corresponding to the most leftward and most rightward tank positions. Unlike
figure 7, where the particle positions were purged by the movement of the tank, here, the
latter is explicitly shown. The agreement is rather good, with small discrepancies mainly
linked to breaking events typical of the quasi-periodic regime.
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Figure 9. Test case A = 0.03L, T/T1 = 0.944, corresponding to a quasi-periodic regime. Colours are
representative of the δ-LES-SPH pressure field. Black dots are the free surfaces extracted by the experimental
video.

Although the experimental/numerical comparisons are generally in good accordance,
at T = 2T3 the experiments show a second tripling-period scenario not found with the
numerical simulations. The disagreement is mainly related to 3-D effects, in fact, the
fragmentation of the free surface is more intense in the experiments than in the 2-D
simulations. Indeed, the fragmentation induces extra dissipation phenomena which are
responsible for the lower value of η5. Similarly, the highest points of the WEFDs at
T = 1.067T1 and T = 1.107T1 of the experimental data are approximately 13 % lower
than the δ-LES-SPH results. This point is dealt with in § 6, where a 3-D simulation is also
discussed.

Figure 10 shows the experimental and numerical time histories and the related Fourier
transforms for case T = 1.107T1 (a,b) and T = 0.867T1 (c,d). As commented above, the
numerical simulation represented in (a) presents a more energetic signal with respect to
the experimental one, shown in (b). A quasi-periodic regime is attained for both signals,
as evidenced by the Fourier spectrum, where dominant peaks overlap with an almost
continuous spectrum, as it is typical of a chaotic modulation.

The case T = 0.867T1, close to the period T = 2T4, corresponds to a tripling-period
scenario. The numerical and experimental time histories are reported in panels (c) and
(d) of figure 10, respectively. These signals look very similar to each other, although
some differences in peak height are visible, leading to a larger standard deviation for
δ-LES-SPH. The tripling-period mode is characterized by a periodic sequence with period
3T , characterized by three local maxima. This behaviour is reflected in the Fourier
transform where, in addition to the peak at the excitation period T , two other peaks
appear at lower frequencies. As better explained in § 5, the nonlinear combination of three
frequency components also excites other high-frequency harmonics, thus leading to the
peaked shape of the Fourier spectra.

The phase maps (η5, η̇5) relating to the previous regimes are depicted in figure 11.
In figure 11(a), a quasi-periodic map is drawn for T = 1.107T1. The orbit related to
the excitation period T is perturbed by a chaotic modulation and the final orbit appears
diffused in a thick annular region and affected by evident fluctuations. In pane; (b)
of the same figure, the tripling-period regime at T = 0.867T1 is characterized by three
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Figure 10. Time signals (left) and corresponding Fourier transform spectra (right) for different sloshing
regimes at oscillation amplitude of 0.03 m; (a) T/T1 = 1.10 – quasi-periodic numerical simulations,
(b) T/T1 = 1.10 – quasi-periodic experiments, (c) T/T1 = 0.867 – tripling-period numerical simulations,
(d) T/T1 = 0.867 – tripling-period experiments. The non-dimensional frequency is f ∗ = Tf .
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Figure 11. Phase maps for different sloshing regimes from numerical simulations at oscillation amplitude of
0.03L. (a) Quasi-periodic. (b) Tripling period.

concatenate orbits. Again the orbits are characterized by diffusion and fluctuations mainly
related to wave breaking events, as further commented below.

For this latter case, figure 12 depicts the free surface extracted by camera acquisition
and compares it with the simulated SPH particles at four time instants.

It is worth noting that, in the δ-LES-SPH, plunging breaking waves are developed, while
in the experiments only spilling breakers are found. These differences are likely related
to the fact that the friction effects of the lateral walls in the experiments are missing in
the present 2-D simulations as the surface tension effects are neglected in the numerical
model; indeed, as shown in figure 12(d), the thickness of the plunging jet is lower than
1 cm.

Again for the case T = 0.867T1, the δ-LES-SPH free surface at four the time instants is
depicted in figure 13. The initial time t0 is selected when a plunging breaking wave appears
close to the left side of the tank: the panels are related to instants t0, t0 + T/2, t0 + T and
t0 + 3T/2.

Following the time sequence, the breaking wave changes side after a time interval equal
to T + T/2. This means that the wave should appear again close the left side of the
reservoir at t = t0 + 3T and this is the key phenomenon behind the three rising maxima in
a single period of η5(t) time signal.

Finally, figure 14 reports the phase map for three other cases. Panel (a) refers to the
high-frequency case T = 0.593T1 for which the orbit is fully chaotic, without showing any
clear attractor. Looking at the WEFD in figure 8, the experimental data are not available
in the high-frequency region (T < T2), therefore, this region is studied only numerically
and the six simulations carried out are all classified as chaotic. This behaviour comes from
the intensification of breaking phenomena which also caused an asymmetric behaviour
between η5 and η95. This latter appears as a series of water impacts hitting one side only
of the tank during certain time ranges, the span of which varies randomly during the flow
evolution. This peculiar phenomenon is better discussed in § 7.

The second and third phase maps of figure 14 refer to (b) and (c), where a periodic
non-monochromatic mode is attained. Sharp orbits affected by negligible diffusion are
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Figure 12. Test case A = 0.03L, T/T1 = 0.867, corresponding to a tripling-period regime. Colours are
representative of the δ-LES-SPH pressure field. Black dots are the free surfaces extracted from the experimental
video. The video of the simulation is available at Link Video N1.

visible. In particular, (b) (T = 0.791T1) shows an orbit very similar to an ellipse, indicating
that nonlinear effects play a negligible role. In contrast, the case T = 1.138T1, considered
in (c), is characterized by a more deformed orbit.

Finally, the phase map of the doubling-frequency mode (T = 1.304T1) is shown in (d)
and depicts two concatenate orbits, as expected.

5. Tripling-period and doubling-frequency modes analysed with the Hilbert–Huang
transform

In the present section the Hilbert–Huang transform (HHT) is used to make some aspects
related to doubling and tripling modes more clear. The HHT was designed for nonlinear
and non-stationary signals (Huang et al. 1998) and it works by two successive steps: the
empirical mode decomposition (EMD) and the Hilbert transform (HT). The EMD is used
to decompose a signal into a number of intrinsic mode functions (IMFs). An IMF is an
oscillatory function with time-varying frequencies that represents the characteristics of
non-stationary signals (Lee et al. 2012).
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Figure 13. The δ-LES-SPH free-surface evolution for the case A = 0.03L, T/T1 = 0.867, corresponding to a
tripling-period bifurcation. The plots are in the tank reference frame.

In the time range [t1 − t2] the reference signal X(t) is expressed as a combination of
IMFs as

X(t) =
n∑

i=1

IMFi(t) + Rn(t), (5.1)

where n is the total number of IMFs and Rn(t) is the residue function. It is worth noting
that, from a theoretical point of view, IMFs are not strictly orthogonal, although this
property is actually satisfied, as verified a posteriori.

The HT H of IMF(t) consists of a convolution with the Cauchy kernel k(t) = 1/πt

H(IMFk(t)) = 1
π

−
∫ +∞

−∞
IMFk(τ )

t − τ
dτ with k = 1, . . . , n, (5.2)

where the principal value of the integral is considered. The signal X(t) is represented
in the complex plane with the function Z(t) (complex quantities are indicated in bold)
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Figure 14. Phase maps for different sloshing regimes from numerical simulations at oscillation
amplitude of 0.03L. (a) Chaotic. (b) Periodic non-monochromatic. (c) Periodic non-monochromatic.
(d) Doubling frequency.

defined as

Z k(t) = IMFk(t) + iH(IMFk(t)) = Ak(t) exp [iθk(t)] with k = 1, . . . , n

A(t) = |Z(t)|, f (t) = 1
2π

dθ(t)
dt

with θ(t) = ∠Z(t)

⎫⎬
⎭ , (5.3)

with i = √−1, A(t) the instantaneous amplitude and f (t) the instantaneous frequency of
Z(t).

The time behaviours of the frequencies of different IMFs, made non-dimensional
with the excitation frequency fe = 1/T , are drawn in figure 15 for T = 1.304T1 and in
figure 17 for T = 0.867T1. These cases correspond to a doubling-frequency and to a
tripling-period bifurcations, respectively. In order to highlight the most energetic modes,
the curves are contoured with the non-dimensional amplitude A(t)/L. The ordinate f ∗ = fT
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Figure 15. Hilbert transform for the case A = 0.03L and T = 1.304T1. The different lines correspond to the
time trends of the frequencies related to the different modes. The lines are contoured with the amplitudes of
the corresponding modes for varying t. The frequencies are non-dimensional with the exciting carrier 1/T .

refers to dimensionless frequencies, so the dimensionless excitation frequency feT is 1
by definition. Considering that the numbering of IMF modes is arbitrary, we decided to
number the modes by their energy content, so that the mode IMF1 is the most energetic
and so on.

Since the energy of X(t) is in general roughly equal to the sum of the energies of its
modes, the distribution of the signal energy among IMF modes is discussed. It is worth
underlining that, with a little abuse of language, we will refer in the following to the mode
energy, although we are actually dealing with its amplitude.

Figure 15 represents the time trends of IMF mode frequencies at T = 1.304T1, where
a doubling-frequency scenario occurs. Although the system is excited at frequency fe, a
significant part of the energy moves to 2fe, making this mode comparable, in terms of
energy, to the first harmonic. This happens because the second harmonic of the excitation
frequency is close to the second resonance, i.e. 2fe ∼ f2 = 1/T2, as indicated by the
formula (2.1). This induces an energy transfer toward 2fe, similarly to what observed by
Wu (2007), who performed similar investigations with a linear perturbation theory. The
second mode is excited by nonlinearity so that, in figure 15, it is possible to appreciate that
the mode IMF1, related to frequency 2fe, starts at approximately 10 oscillation periods and
it persists over time without appreciable perturbations. With analogous arguments, modes
IMF3 and IMF4, linked to frequencies 3fe and 4fe, become rather similar as well. The
final emerging pattern is typical of a doubling-frequency regime. Figure 16 shows the time
histories of the sum of the first two IMFs IMF1 + IMF2. The plot depicts the onset and the
persistence of the doubling-frequency regime.

The case T = 0.867T1, where a tripling-period bifurcation occurs, is more complex. As
shown in figure 17, the mode IMF1 related to the excitation frequency fe rapidly appears
and persists as almost constant in time. The mode IMF4, related to first resonance f1 =
1/T1, arises during the early periods of oscillation as an effect of the initial ramp used for
the simulation but, after roughly 40 oscillations, the mode is almost totally damped with
an amplitude that becomes negligible.

The second and third sloshing natural frequencies (i.e. f2 = 1/T2 and f3 = 1/T3,
respectively) are, in this case, related to fe as f2 ∼ fe + 1/3fe and f3 ∼ fe + 2/3fe. This
implies that, when the energy of IMF4 is redistributed among other frequencies, it falls on
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Figure 16. Sloshing case A = 0.03L and T = 1.304T1: time histories of the sum of the first two IMFs
IMF1 + IMF2 calculated from the δ-LES-SPH η5 time signal.
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Figure 17. Hilbert transform for the case A = 0.03L and T = 0.867T1. The different lines correspond to
the time trends of the frequencies related to the different modes related to the δ-LES-SPH η5 signal. The
lines are contoured with the amplitudes of the corresponding modes for varying t. The frequencies are made
non-dimensional with the exciting carrier 1/T .
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Figure 18. Sloshing case A = 0.03L and T = 0.867T1: time histories of the sum of the first two IMFs
IMF1 + IMF2 calculated from the δ-LES-SPH η5 time signal.

modes IMF2 and IMF5, corresponding to f2 and f3. These latter become energetic enough
to persist in time and to become sub-harmonics between fe and 2fe. The modes IMF2 and
IMF5 interact with IMF3, making the modes related to sub-harmonics 2fe − f2 ∼ 2/3fe
and 2fe − f3 ∼ fe/3 to appear. The final frequency spectrum attained by the system
assumes the typical peaked shape of a tripling-period one (see figure 10c).

Figure 18 shows the time histories of the sum of the first two IMFs IMF1 + IMF2. The
plot depicts the onset and the persistence of the tripling-period regime.
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Figure 19. Hilbert transform for the case A = 0.03L and T = 1.022T1. The different lines correspond to the
time trends of the frequencies related to the different modes. The lines are contoured with the amplitudes
of the corresponding modes for varying t. The frequencies are non-dimensional with the exciting one 1/T .
(a) Experimental data, (b) δ-LES-SPH outcome.

Finally, the case at T = 1.022T1 is depicted in figure 19, where the experimental
outcomes and the numerical solution are compared. As shown in panel (a) of the figure,
the analysis of the experimental result shows a dynamics very similar to T = 0.867T1,
discussed above. The mode corresponding to f1 appears during initial oscillation periods,
caused by the ramp, and rapidly damps out. The energy is then redistributed among other
frequencies and the tripling-period pattern forms again, similarly to that just observed
in figure 17. Conversely, the 2-D restriction assumed in the numerical simulations leads
here to a discrepancy. The energy of mode related to frequency f1 remains confined to its
initial state and does not spread among other frequencies, although it starts to oscillate
chaotically.

This plays the role of a chaotic modulation of the carrier signal, giving rise to a
quasi-periodic pattern. For this reason, a tripling-period regime is not attained. This
discordance between 2-D SPH simulations and experimental data is further discussed in
§ 6.
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Figure 20. Time histories of the surface elevations η5 for the case A = 0.03L and T/T1 = 1.022. Solid line:
experimental data; dashed line: 3-D δ-LES-SPH simulation. Letters A,B,C and D identify the time instants for
the particle displacements sketched in figure 21.

6. Tripling-period regime at A = 0.03L and T = 1.022T1: 2-D vs 3-D comparison

In § 5, the doubling and tripling bifurcations appearing in the WEFDs are discussed and
investigated through the HHT. For A = 0.03L and T = 1.022T1, a discrepancy between
numerical and experimental evidence is found and a tripling-period behaviour of the time
signal appears from experiments, whereas numerical simulations provide a quasi-periodic
mode prediction. In order to find a reason for this discrepancy, we first try to change the
solid boundary condition on the tank wall. However, in this particular test case the 2-D
solutions appear to be not so influenced by those changes even when a free-slip condition
is considered.

The disagreement between numerical and experimental data is presumably due to
the 2-D restriction, however, in order to gain a deeper insight into this problem, 3-D
simulations have been carried out with a δ-LES-SPH model and the results are shown
in figure 20 in terms of the surface elevation time signal, and in figure 21 in terms of
the free-surface evolution. The resolution used for the simulation is N = H/�r = 50,
which means approximately 100 000 particles in the whole numerical domain. A free-slip
boundary condition was used on the tank walls, thus avoiding the discretization of the
boundary layers, in particular at low spatial resolutions (i.e. N = 50). After many tests,
this assumption was found accurate enough in two dimensions, thus it was adopted also in
three dimensions.

The significant increase in computational costs did not allow a long simulation time, thus
the simulation is limited to t = 100T and, for the same reasons, the present investigation,
including approximately 230 simulations, cannot be carried out within a 3-D environment.

Figure 20 shows a comparison between δ-LES-SPH and the experimental time history
of the surface elevation recorded by the probe η5. From this plot it is possible to appreciate
that, unlike the 2-D simulation, the 3-D numerical simulation is able to identify the
tripling-period regime. In table 1, the comparisons among the values of η̄5max from
2-D and 3-D simulations and experiments is detailed. The average maximum of the
3-D numerical signal differs by approximately 2.5 % from the experiments, whereas the
difference grows to 35.7 % with the 2-D simulation.

Figure 21 displays the lateral view of the particle configuration at four time instants.
Particles are coloured with pressure. From this figure, it is possible to recognize the
occurrence of the breaking waves which characterize the tripling-period regime, as already
discussed in § 4.2.
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η̄5max Stnd. Deviation

2-D 0.378 0.015
3-D 0.285 0.033
Exp. 0.278 0.025

Table 1. Comparisons in terms of η̄5max from 2-D and 3-D simulations and from experimental outcomes. The
standard deviations are also indicated in the rightmost column.
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Figure 21. Free-surface evolution for the case A = 0.03L and T = 1.022T1 obtained with 3-D δ-LES-SPH
simulations.

Figure 22 shows the images recorded by the digital camera at the same instants as
figure 21. The main flow features recorded by the digital camera are well predicted by the
numerical solvers. As already mentioned, this pattern does not appear in two dimensions,
indicating that, for this specific case, the transverse velocity component plays a key role
because of the fragmentation of the free surface.

7. Asymmetric regimes

For the problem of sloshing in a tank, Olsen (1970) tacitly assumed a global symmetry
between the left and right sides of the tank. Intuitively, this seems reasonable because the
tank is a cuboid moving laterally leftwards and rightwards, so there is no reason for which
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Figure 22. Digital images for the case A = 0.03L and T = 1.022T1 at the same time instants as figure 21.

any asymmetry should appear. For an oscillation period T , the right probe should record
the same signal as the left one, but delayed by T/2. Unexpectedly, Colagrossi (2005),
Colagrossi et al. (2006) and Faltinsen & Timokha (2009) found that, at high motion
amplitudes, the left ηL and the right ηR probes do not measure similar signals. In the
present section, the presence of signal asymmetries is numerically addressed.

In order to have a quantitative evaluation of the asymmetry, a measure of the left and
right probe cross-correlation is computed for each case. The correlation function is defined
as (Stoica & Moses 2005)

R[ηL ηR](m) =
N−m−1∑

k=1

ηL(tk + m�t)ηR(tk) with tk = t0 + k�t, (7.1)

where �t is the time discretization of the signals and m�t is the time delay between
signals. Varying the parameter m, the maximum value R∗

[η5 η95] is considered. In order to
get a meaningful value, the normalized cross-correlation is used

R̂[ηL ηR] = 1 − R∗
[ηL ηR]√

R[ηLηL](0) R[ηR ηR](0)
. (7.2)

For two identical signals, R̂[ηL ηR] is equal to 0, while it tends to 1 for two non-correlated
signals. As reported in figure 23 in the range T ∈ (0.5T1, 0.7T1), the left and right probes
are less correlated than in the rest of the range. In particular, for an oscillation amplitude
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Figure 23. Cross-correlation distribution with frequency for A = 0.01L and A = 0.03L.

of A = 0.03L, the maximum asymmetry is attained for chaotic modes and specifically for
the case T = 0.593T1. Conversely, for A = 0.01L the maximum of asymmetry is attained
for quasi-periodic regimes.

An example of a non-symmetric mode for A = 0.03L is shown in figure 24, where the
acquisitions of the free-surface elevation η1 for the left side and η99 for the right side of
the tank are compared. The full signals are shown in the top panel of the figure, whereas
a magnification of the range t ∈ (125T, 128T) is given at the bottom: the vertical lines
correspond to time instants at which the free surface is depicted in figure 25. As visible,
the left side (orange solid) and the right side (black dash-point) signals are different and the
intensity of the elevation switches between left and right after intervals of approximately
50–70 oscillation periods. In figure 24(b), for example, the right side elevation is higher
than the left side.

The free surface shows different patterns when the tank is moving leftwards and
rightwards. With respect to the interval highlighted in figure 24(a), when the free surface
impinges on the left side of the tank and moves rightwards, a breaking wave is formed
(see blue lines in figure 25). The same pattern is not formed when the free surface moves
leftwards, as indicated by red lines in the same figure.

8. Sloshing dissipation

In the present section the slosh dissipation is addressed. As underlined in Colagrossi,
Bouscasse & Marrone (2015), the dissipation is linked to two main phenomena: (i) the
wall boundary layer (WBL) near the tank walls and (ii) complex motions of the free
surface leading to its fragmentation during breaking waves and wave impact events. These
two mechanisms act with different intensity, depending on the attained regimes. Indeed,
for the periodic monochromatic regime the motion of the free surface is rather mild and
singular phenomena do not occur: as a consequence, the main dissipation comes from the
WBL. Conversely, during the quasi-periodic regime, the large motion of the free surface,
its fragmentation and the occurrence of water impact events make mechanism (ii) as the
dominant one.

It is worth noting that the 2-D assumption does not take into account the viscous
friction on the front and rear tank sides, hence, the WBL effects are reduced. In order to
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Figure 24. (a) Time histories of the surface elevations from the left probe η1 and the right probe η99 for the
chaotic case A = 0.03L and T/T1 = 0.5. (b) Enlarged view of the time history for the probe η99 within the
time range t ∈ [125T, 128T]. Left probe signal is drawn with the orange solid line, right probe with the black
dash-point line. Vertical dashed lines correspond to time instants selected for the free-surface configurations of
figure 25 and letters refer to related panels.

partially recover this effect, viscous damping corrections are often used in the literature,
following the pioneering work of Keulegan (1959). These corrections are generally useful
for sloshing flows in shallow water, as discussed in Bouscasse et al. (2013) and in Antuono
et al. (2012a). Unfortunately, this is not the case for the present work, where the problem is
in intermediate depth conditions and, for this reason, we preferred to avoid any correction
to the fluid viscosity.

As introduced in § 3.3, the energy balance is given by three general terms

EM − WNF = Ediss, (8.1)

where EM is the mechanical energy of the fluid in the Ni-FoR moving with the tank, WNF
is the work performed by the non-inertial forces and Ediss is the energy dissipated by the
fluid.

Figure 26(a) shows the time behaviour of the three energy terms for the test case A =
0.03L and T = 0.867T1 (tripling-period scenario) evaluated by the δ-LES-SPH model at
resolution N = H/�r = 200. The energies in (8.1) are made non-dimensional with the
reference kinetic energy

�E = 1
2

ml

(
2π

A
T

)2 tend

T
, (8.2)

that is the maximum kinetic energy of the liquid (imagining it frozen inside the tank)
multiplied by the total number of periods. From this figure it is clear that the mechanical
energy needs approximately NP0 = 80 oscillation periods before reaching a constant
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Figure 25. Chaotic case A = 0.03L and T/T1 = 0.5: free-surface configuration for 9 different time instants in
two periods of the tank oscillations t ∈ [125.75T, 127.75T]. To improve the visibility y∗ is equal to y for the
red points, and equal to y∗ = y + 0.15 and y∗ = y + 0.3 for the green and blue points, respectively. Red points
correspond to the configuration where η99 is close to its maximum values of figure 24(b). Red arrows indicate
the direction of the tank motion. The video of the simulation is available at Link Video N2.

condition. Similarly, the external work WNF and the dissipated energy Ediss time trends
become almost linear. Within this regime the almost constant time rate of Ediss is defined
as the dissipated power P̄diss, which is directly related to the specific case investigated (see
(3.14) in § 8).

Panel (b) of the same figure depicts Ediss at three different spatial resolutions. The
time trend of the dissipated energy clarifies that, at the finer resolution, the curve slope
is convergent; moreover, it is also clear that Ediss is roughly well captured even at the
lowest resolution, thus indicating that the present numerical approach is very reliable when
energy evaluations are carried out.

By extending the discussion to the whole frequency spectrum and to both sloshing
amplitudes, figure 27 shows P̄diss as a function of the oscillation periods and for both the
motion amplitudes A = 0.01L and 0.03L. The dissipated power is made non-dimensional
with the reference power �P = �E/tend.

The two curves, in logarithmic scale on the vertical axis, follow a similar trend as the
WEFDs, discussed in §§ 4.1 and 4.2. It is worth noting that, where the tripling-period
and the doubling-frequency modes occur, clearly visible peaks are found. The higher
dissipation is linked to the presence of breaking waves and of wave impacts against the
vertical walls, developing during the tripling-period and doubling-frequency regimes,
respectively. The breaking wave phenomena are also responsible for the increase (in
absolute value) of the dissipated power at the lowest excitation periods, where, at A =
0.03L, chaotic regimes occur.

Finally, the time histories of the velocity of the fluid centre of mass ẋG(t) and of the
tank acceleration atank(t) are depicted in figure 28 for A = 0.03L at T = 0.791T1 and T =
1.098T1. The former is one of the cases where the slosh dissipation is very low, hence,
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Figure 26. Test case A = 0.03L and T/T1 = 0.867. (a) Time evolution of mechanical energy EM (in Ni-FoR),
work performed by the non-inertial forces WNF and dissipated energy Ediss. Results refer to δ-LES-SPH
simulations at finest spatial resolution N = H/�r = 200. (b) Time evolution of the energy dissipated by the
fluid Ediss at three spatial resolutions N = 50, 100 and 200. The energies are made non-dimensional with the
reference energy in (8.2).

Tripling-period

mode

Doubling-frequency

mode

A = 0.01L

A = 0.03L

102

101

100

10–1

10–2

0.6 0.8 1.0

T/T1

1.2 1.4 1.6

–P̄diss
�P

Figure 27. Time rate of the dissipated energy distribution with frequency for A = 0.01L and A = 0.03L.
Results refer to δ-LES-SPH simulations at the finest spatial resolution N = H/�r = 200.

ẋG(t) and atank(t) are close to quadrature. Conversely, at the excitation period T = 1.098T1
the maximum dissipation is attained and ẋG(t) and atank(t) are in anti-phase. Those phase
lag conditions are in agreement with the formula (3.14), which links the average slosh
dissipation rate P̄diss with ẋG(t) and atank(t).

9. Conclusions

In the present article the fluid sloshing in a cuboid tank oscillating laterally is investigated.
The problem is addressed for a filling height close to the critical depth and for two motion
amplitudes, namely A = 0.01L and A = 0.03L. A wide span of excitation frequencies is
investigated. Numerical simulations have been carried out with a δ-LES-SPH model for
both amplitudes, whereas experimental data were also available for larger amplitude. The
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Figure 28. Test cases A = 0.03L, T = 0.791T1 (a), T = 1.098T1 (b) showing time histories of the fluid
centre of mass velocity ẋG(t) and the tank acceleration atank(t).

numerical approach is an improvement of the classic SPH technique widely validated in
the literature. By taking into account the time average of the surface elevation maxima,
measured near the left wall of the tank, a frequency spectrum is obtained for both
amplitudes and different scenarios were identified. Numerical outcomes were compared
with experiments, showing a good agreement in terms of the surface elevation time signal
and of the sloshing regime. Moreover, with the aid of a high-resolution camera, numerical
and experimental free surfaces were overlapped for some interesting cases, showing again
a remarkable superposition. Doubling-frequency and tripling-period bifurcations were
also found both experimentally and numerically and the mechanism of their onset was
discussed with the HHT. For one case, at A = 0.03L and T/T1 = 1.022, the tripling-period
regime is not attained in 2-D simulations, whereas it appears during the experiments. To
dispel any doubts about the possible reasons behind this, a 3-D simulation was carried out
and both the same regime and a value of η̄5max very close to the experimental one were
recovered. This comparison clarified the effect of the transverse velocity, which induces
fragmentation of the free surface leading to an increase of the dissipation mechanisms.
The latter lower the mechanical energy of the flow allowing the tripling mode regime.

Left and right numerical probes were provided on sidewalls of the tank, so that
the presence of asymmetric regimes has been detected and discussed. The frequency
distribution of the cross-correlation between the left and right probes shows that, in some
scenarios, particularly where the chaotic regime is attained, the asymmetry makes the
signals highly uncorrelated.

Finally, a discussion about the energy dissipation was carried out. As expected, breaking
waves or water impact events, typical of quasi-periodic or chaotic regimes, are more
dissipative than the WBL, which is the only dissipation source in monochromatic cases.
Moreover, also doubling-frequency and tripling-period regimes give higher dissipation
than periodic non-monochromatic scenarios.

Although two-dimensional, the present numerical investigation required a significant
computational time effort in simulating a very long dynamics which took approximately
2 million iterations to cover 300 seconds of physical acquisition time. An analysis
of computational costs concluded that, for a total of 228 simulations, an average
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computational speed of 35 μs was attained, such requiring approximately 1 week for every
fine-resolution simulation.

Future activities will concern sloshing test campaigns for the investigations of
higher-amplitude motions.
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Appendix A. The CPU costs

Although in the present work we carried out only 2-D simulations, the CPU costs are,
however, remarkable, since 76 runs were needed to cover the WEFD spectra shown in
figure 4 and in figure 8. For each case three runs at spatial resolutions N = H/�r = 50,
100 and 200 were performed, for a total of 228 simulations. The number of particles at
the finest resolution is only 114 000, however, the long-time simulations performed (tend =
300 s) required approximately 2 million time iterations.

The δ-LES-SPH simulations ran on the ‘Liger’ supercomputer of Ecole Centrale de
Nantes, which is equipped with 252 nodes, each one with 12-core Intel Xeon (Haswell)
E5–2680v3 processors. The computational speed can be defined as

η = CPUtimeNcores

NiterationsNparticles
. (A1)

For the present SPH solver, which is an in-house research code with a hybrid OpenMP/MPI
parallelization, the computational speed is approximately η = 35 μs. It follows that, at
the finest resolution, each simulation requires approximately one week on a single cluster
node. The total computational cost for the whole set of runs requires approximately one
month of calculation on 20 computing nodes (i.e. 240 cores).

Appendix B. Effect of the spatial resolutions on the tripling-period regime

In this appendix, the effect of the spatial resolution on the sloshing flows is investigated.
As a reference case A = 0.03L and T = 0.867T1 is considered. For this test case a
tripling-period regime is identified by the experimental campaign, as already commented
on in § 4.2. Four different spatial resolutions N = H/�r = 25, 50, 100, 200 are considered
and 180 oscillating periods were simulated. The convergence of the dissipated energy was
already commented on in § 8, whereas the effect of N on the surface elevation η5 and on
the free-surface displacement is discussed here.
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Figure 29. Test cases A = 0.03L, T = 0.867T1: δ-LES-SPH time histories of the surface elevation measured
at the η5 probe position using four different spatial resolutions, N = H/�r = 25, 50, 100, 200 (a–d).

Figure 29 shows the time histories of the surface elevation measured by η5 probe at
different spatial resolutions. Only the last 20 oscillations of the tank are considered. As
pointed out in § 4.2, the δ-LES-SPH output using N = 200 is in good agreement with
the digital images recorded during the experiments, both in terms of the statistics of the
η5 signal and particle displacements. In particular, the typical tripling-period patterns are
clearly visible in figure 29(d), corresponding to N = 200. Coarsening the resolution to
N = 100 and N = 50, the tripling-period patterns are still found, although this is not the
case for the lowest resolution N = 25, where a simple periodic regime is attained.

The reason behind it relies in the fact that, at the coarsest resolution N = 25, the
breaking wave events cannot be resolved, as illustrated in figure 30. From the same figure,
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Figure 30. Test cases A = 0.03L, T = 0.867T1: particles belonging to the free surface at time t = 164.7T
using four different spatial resolutions N = 25, 50, 100 and 200. The vertical positions of the particles are
shifted using the variable y∗.

it is possible to see that, at N = 50, only spilling breakers appear, while at N = 100 and
N = 200, plunging breakers clearly develop inside the tank. The surface elevation η5,
measured at 5 cm from the left wall is not very sensitive to the different breakers developed
(spilling or plunging) inside the tank and this clarifies why the η5 signals are not much
different for spatial resolutions N = 50, 100 and 200.

The analysis carried out here has been extended also to other sloshing cases of the
present work, in order to check that N = 200 is a fine enough resolution for all the
simulations considered. The only exception is the chaotic regime, for which the effect
of the spatial resolution can be considered in a statically sense only.
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