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Some Remarks on the Algebraic Sum of
Ideals and Riesz Subspaces
Witold Wnuk

Abstract. Following ideas used by Drewnowski and Wilansky we prove that if I is an infinite dimen-
sional and infinite codimensional closed ideal in a complete metrizable locally solid Riesz space and I
does not contain any order copy of RN then there exists a closed, separable, discrete Riesz subspace G
such that the topology induced on G is Lebesgue, I ∩ G = {0}, and I + G is not closed.

1 Introduction

It is easy to observe that every Hausdorff topological vector space contains two closed
sets A,B whose algebraic sum A + B is not closed. A similar situation holds for closed
(linear) subspaces: if X is a closed non minimal subspace of infinite codimension in
an F-space (= complete metrizable topological vector space) E, then there exists a
closed non minimal subspace Y of E such that X ∩ Y = {0} and X + Y is not closed
(see [3, Thm 3.3]). Let us recall that a topological vector space (E, τ ) is said to be
non minimal if it admits a Hausdorff vector topology strictly coarser than τ . The
cartesian product RΓ of real lines is the unique minimal locally convex topological
vector space. The search for an example of a minimal non locally convex space took
a long time. Finally, a suitable, somewhat exotic, space was constructed in [4]. The
reader interested in the question about closedness of X +Y for closed linear subspaces
X,Y is referred to [2] and especially to [3] where a discussion of this problem and
related topics are accompanied by many historical remarks. It is important that X +
Y is always closed whenever Y is an arbitrary closed subspace, X is minimal, and
X ∩ Y = {0} (see [2, Prop. 2.3]). The previous statement implies that X +Y is closed
if Y is closed and X is finite dimensional, or X is closed and finite codimensional.

The situation becomes more subtle if we consider Riesz subspaces or ideals in
locally solid Riesz spaces. For terminology related to these types of spaces we refer
to [1, 8]. Below we recall, for the reader’s convenience, several basic definitions and
facts needed in our considerations. A real vector space E equipped with a relation of
partial ordering 6 is called a Riesz space (= a vector lattice) if the relation has the
following three properties:

(A) ∀x, y, z ∈ E, x 6 y ⇒ x + z 6 y + z,
(M) ∀x, y ∈ E,∀r ∈ R+, x 6 y ⇒ rx 6 ry,
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(S) every subset of E consisting of two elements x, y has a least upper bound x ∨ y.

The definition implies that an arbitrary set {x, y} ⊂ E has the greatest lower bound
x∧ y associated with a supremum by the equality x∧ y = −((−x)∨(−y)). Moreover
every x ∈ E has its modulus |x| = x ∨ (−x). Many classical spaces, such as C(K)
(continuous real functions on a compact set K) and Lp(µ) (0 6 p 6 ∞), admit a
natural partial order: f 6 g if and only if f (s) 6 g(s) for all s (or for µ-almost all s in
the case f , g ∈ Lp(µ)).

If F is a linear subspace of a Riesz space E and F is closed under a modulus, i.e.,
x ∈ F ⇒ |x| ∈ F, then F is said to be a Riesz subspace (a vector sublattice). We
should also mention the notion of solidness: a set S ⊂ E is solid whenever |x| 6 |s|
for some s ∈ S implies x ∈ S. Solid linear subspaces are called ideals, and an ideal
F ⊂ E is a band when sup A ∈ F for every subset A ⊂ F having a supremum in
E. The orthogonal complement Xd of a set X ⊂ E defined by Xd =

⋂
x∈X{y ∈ E :

|y|∧|x| = 0} is an important example of a band. We will say that a set A ⊂ E consists
of pairwise disjoint elements whenever |a| ∧ |b| = 0 for all a, b ∈ A. Similarly, two
subspaces F,G are disjoint if | f | ∧ |g| = 0 for all f ∈ F and g ∈ G.

Let us note the algebraic sum of Riesz subspaces cannot be a Riesz subspace; the
subspace of affine functions fails to be a Riesz subspace of C[0, 1] but it is the sum
of two (one dimensional!) Riesz subspaces. On the other hand if I is an ideal and
F is a Riesz subspace, then I + F is a Riesz subspace–for x ∈ I, f ∈ F there holds
|x + f | = (|x + f | − | f |) + | f | ∈ I + F. It is natural to ask if the reverse implication
is true; i.e., is a Riesz subspace I an ideal whenever I + F is a Riesz subspace for an
arbitrary Riesz subspace F?. Below we show a negative answer.

Let E be a Riesz subspace in RN containing all unit vectors ei . Consider a Riesz
subspace F = {x = (xn) ∈ E : x1 = x2}. Clearly F is not an ideal, because
F 3 e1 + e2 > e1 /∈ F. It is easy to check that E = F + Re1 = F + Re2. Let 1A

stand for the characteristic function of a set A. Fix a Riesz subspace G ⊂ E. We have
to show F + G is a Riesz subspace of E. Consider two cases.

1. The subspace G contains a sequence g such that g1 6= g2 and |g1| = |g2|. Since
−g ∈ G we can assume g1 > 0. We have 2g1e2 = (|g| − g)− (|g| − g)1Nr{1,2} ∈
G + F, and so G + F = G + F + Re2 = E.

2. Suppose that the previous case does not hold, i.e., for every g ∈ G either g1 = g2

or |g1| 6= |g2|. Fix g ∈ G, f ∈ F. If g1 = g2 then g ∈ F. Hence | f + g| ∈ F ⊂ F + G.

Assume |g1| 6= |g2| and put c = | f1+g2|−| f1+g1|
|g2|−|g1| . It is easy to check | f1 + g1| − c|g1| =

| f1 + g2| − c|g2|. Let t denote this common value. Remembering that f1 = f2, we
obtain | f + g| = [(| f + g| − c|g|)1Nr{1,2} + t(e1 + e2)] + c|g| ∈ F + G.

Let us turn our attention to locally solid Riesz spaces, i.e., to Riesz spaces equipped
with a linear topology having a base for the neighborhoods of zero consisting of solid
sets. The class of locally solid Riesz spaces contains normed lattices (i.e., their topol-
ogy is determined by a monotone norm q : |x| 6 |y| ⇒ q(x) 6 q(y)), and clearly Ba-
nach lattices. Our main considerations will concern F-lattices, i.e., complete metriz-
able locally solid Riesz spaces, which will be denoted by (E, ‖ · ‖) (or shortly by E),
where ‖ · ‖ is a monotone F-norm generating the topology on E (the functional ‖ · ‖
has the same properties as a monotone norm, but the homogeneity of a norm, i.e.,
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the condition q(tx) = |t|q(x), is replaced by ‖tx‖ → 0 as t → 0). It is clear that
F-lattices are Archimedean: infn

1
n x = 0 for every x > 0.

Repeating arguments applied in the proof of [6, Proposition 1.2.2] we obtain the
following interesting fact:

(∗) If I1, I2 are closed ideals in an F-lattice, then I1 + I2 is closed.
The assumption of a (topological) completeness is crucial. Indeed, consider a

Riesz subspace

E = { f ∈ C[0, 1] : there exist 0 = x0 < x1 < · · · < xn = 1 such
that f is affine on each interval [xi−1, xi] },

equipped with the topology of uniform convergence (see [8, Exercise 1, p. 217]).
Clearly E is a normed lattice but it is not a Banach lattice. The ideals

I1 =
⋂
n

{
f ∈ E : f

( 1

2n

)
= 0
}
, I2 =

⋂
n

{
f ∈ E : f

( 1

2n− 1

)
= 0
}

are closed, but I1 + I2 6= I1 + I2. On the other hand E has a curious property: I + Id is
closed for every closed ideal I of E (Id denotes the disjoint complement of I). The last
property is an immediate consequence of the following result (see [13] or [9, Thm
0.3.8]).

Let K be a compact space and let E be a Riesz subspace of C(K) whose elements
separate points from closed sets (i.e., for every nonempty closed set X ⊂ K and s /∈ X
there exists f ∈ E satisfying conditions f (s) = 1, f (X) = {0}). The following
statements are equivalent.

(a) If I is a closed ideal, with respect to the topology of uniform convergence, then
I + Id is closed in E.

(b) If f ∈ E and U is a nonempty open subset of K such that f (∂U ) = {0}, then
f 1U ∈ E.

(∂U denotes the boundary of U and 1U is the characteristic function of the closed set
U .)

On the other hand it may happen that I is closed while I + Id is not closed. We
obtain a suitable example modifying the space E defined above. Let B[0, 1] be the
space of real valued bounded functions on the unit interval equipped with the sup
norm and put

F = { f ∈ B[0, 1] : there exist 0 = x0 < x1 < · · · < xn = 1 such
that f is affine on each interval (xi−1, xi) }.

It is not very hard to check (see [9, Example (P2), p. 28] or [13]) that if A =⋃
n[ 1

2n+1 ,
1

2n ], then I = { f ∈ F : f (A) = {0}} is a closed ideal, but I + Id 6= I + Id.
This fact implies also the sum Idd + Id of disjoint bands is not closed. On the other
hand, if F,G are disjoint closed Riesz subspaces in an F-lattice, then F + G is closed,
because sequences ( fn) ⊂ F and (gn) ⊂ G are Cauchy whenever ( fn + gn) is conver-
gent.
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We will say that a Riesz space E contains an order copy of another Riesz space F
if there exists a Riesz isomorphism T mapping F into E; i.e., T is a linear injection
and |T(x)| = T(|x|) for all x ∈ F. The following result will be useful in our further
considerations.

Lemma 1.1 For an F-lattice (E, ‖ · ‖) the following statements are equivalent.

(a) E does not contain any order copy of RN.
(b) If a sequence (yn) consists of strictly positive pairwise disjoint elements from E, then

infn supt>0 ‖t yn‖ > 0.

Proof (a) ⇒ (b) If E contains a sequence (yn) of positive pairwise disjoint ele-
ments such that infn supt>0 ‖t yn‖ = 0, then there exists a subsequence (ynk ) having
the property that the series

∑∞
k=1 tk ynk is convergent for arbitrary real numbers tk.

An operator T : RN → E defined by T((tk)) =
∑∞

k=1 tk ynk is a Riesz isomorphism;
i.e., E contains an order copy of RN.

(b)⇒ (a) Suppose T : RN → E is a Riesz isomorphism and let en denote the
n-th unit vector. The elements T(en) are nonzero and pairwise disjoint. Therefore
there exist reals tn such that the numbers ‖tnT(en)‖ are separated from zero, a con-
tradiction, because (tnen) tends to zero in RN and T is continuous (see [1, Thm.
5.19]).

Remark 1.2 Since the topology of pointwise convergence in RN is minimal, every
Riesz isomorphism T : RN → E is a homeomorphism, and so it maps RN onto a
closed Riesz subspace. Lemma 1.1 is closely related to the well-known characteri-
zation of F-spaces without copies of RN: an F-space (E, ‖ · ‖) does not contain any
isomorphic (= linearly homeomorphic ) copy of RN if and only if E does not contain
arbitrary short lines, i.e., infx 6=0 supt ‖tx‖ > 0. Unfortunately we do not know if there
exists an F-lattice with isomorphic, but not order isomorphic, copies of RN.

The space RN belongs to a class of discrete Riesz spaces. Let us recall that a nonzero
positive element e is discrete in a Riesz space E whenever |x| 6 e implies x = te
for some number t (unit vectors are examples of discrete elements in RN). If every
nonzero positive x ∈ E dominates a discrete element, then E is called discrete.

2 Main Result

We start with a lemma stating that an ideal having a “big” codimension contains
many disjoint elements.

Lemma 2.1 Let I be a closed ideal of infinite codimension in an F-lattice E. The set
E r I contains a sequence of nonzero pairwise disjoint elements.

Proof Since the quotient E/I is an infinite dimensional F-lattice, it contains a se-
quence of positive nonzero pairwise disjoint elements because E/I is Archimedean
(see [5, Thm 26.10] or [1, Exercise 13, p.46]). The elements are of the form Q(xn),
n ∈ N, where Q : E → E/I is the canonical quotient map, which is a Riesz homo-
morphism, i.e., |Q(x)| = Q(|x|) or, equivalently, Q(x ∧ y) = Q(x) ∧ Q(y) ([1, Thm.
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1.31 and Thm. 1.34]). We can assume 0 < xn /∈ I because 0 < Q(xn) = |Q(xn)| =
Q(|xn|).

Choosing numbers cn > 0 such that
∑∞

n=1 ‖cnxn‖ < ∞ and putting yn =
xn − xn ∧

∑
k 6=n cn

−1ckxk, we obtain the required elements. Indeed, there holds
0 6 yn and

0 6 ym ∧ y j 6
(

xm − xm ∧
c j

cm
x j

)
∧
(

x j − x j ∧
cm

c j
xm

)
6 max(cm

−1, c j
−1)
[

(cmxm − cmxm ∧ c jx j) ∧ (c jx j − c jx j ∧ cmxm)
]

= 0,

i.e., ym ∧ y j = 0 for m 6= j. The continuity of Q implies Q(yn) =
Q(xn)− Q(xn) ∧

∑
k 6=n cn

−1ckQ(xk). Moreover, Q(xk) ∈ {Q(xn)}d for k 6= n, and

so Q(xn) ∧
∑

k 6=n cn
−1ckQ(xk) = 0 by the closedness of the band {Q(xn)}d. We have

just proved Q(yn) = Q(xn), hence yn /∈ I.

Now we formulate a result that is the opposite of the statement (∗) quoted in the
introduction. Our proof of the result uses an idea of a construction of a suitable
basic sequence applied by the authors of [3, 10]. We also apply a theorem saying
that a separable σ-Dedekind complete F-lattice (E, ‖ · ‖) (i.e., every order bounded
from above countable subset of E has a supremum) satisfies the Lebesgue property
(equivalently the topology on E is a Lebesgue topology): for every net (xα) decreasing
to zero there holds ‖xα‖ → 0 (see [1, Thm. 3.29]).

Theorem 2.2 Let I be a closed infinite dimensional and infinite codimensional ideal
in an F-lattice E = (E, ‖ · ‖). If I does not contain any order copy of RN, then there exists
a closed separable discrete Riesz subspace G such that the induced topology is Lebesgue,
I ∩ G = {0} and I + G is not closed.

Proof Consider three cases.
1. Suppose Id = {0}, i.e., I is order dense in E. According to Lemma 2.1 there

are pairwise disjoint elements xn ∈ E+ r I. Multiplying, if necessary, every xn by
sufficiently small but strictly positive numbers, we can assume ‖xn‖ → 0. Choose
0 < y ′n ∈ [0, xn] ∩ I. Since RN is not order embeddable in I, we are able to find
numbers tn > 0 such that infn ‖tn y ′n‖ > 0 (see Lemma 1.1). Let yn = tn y ′n and define
zn = yn + xn. Clearly zk ∧ z j = 0 for distinct indices, and so G = span{zn : n ∈ N} is
a closed, separable, discrete Riesz subspace. It is easy to check that G is σ-Dedekind
complete. By virtue of [1, Thm 3.29], (G, ‖ · ‖) satisfies the Lebesgue property. If
g ∈ Gr {0} then g =

∑∞
n=1 anzn with an 6= 0 for at least one n. Hence |g| dominates

a nonzero element |an|xn /∈ I. Therefore, g /∈ I and we obtain I ∩ G = {0}. The
closedness of I and G implies that the natural projection P : I + G→ I has the closed
graph. If I +G were closed, then P would be continuous by the closed graph theorem,
but ‖zn − yn‖ → 0 while ‖P(zn − yn)‖ = ‖yn‖9 0.

2. Assume 0 < dim Id < ∞. The ideal I + Id is order dense (see [1, Thm 1.25])
and its dimension, as well as codimension, is infinite. Moreover I + Id is closed (see
[6, Prop. 1.2.2]). According to the first case there exists a closed separable discrete
Riesz subspace G satisfying the Lebesgue property such that G ∩ (I + Id) = {0},
I + Id + G 6= I + Id + G. Since Id is a finite dimensional band, Id + G is a closed Riesz

https://doi.org/10.4153/CMB-2011-151-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-151-0


Some Remarks on the Algebraic Sum of Ideals and Riesz Subspaces 439

subspace satisfying all desired conditions (let us note that also I ∩G = {0} and I + G
cannot be closed because in the opposite case I + G + Id would be closed as the sum
of a closed and finite dimensional subspaces).

3. If dim Id =∞, fix two sequences (yn), (xn) of strictly positive pairwise disjoint
elements in I and Id respectively. Multiplying yn and xn by suitable large or small
positive numbers we can assume all yn’s lie outside some neighborhood of zero and
(xn) tends to zero. Repeating arguments from the part 1 we prove the Riesz subspace
G = span{yn + xn : n ∈ N} is as required.

A “locally solid” analogue of minimal topologies is considered in the theory of
locally solid Riesz spaces. Namely a Hausdorff locally solid Riesz space (E, τ ) is
called minimal if E does not admit a Hausdorff locally solid topology essentially
coarser than τ (see [1, Section 7.5] for more details). Clearly (E, τ ) is minimal if
and only if every continuous injective Riesz homomorphism on E is a homeomor-
phism. The above equivalence implies that if B is a projection band in a minimal
(E, τ ), then (B, τ |B) is minimal. Indeed, every continuous injective Riesz homomor-
phism T : B → F generates an operator of the same type on E, i.e., the operator
T̂ : E → F × Bd defined by T̂(x) = (T(Px), x − Px) where P is the band projection
onto B. The map T̂ is a homeomorphism by the minimality of (E, τ ), and so T is a
homeomorphism too.

In contrast to the general case of F-spaces we have a very nice example of an
F-lattice whose topology is minimal in the family of Hausdorff locally solid topolo-
gies. If (S,Σ, µ) is a σ-finite measure space then the Riesz space L0(µ) of all equiv-
alence classes of Σ-measurable real valued functions on S equipped with the topol-
ogy of convergence in measure on sets of finite measure is a minimal F-lattice; see
[1, p. 210] (on the other hand, for an atomless measure µ the space L0(µ) admits a
Hausdorff vector topology coarser than the topology of µ-convergence–see [7]). It
is well known that minimal linear topologies are complete ([2, Prop. 2.2]), while
there exist incomplete topologies minimal in the class of locally solid topologies (the
topology of the µ-convergence is minimal in Lp(µ)–see [1, Thm. 7.74]).

A minimal F-lattice (E, τ ) has very strong order and topological properties.
For instance τ is unique Hausdorff locally solid topology admitted by E (see [1,
Thm. 5.20]). Applying [1, Cor. 7.68] we obtain E coincides with its universal comple-
tion Eu, and so E is laterally complete. Moreover by [1, Thm. 7.56] and [1, Thm. 7.2]
E is super Dedekind complete and E contains a weak unit. According to [1, Thm.
7.67] τ is a Lebesgue topology. The remark finishing [11] implies τ is also a Levi
topology (i.e., every increasing τ -bounded net of positive elements has a supremum
in E).

Besides minimal spaces, there were considered quotient-minimal topological vec-
tor spaces X (i.e., X/Y is a minimal space for every closed subspace Y ⊂ X); see [2].
Quotient Riesz spaces E/F have their own peculiarity; one must always assume that
F is an ideal (for an explanation why this assumption is natural and important; see
[12, Section 2]). We formulate a locally solid analogue of the quotient-minimality: a
locally solid Riesz space (E, τ ) is quotient-by-ideals-minimal whenever E/F is mini-
mal for every closed ideal F in E, we do not obtain any new class of F-lattices, i.e., an
F-lattice (E, τ ) is quotient-by-ideals-minimal if and only if E is minimal. Indeed, if E
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is minimal, then the topology τ is Lebesgue, and so closed ideals F in E are projection
bands ([1, Thm. 3.7]). Therefore E/F is order isomorphic to the projection band Fd,
which is, as we have already noticed, a minimal locally solid Riesz space.

The following problems seem to be natural in connection with the fact that X + Y
is closed for a minimal subspace X and a closed subspace Y satisfying the condition
X ∩ Y = {0}:
1. Is I + G closed whenever G is a closed Riesz subspace, I is a closed ideal, and I

(with the topology induced from E) is a minimal locally solid Riesz space?
2. Does the Theorem 2.2 remain true if we assume that I is not a minimal locally

solid Riesz space instead of the (stronger) requirement that no order copy of RN is
included in I?

Modifying the proof of [2, Proposition 2.2] we easily obtain an answer to a ques-
tion similar to question 1.

Proposition 2.3 Let I be a closed ideal in an F-lattice E = (E, τ ). If F ⊂ E is a closed
Riesz subspace and τ restricted to F is minimal, then I + F is closed.

Proof Suppose first that I ∩ F = {0}. The quotient map Q : E → E/I restricted
to F is a continuous injective Riesz homomorphism, and so it is a homeomorphism.
Hence Q(F) is closed in E/I because Q(F) is complete. The continuity of Q implies
that I + F = Q−1(Q(F)) is closed.

Let I ∩ F = F1 6= {0}. The subspace F1 is a closed ideal in a Dedekind complete
Riesz space F, and τ restricted to F is a Lebesgue topology. According to [1, Thm.
3.7] F1 is a projection band in F. If Fd

1 denotes the disjoint complement of F1 in F,
then Fd

1 is minimal and I ∩ Fd
1 = {0}. The first part of the proof shows I + Fd

1 = I + F
is closed.
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