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Abst rac t . Respiratory sinus arrhythmia (RSA) has been shown to be a sensitive 
index of vagal cardiac control. We studied the genetic and nongenetic influences 
on individual differences in RSA in a sample of 160 adolescent twins. RSA was 
measured during rest and across two different tasks. Results show that heritability 
is task dependent. The amount of genetic variance is the same, however, during rest 
and task conditions. Because nonshared environmental variance decreases during 
tasks, heritability is larger for RSA measured under more stressful conditions than 
for RSA as measured during rest. Multivariate models assessed the continuity of 
the genetic and environmental influences and show genetic influences to be the 
same across different conditions, while environmental influences are different. More 
specifically, a one-factor model is found for genetic influences and a second-order 
autoregressive model for the environmental factors. 
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INTRODUCTION 

In this paper we look at the genetic influences on individual differences in cardiac 
vagal tone as indexed by respiratory sinus arrhythmia (RSA). High RSA is regarded 
as an index of good health, both with regard to cardiovascular and central-nervous 
system functioning. In a prospective study Hinkle et al [7] found RSA to be an 
early predictor of cardiovascular disease and death. Lowensohn et al [10] observed 
heart-rate variability to be related to the functional state of the nervous system 
in a study of brain-damaged adults. Porges [14] also demonstrated a relation of 
RSA with clinical dysfunction and found RSA to be decreased in disordered popu­
lations such as children with minimal brain dysfunction or hyperactivity. Based on 
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these observations, Van der Molen et al [12] proposed to use RSA in cardiovascular 
neurometric assessment of hyperactive children. In addition, RSA has also been 
claimed to be related to information processing [13]: RSA goes down, for example, 
during mental load in laboratory tasks such as reaction time and speeded mental 
arithmetic. 

Heart rate level is the result of intrinsic sinus node function and humoral and 
nervous effects. Nervous innervation of the heart is both sympathetic and parasym­
pathetic (vagal) and short-term changes in heart rate can result from simultaneous 
changes in sympathetic influences and vagal tone. To separate the influences of 
vagal tone from sympathetic effects, it is therefore not sufficient to look at heart 
rate itself. An increase in heart rate, as observed in many stressful laboratory tasks, 
for example, can be the result of an increase in sympathetic influence or a decrease 
in vagal tone, or both. Respiratory sinus arrhythmia has been shown to be a sensi­
tive, noninvasive index of cardiac vagal control. RSA refers to the cyclic variations 
in heart rate that are related to respiration. Heart rate typically increases during 
inspiration and decreases during expiration. The stronger these respiration-related 
variations in heart rate, the larger RSA and the stronger the vagal control of heart 
rate. The correlation between RSA and independently measured vagal tone has 
been found to be very high in both animal and human studies (r > 0.9) [9,3]. Part 
of RSA is mediated through the gating of vagal efferents of the heart by respi­
ration, but the precise mechanisms underlying RSA are not understood. Several 
mechanisms are reviewed by Porges [15] and Grossman [5]. 

There are large individual differences in RSA, but no research is yet available 
on its heritability. For that reason, we measured RSA in a sample of 160 twin pairs 
to establish the influence of genetic factors on RSA. As RSA can be influenced 
by task manipulation, it was assessed both during rest and during a reaction time 
and a mental arithmetic task. In addition to estimating heritability under different 
conditions we also wanted to investigate if the same genetic and environmental 
influences operate in different tasks. 

METHODS 

Subjects 

This study is part of a larger project in which cardiovascular risk factors are studied 
in 160 adolescent twin pairs and their parents. Addresses of twins (between 14-20 
years of age) living in Amsterdam and neighboring cities were obtained from City 
Council population registries. Twins still living with both their biological parents 
were contacted by letter and asked to participate in the study. A family was 
included in the study only if the twins, as well as both parents, were willing to 
participate. Between 30% and 40% families complied. In addition, a small number 
of families who heard of the study from other twins also volunteered to participate. 
At the time of data collection, 83 families lived in, and 77 outside Amsterdam. 

Zygosity was determinated by analyzing the following polymorphisms: ABO, 
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MNS, P, Rhesus, Lutheran, Kell, Duffy, Kidd, Gm, Am and Km. Six twin pairs 
whose parents still doubted their monozygosity were also typed by DNA finger­
printing [8]. Three series of triplets were included by discarding the data from the 
middle child. 

There were 35 MZ female pairs (average age 16.0, sd = 2.2), 35 MZ male pairs 
(16.6, sd = 1.8), 30 DZ female pairs (17.7, sd = 2.0), 31 DZ male pairs (17.2, sd = 
1.7) and 29 DZ opposite sex pairs (16.4, sd = 1.8). All subjects were paid Dfl. 25 
for their participation. 

Procedure 

Subjects always came to the laboratory in pairs, either the twins together and the 
parents together or a parent and a child. After arrival in the laboratory, height 
and weight were measured and electrodes and blood pressure cuff were attached. 
Subjects were measured during rest and during two task conditions. Testing took 
place in a sound-attenuated, electrically shielded cabin. The two experimental tasks 
consisted of a choice reaction time (RT) task and a speeded mental arithmetic 
(MA) task. Each condition was repeated once and lasted 8.5 minutes. During the 
resting periods subjects were asked to relax as much as possible. Before actual 
measurements were taken, subjects first received a practice session for each task. 
Subjects changed places in the cabin several times. When one subject was tested, 
the other subject filled in questionnaires. Sequence of events was: practice sessions, 
pause, Restl followed by RT1 and RT2, another break, Rest2 followed by MAI and 
MA2. Eleven twin pairs were tested a second time after 18 months. 

Tasks 

In the RT task, each trial was started with the simultaneous onset of an auditory 
warning stimulus and the appearance of a vertical bar on the television screen. 
After 5 sec, a reaction stimulus was heard. Subjects had to react to high tones 
by pressing a key labeled "Yes" and to low tones by pressing a key labeled "No". 
Two seconds later, subjects received feedback on the television screen, indicating 
whether they had pushed the correct key and, in case the response was correct, also 
their reaction time. 

In the MA task, subjects had to add 3 numbers that were presented in suc­
cession on the television screen. Five sec after the first number, the answer to the 
addition problem appeared on the screen. Half of the presented answers were cor­
rect, half incorrect. Subjects were required to press the "Yes" key if the presented 
answer was correct, and the "No" key if it was incorrect. They received the same 
feedback as in the RT task and after 2 more sec the next trial was started. The 
MA problems contained 10 levels of difficulty: ranging from 3 1-digit numbers (eg, 
9 + 4 + 5) to 3 2-digit numbers (eg, 85 + 79 + 47). 

All subjects started with a training session of 36 RT and 36 MA trials. The 
first problem for the MA task always was at the first level of difficulty. The level 
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of next problems depended on the subjects responses. The level reached by the 
subject after the 36 practice trials determined the level at which he or she started 
in the MA task. This procedure was developed so that the MA task would be 
equally stressful for all subjects. After the training session followed a pause and 
the first resting period. Next, subjects received 2 blocks of 36 RT trials. After a 
pause, subjects received the second resting period and two blocks 36 MA trials. 

Apparatus 

Subjects were seated in a comfortable chair in front of a Barco color television 
screen, that was used for presentation of visual stimuli. Auditory stimuli were bin-
aurally presented through padded earphones. Two reaction time keys were mounted 
on either the left or right arm of the chair. Subjects pushed the keys with their 
preferred hand (278 right handed, 42 left handed). 

To obtain electrocardiograms (ECG), Ag-AgCl electrodes were placed on ster­
num and lateral margin of the chest. ECG was recorded using an amplifier with a 
time constant of 0.3 sec and 1 M ohm impedance. 

To measure respiration, a technique was employed that is based on changes in 
thorax circumference caused by expiration and inspiration. To assess these changes, 
subjects wore a small silicone tube around the thorax in which the frequency shift of 
an audio-tone was measured. These frequency shifts are directly related to changes 
in thorax circumference. 

Data Quantification 

ECG and respiration were recorded on a Beckman polygraph and digitized at 250 
samples/sec via a 12-bit A-D converter. ECG data were used to determine the time 
between successive R-waves in msec. The respiration signal was used to identify on­
set times of inspiration and expiration phase and of the pauses between inspiration 
and expiration. RSA was quantified by the peak-to-trough method [6]. The short­
est interbeat interval during inspiration is subtracted from the longest interbeat 
interval during expiration yielding a longest-shortest difference in msec. These dif­
ferences are then averaged across all respiratory cycles of the measurement period. 
Interactive inspection of the automatic RSA quantification allowed for removal of 
artifacts. The first 30 sec of each condition were discarded for all subjects. 

RESULTS 

Table 1 gives means and standard deviations for the oldest and youngest twin of 
each sex by zygosity group for all task conditions. Multivariate analyses of variance 
showed no effect of zygosity and sex or of the interaction of sex by zygosity on the 
6 RSA measures. 
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Table 1 - Means and standard deviat ions for R S A in msec for oldest and youngest 
twins during mental ari thmetic ( M A ) , reaction t ime (RT) and rest 

RSA 

MZM t l 
MZM t2 

DZM t l 
DZM t2 

MZF t l 
MZF t2 

D Z F t l 
DZF t2 

DZOSM 
DZOS F 

Total 

MAI 

82 (50.6) 
77 (40.0) 

81 (40.9) 
85 (64.5) 

93 (53.8) 
88 (48.2) 

83 (56.7) 
77 (43.8) 

88 (38.0) 
86 (42.2) 

84 (48.2) 

MA2 

79 (50.7) 
69 (38.2) 

77 (40.0) 
79 (58.8) 

91 (47.7) 
85 (46.3) 

80 (51.9) 
75 (44.9) 

85 (37.4) 
83 (40.9) 

80 (45.9) 

RTl 

91 (48.0) 
88 (46.9) 

95 (44.9) 
92 (61.1) 

106 (55.4) 
100 (44.9) 

88 (50.6) 
88 (47.8) 

99 (41.1) 
104 (51.5) 

95 (49.3) 

RT2 

83 (42.3) 
81 (43.2) 

88 (41.7) 
86 (60.4) 

99 (49.5) 
94 (46.3) 

90 (50.4) 
83 (43.4) 

93 (36.1) 
99 (54.1) 

89 (47.0) 

Restl 

114 (74.0) 
110(52.5) 

102 (51.5) 
106 (65.8) 

130 (61.2) 
114 (52.0) 

109 (64.0) 
104 (51.2) 

109 (52.5) 
116 (58.7) 

111 (58.7) 

Rest2 

114 (59.7) 
105 (54.7) 

98 (42.5) 
103 (55.7) 

127 (64.5) 
116 (53.7) 

112 (70.6) 
107 (64.0) 

114 (46.6) 
116 (58.3) 

111 (57.4) 

Correlations between RSA and age were not significantly different from zero. 
Average long-term test-retest correlations computed for the 22 subjects that 

performed the experiment twice were 0.59 for Rest, 0.53 for RT and 0.60 for MA. 
Analysis of variance for repeated measures tested the effects of task (3), trial 

(2, ie, the repetition of each condition), and task X trial. Probabilities for the 
within-subjects factors were adjusted with the Greenhouse and Geisser [4] correc­
tion. There were significant (at the 5% level or better) effects of task and trial as 
well as of the interaction between the two. These effects did not interact with sex 
or zygosity. The effect of task is in the expected direction: RSA decreases under 
task conditions as compared with rest and more so in the more demanding MA 
task than in the RT task. As can be seen in Table 1, the effects of trial and task x 
trial, though significant, are very small. 

Genetic Analyses 

Table 2 gives the intraclass correlations for the 5 twin groups, and for all MZ and all 
DZ pairs together. The correlations are dependent on the measurement condition: 
for both MZ and DZ twins correlations are higher under task conditions than during 
rest. With the possible exception of the rest conditions, there is no suggestion of 
different heritabilities for boys and girls. 

Table 3 gives chi-squared statistics for univariate models fitted to each task 
condition. Models that have only a random environment parameter (E) do not 
fit the data in the task conditions, but do give a nonsignificant \ 2 for rest. For 
all conditions, however, there is a significant improvement in fit if genetic (G) or 
common environmental (C) factors are added to the model. This improvement is 
somewhat larger for the EG than for the EC model. When both G and C are 
specified, estimates for C go to zero and an EG model remains. The second part of 
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Table 3 gives parameter estimates from the best fitting (EG) model and heritability 
estimates, again for each condition. Genetic factors explain almost 50% of the 
variance in RSA under task conditions and roughly half of that during rest. As can 
be seen, the amount of genetic variance is almost the same in each situation, and the 
differences in heritability are caused by a larger amount of specific environmental 
variance in the resting conditions. 

Table 2 - Intraclass correlations for R S A during mental ari thmetic ( M A ) , reaction 
t i m e (RT) and rest 

RSA MAI MA2 RTl RT2 Restl Rest2 

MZM 
DZM 
MZF 
DZF 
DZOS 

AUMZ 
AUDZ 

0.48 
0.32 
0.48 
0.21 
0.24 

0.50 
0.25 

0.51 
0.33 
0.48 
0.20 
0.17 

0.51 
0.23 

0.42 
0.19 
0.51 
0.12 
0.20 

0.47 
0.16 

0.47 
0.22 
0.49 
0.12 
0.24 

0.49 
0.19 

0.15 
0.14 
0.45 
0.04 
0.07 

0.30 
0.07 

0.19 
0.03 
0.36 
0.05 
0.19 

0.29 
0.06 

Table 3 - Univariate model fitting: Chi-squared statist ic and probability level 

MAI MA2 RTl RT2 Restl Rest2 

E 26.88 (0.00) 
EC 8.96 (0.35) 
EG 6.21 (0.62) 
EGC 6.20 (0.52) 

24.32 (0.00) 
6.88 (0.55) 
3.74 (0.88) 
3.73 (0.81) 

19.71 (0.02) 
6.83 (0.56) 
2.27 (0.97) 
2.27 (0.94) 

21.34 (0.01) 
7.86 (0.44) 
2.82 (0.95) 
2.82 (0.90) 

9.07 (0.43) 
5.07 (0.75) 
3.98 (0.86) 
3.98 (0.78) 

12.04 (0.21) 
8.66 (0.37) 
7.44 (0.49) 
7.44 (0.38) 

Input is mean squares between and within twin pairs; 
degrees of freedom are 9 (E), 8 (EC and EG) and 7 (EGC). 

Parameter e s t imates and SE for univariate EG models 

G 33.52(3.82) 31.88(3.66) 33.25(3.99) 32.57(3.69) 
E 35.28 (2.78) 33.72 (2.66) 36.57 (2.87) 34.12 (2.69) 

h2 0.47 0.47 0.45 0.48 

28.73 (6.64) 
51.36 (3.77) 

0.24 

27.84 (6.57) 
50.46 (3.70) 

0.23 

Table 4 - Phenotyp ic correlations for R S A between tasks for oldest (upper half) and 
younges t twins (lower half) 

Restl 
RTl 
RT2 
Rest2 
MAI 
MA2 

Restl 

1.000 
0.806 
0.812 
0.861 
0.741 
0.721 

RTl 

0.827 
1.000 
0.958 
0.827 
0.888 
0.859 

RT2 

0.817 
0.953 
1.000 
0.835 
0.909 
0.906 

Rest2 

0.900 
0.819 
0.817 
1.000 
0.783 
0.764 

MAI 

0.755 
0.895 
0.905 
0.823 
1.000 
0.957 

MA2 

0.739 
0.868 
0.886 
0.793 
0.976 
1.000 
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Phenotypic correlations between the six RSA measures are high (see Table 
4). The highest correlations are between the replications of a condition, while 
correlations between rest and task are somewhat lower. To the 6 x 6 matrices of 
crossproducts between and within twin pairs we first fitted a factor model with one 
genetic and one environmental common factor [11] and a simplex model with one 
first-order autoregressive genetic and one first-order autoregressive environmental 
series [2]. In the factor model, correlations between observations are explained by 
their loadings on the same genetic and environmental factors. In addition, unique 
genetic and environmental factors can be specified for that part of the variance that 
is not shared between measures. In the simplex model, correlations are explained by 
the autocorrelation among genes and among environmental factors that influence 
the phenotype at each different time point. In this model the variance unique to 
each observation is accounted for by an innovation term that can come into play at 
each time point. Both these models did not fit the data, even after some allowance 
was made for the bad condition of the input matrices. When working with input 
matrices that are nearly singular because of the high intercorrelations between 
measures (ie, have a small determinant), chi-squared statistics become biased and 
parameter estimation can be difficult [1]. Numerical optimization can be greatly 
improved by adding a small constant to the diagonal of the input matrices that is 
subsequently corrected for in the model. Since the constant is corrected for in the 
model, parameter estimates themselves remain unbiased. 

With these provisions, the simplex model showed a smaller x2 than the factor 
model, x2 f° r the factor model was 370.55 (df = 192, p < 0.000) and for the sim­
plex model it was 270.49 (df = 187, p < 0.000). Inspection of the residuals for the 
simplex model (ie, the differences between estimated and observed variances and 
covariances) showed that the largest residuals were for the covariances of Rest 1 and 
Rest2 and for the covariances of RT and MA tasks. Looking at the phenotypic cor­
relations, we see that the correlations among tasks are higher than the correlations 
between resting conditions and tasks. This suggests that a first-order autoregressive 
process may not give a good explanation of the data and that we have to look for 
additional influences specific to task and rest conditions. Therefore, second-order 
autoregressive models were fitted to the data with additional paths from Restl to 
Rest2 and from RT2 to MAI. Here, in addition to a direct path from time i to 
time i + 1, separate paths test whether there is a significant independent influence 
from the first to the second resting period, that is, influences specific to rest and 
not to task, and if there also is an independent influence from the RT to the MA 
task that is not mediated by the rest in between the two. Models were specified 
where there was a second-order process for the genetic or the environmental series. 
The model with a second-order simplex for the environment showed the best fit. 
The model with a second-order process for G gave a \ 2 of 266.83 (df = 185, p < 
0.000), whereas a second-order process for E gave a \ 2 of 203.11 (df = 185, p < 
0.172). Parameter estimates for this last model are given in Table 5A. Loadings of 
the 6 observations on unique environmental factors were constrained to be equal 
(the square of these estimates represents variance of measurement errors and other 
occasion specific environmental influences). The autoregressive coefficients for the 
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Table 5 - Parameter e s t imates and S E for 
A: s implex model for E ( s econd -o rde r ) and G(flrst-order) 
B: s implex model for E (second-order) and Factor Mode l for G 
C: environmental and genet ic va r i ances based on model B 

A 

Restl 
RTl 
RT2 
Rest2 

MAI 

MA2 

B 

Rest l 
RTl 
RT2 
Rest2 

MAI 

MA2 

C 

Rest l 
RTl 
RT2 
Rest2 
MAI 
MA2 

Autoregressive 
coefficients (E) 

0.58 (0.04) 
0.91 (0.04) 
0.52 (0.12) 
0.60 (0.07)° 
0.15 (0.06) 
0.72 (0.10)b 

0.92 (0.04) 

Autoregressive 
coefficients (E) 

0.57 (0.04) 
0.87 (0.03) 
0.45 (0.08) 
0.61 (0.05)a 

0.14 (0.04) 
0.74 (0.07) b 

0.90 (0.03) 

Environmental 
innovation 

2492.73 
569.21 

87.13 
544.17 
315.70 

58.57 

Innovations 
(E) 

2710.26 (328.9) 
480.64 ( 83.8) 

69.55 ( 37.4) 
465.84 ( 75.0) 

209.24 ( 46.0) 

27.62 ( 33.5) 

Innovations 
(E) 

2492.73 (283.3) 
569.21 ( 70.8) 
87.13 ( 30.6) 

544.17 ( 60.6) 

315.70 ( 38.9) 

58.57 ( 30.1) 

Total E 
variance 

2492.73 
1376.10 
1128.70 
1700.26 
967.11 
841.93 

Autoregressive 
coefficients (G) 

1.15 (0.19) 
0.97 (0.05) 
0.79 (0.12) 

1.32 (0.22) 

0.97 (0.04) 

Factor 
G 

32.63 (3.42) 
32.63 (3.42) 
32.63 (3.42) 
32.63 (3.42) 

32.63 (3.42) 

32.63 (3.42) 

Genetic 
variance 

1064.70 
1064.70 
1064.70 
1064.70 
1064.70 
1064.70 

Innovations 
(G) 

696.44 (295.1) 
52.24 (108.9) 
14.75 ( 23.3) 
27.79 ( 28.2) 

49.97 ( 67.1) 

24.10 ( 23.5) 

loadings 
Error 

6.65 (1.19) 
6.65 (1.19) 
6.65 (1.19) 
6.65 (1.19) 

6.65 (1.19) 

6.65 (1.19) 

Error 
variance 

44.22 
44.22 
44.22 
44.22 
44.22 
44.22 

Error 

7.08 
7.08 
7.08 
7.08 

7.08 

7.08 

(1.06) 
(1.06) 
(1.06) 
(1.06) 

(1.06) 

(1.06) 

h2 

0.29 
0.43 
0.48 
0.37 
0.51 
0.51 

Independent influence of Restl on Rest2 
Independent influence of RT2 pn MAI 

environmental part of the model show that, in addition to significant paths from 
time i to time i -I- 1, there are independent influences from environmental factors 
at Restl to environmental factors at Rest2, representing environmental influences 
specific to "resting" RSA. The independent influences from environmental factors 
at RT2 to environmental factors at MAI can be regarded as task specific. As 
can be seen, the genetic simplex strongly suggests a one-factor solution with the 
autoregressive coefficients approaching 1, and nonsignificant genetic innovations. 
Thus, as a last model, we took the same second-order autoregressive environmental 
process and a one-factor model for G, with loadings on the genetic factor constrained 
to be equal (see Figure). The \ 2 for this last model was 215.73 (df = 195, p < 
0.147). Parameter estimates are given in Table 5B and the total amounts of genetic 
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and environmental variance in 5C. The estimate of 1700.26 for the environmental 
variance in RSA during Rest2 is thus in part shared with the environmental variance 
during RT2 (0.452 * 1128), in part with the environmental variance during Restl 
(0.612 * 2492), and is partly new environmental variance entering into the process 
at that point in time (544). As can be seen in Table 5, the error variance is relatively 
small as compared to the total environmental variance. Heritabilities as computed 
from this multivariate model, finally, are somewhat larger than in the univariate 
analyses. By having 6 indicators for G and constraining the factor loadings on G 
to be the same across all conditions, there is more power to estimate heritabilities 
than in the univariate case. 

RE1 

T T 
£ 

RT1 

T T 
£ 

RT2 

T 1 
£ 

RE2 

T 1 
£ 

MAI 

T T 
£ 

MA2 

T T 
£ 

T t v T c T v T v 

Figure. Final model for RSA measured during rest (RE), reaction time (RT) and mental arith­
metic (MA). Genetic influences (G) show a one factor structure. The environmental process is 
described as a second-order autoregressive model, with independent influences from Restl to Rest2 
and from RT2 to MAI. e represents measurement errors and (, innovations. 
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DISCUSSION 

Univariate analyses of the 6 RSA measures show heritabilities to be task depen­
dent. During 2 stressful laboratory tasks, roughly 50% of the variance is explained 
by genetic factors, while during an 8-minute resting period, only 25% is accounted 
for by genetic influences. The amount of genetic variance is the same, however, dur­
ing all conditions and the reason that h2 is larger during tasks, is that the specific 
environmental variance decreases. There is no evidence for influence of common 
environment. Of even more interest are the results from the multivariate analyses. 
These not only show equal amounts of genetic variance in all conditions, but also 
that the same genetic factors are expressed under task and rest conditions. This 
implies that individual differences in vagal tone that are genotype dependent are 
better assessed during task than during resting conditions. The effects of experi­
mental manipulations only show up in the environmental part of the variance, and 
here we find a second-order autoregressive process with environmental influences 
specific to rest and specific to task. Experimental manipulations do not necessarily 
show up in the environmental part of the variance. Boomsma et al [1] found that 
when the experimental manipulation consisted of administering a standard dose of 
alcohol, its effects on psychomotor performance showed up in the genetic (simplex) 
part of the model, whereas the environmental part showed a one-factor structure. 
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