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Abstract
We describe the Galois action on the middle ℓ-adic cohomology of smooth, projective fourfolds 𝐾𝐴(𝑣) that occur
as a fiber of the Albanese morphism on moduli spaces of sheaves on an abelian surface A with Mukai vector v. We
show this action is determined by the action on 𝐻2

ét (𝐴�̄� ,Qℓ (1)) and on a subgroup 𝐺𝐴(𝑣) � (𝐴 × �̂�) [3], which
depends on v. This generalizes the analysis carried out by Hassett and Tschinkel over C [21]. As a consequence,
over number fields, we give a condition under which 𝐾2 (𝐴) and 𝐾2 ( �̂�) are not derived equivalent.

The points of𝐺𝐴(𝑣) correspond to involutions of 𝐾𝐴(𝑣). OverC, they are known to be symplectic and contained
in the kernel of the map Aut(𝐾𝐴(𝑣)) → O(𝐻2 (𝐾𝐴(𝑣),Z)). We describe this kernel for all varieties 𝐾𝐴(𝑣) of
dimension at least 4.

When 𝐾𝐴(𝑣) is a fourfold over a field of characteristic 0, the fixed-point loci of the involutions contain K3
surfaces whose cycle classes span a large portion of the middle cohomology. We examine the fixed-point locus on
fourfolds 𝐾𝐴(0, 𝑙, 𝑠) over C where A is (1, 3)-polarized, finding the K3 surface to be elliptically fibered under a
Lagrangian fibration of 𝐾𝐴(0, 𝑙, 𝑠).
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1. Introduction

Given a polarized abelian surface (𝐴, 𝐻) defined over an arbitrary field k, we may study moduli spaces
of geometrically H-stable sheaves on A with a fixed Mukai vector 𝑣 = (𝑟, 𝑙, 𝑠); that is, fixed rank, Néron-
Severi class of the determinental line bundle and Euler characteristic. Under mild conditions on the
Mukai vector, the moduli spaces 𝑀𝐴(𝑣) are smooth and projective. Their Albanese varieties are 𝐴 × �̂�,
and we denote a fiber of the Albanese morphism by 𝐾𝐴(𝑣).

If defined over C, the variety 𝐾𝐴(𝑣) is a hyperkähler variety of dimension 𝑣2 − 2 and is deformation
equivalent to the generalized Kummer variety 𝐾𝑛 (𝐴) � 𝐾𝐴(1, 0,−𝑛 − 1), where 𝑛 := 𝑣2

2 − 1, which is
given by the fiber over 0 of the summation map acting on the Hilbert scheme of length-(𝑛 + 1) points on
A. Following Fu and Li [17], who study these varieties over other fields, we call the 𝐾𝐴(𝑣) symplectic
varieties (see Proposition 2.5). There are four known deformation types of hyperkähler varieties: K3[𝑛]-
type, Kummer type (or Kum𝑛-type) and the two sporadic examples of O’Grady [49, 50]. The varieties
𝐾𝐴(𝑣) are of Kummer n-type. It has been shown [41, Prop. 2.4] that under a lattice-theoretic condition,
if 𝑛 + 1 is a prime power, any hyperkähler of Kummer n-type is the fiber of the Albanese map of a
moduli space of stable objects on an abelian surface A. So varieties 𝐾𝐴(𝑣) do not exhaust the class but
are, at this point, the best understood.

In [21], Hassett and Tschinkel analyze the cohomology of complex generalized Kummer fourfolds
𝐾2(𝐴). They show that𝐻4 (𝐾2(𝐴),Q) is generated by𝐻2 (𝐾2(𝐴),Q) and an 81-dimensional vector space
spanned by the cycle classes of 81 distinct K3 surfaces in 𝐾2(𝐴). These surfaces are each contained
in the fixed locus of a symplectic involution of the form 𝑡∗𝑥 𝜄

∗, where 𝜄 is multiplication by −1 on A,
and 𝑡𝑥 is translation by a point of the three-torsion 𝐴[3] of A. Hassett and Tschinkel use deformation
theory to show that the middle cohomology for any hyperkähler variety X of Kum2-type has a similar
decomposition. The cohomology of Kummer-type hyperkähler varieties is also studied in [19].

In this paper, we extend these results by characterizing the Galois action on the ℓ-adic étale cohomol-
ogy of fourfolds𝐾𝐴(𝑣) over nonclosed fields. As one might expect from the results of Hassett–Tschinkel,
there is an 81-dimensional subspace of 𝐻4

ét(𝐾2(𝐴)�̄� ,Qℓ (2)) whose Galois action is determined by the
structure of 𝐴[3]. However, deformation-theoretic tools are too coarse to keep track of how the Galois
action changes for other fourfolds 𝐾𝐴(𝑣), which we find depends on v:

Theorem 1.1 (Theorem 4.4, Proposition 4.6). Suppose 𝐾𝐴(𝑣) is a smooth, projective variety over
an arbitrary field k. Then, there is a subgroup 𝐺𝐴�̄�

(𝑣) � (𝐴�̄� × �̂��̄� ) [3] and a Galois equivariant
isomorphism

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) � Sym2 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) ⊕ 𝑉,

where V is the 80-dimensional subrepresentation of the permutation representation Qℓ [𝐺𝐴�̄�
(𝑣)] such

that

Qℓ [𝐺𝐴�̄�
(𝑣)] � 𝑉 ⊕ Qℓ ,

and the trivial representation Qℓ is the span of (0, 0) ∈ 𝐺𝐴�̄�
(𝑣). The Galois action on the group ring

Qℓ [𝐺𝐴�̄�
(𝑣)] is induced by the action on 𝐺𝐴�̄�

(𝑣).
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By a generalization of the work of Yoshioka [56], this means the Galois action on the middle
cohomology is determined by the action on 𝐻2

ét(𝐴�̄� ,Qℓ (1)) and the action on the subgroup 𝐺𝐴�̄�
(𝑣),

which is the kernel of the isogeny 𝜙 : 𝐴× �̂�→ 𝐴× �̂� given by (𝑥, 𝑦) ↦→ (𝜙𝑀 (𝑦) − 𝑠𝑥, 𝜙𝐿 (𝑥) + 𝑟𝑦) (See
Section 3.1). This stands in surprising contrast to the case of moduli spaces of sheaves on K3 surfaces –
symplectic varieties of K3[𝑛]-type – where the cohomology representations depend only on that of the
K3 surface [15, Thm. 2].

As a consequence, by studying the even cohomology of 𝐾2(𝐴) for A defined over a number field, we
are able to show the following result on derived equivalence:

Corollary 1.2 (Corollary 5.8). Let A be an abelian surface over a number field k for which the permu-
tation representations associated to 𝐴�̄� [3] and �̂��̄� [3] are not isomorphic. Then, 𝐾2(𝐴) and 𝐾2( �̂�) are
not derived equivalent over k.

In forthcoming work [16] on Galois actions on torsion subgroups of abelian surfaces, examples of
such abelian surfaces are constructed. Intriguingly, this corollary shows that if 𝐾2(𝐴) and 𝐾2( �̂�) are
derived equivalent after base change to C, then the kernel of the Fourier–Mukai transform cannot be
given by naturally associated bundles that would descend to the field of definition for A. Corollary 1.2
complements the recent work of Magni [37], which provides a sufficient condition for the existence of
such equivalences over algebraically closed fields of characteristic zero.

The cohomology group V in Theorem 1.1 is generated by K3 surfaces contained in the fixed-point
loci of symplectic involutions on 𝐾𝐴(𝑣). We give a case-by-case explicit description of 𝐺𝐴(𝑣), and
hence, an explicit description of these symplectic involutions, which dictate the Galois action on V.

By work of Boissière–Nieper-Wisskirchen–Sarti in [8], Hassett–Tschinkel in [21] and Kapfer–Menet
in [31], for any hyperkähler variety X over C of Kum𝑛−1-type, the kernel

ker(Aut(𝑋) → O(𝐻2(𝑋,Z))) � Z/2Z � (Z/𝑛Z)4

consists of symplectic automorphisms of X; when dim 𝑋 = 4, the kernel contains all of the symplectic
involutions of X. We give an explicit description of this kernel for hyperkähler varieties 𝐾𝐴(𝑣) of any
dimension at least 4 over C.

Theorem 1.3 (Theorem 3.15). Suppose 𝐾𝐴(𝑣) is a smooth, projective variety over 𝑘 = C. Then,

ker(Aut(𝐾𝐴(𝑣)) → O(𝐻2(𝐾𝐴(𝑣),Z)))

consists of automorphisms of the following two forms:

𝐿𝑦 ⊗ 𝑡
∗
𝑥 and 𝜅 (𝑥,𝑦) := 𝐿𝑦 ⊗ 𝑡

∗
𝑥𝜅,

where 𝜅 = 𝜄∗ if 𝐾𝐴(𝑣) is an Albanese fiber over symmetric line bundles, and otherwise 𝜅 is a composition
of 𝜄∗ with a translation. The 𝜅 (𝑥,𝑦) are symplectic involutions of 𝐾𝐴(𝑣), and when dim𝐾𝐴(𝑣) = 4, these
are all of the symplectic involutions.

In the complex case, the group 𝐺𝐴(𝑣) also appears in [38] as Γ𝑣 . Markman defines Γ𝑣 as the kernel
of the map 𝜙 above as well as in terms of Clifford algebras (§10.1, Remark 4.3 op.cit.). The result [38,
Lemma 10.1] and its proof show Γ𝑣 embeds into the monodromy group of 𝐾𝐴(𝑣), acts trivially on
𝐻2 (𝐾𝐴(𝑣),Z) and 𝐻3(𝐾𝐴(𝑣),Z), and that 𝑀𝐴(𝑣) is isomorphic to a quotient of 𝐴 × �̂� × 𝐾𝐴(𝑣) by an
action of Γ𝑣 . Thus, the fact that the automorphisms 𝐿𝑦 ⊗ 𝑡

∗
𝑥 are symplectic is not new, but we provide a

proof to make our study of this family self-contained.
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Beyond their analysis of the middle cohomology for 𝐾2(𝐴), Hassett and Tschinkel explicitly describe
the fixed-point loci of the symplectic involutions. They show that the locus fixed by the standard
involution contains the Kummer K3 surface

{(𝑎1, 𝑎2, 𝑎3) | 𝑎1 = 0, 𝑎2 = −𝑎3, 𝑎2 ≠ 0},

as well as a unique isolated point supported at the identity element 0. Tarí in [54] finishes the description
by showing there are 35 more isolated points, which are tuples of two-torsion points of A. The deformation
invariance of the symplectic involutions implies that the fixed locus of any 𝜄(𝑥,𝑦) in 𝐾𝐴(𝑣) also consists
of a K3 surface and 36 isolated points [31, Thm. 7.5].

Motivated by these results, we seek a similar description of the fixed-point loci in fourfolds𝐾𝐴(0, 𝑙, 𝑠),
whose general member is a degree 𝑠 + 3 line bundle on a genus 4 curve in the linear system |𝐿 | with
𝑐1 (𝐿) = 𝑙. These moduli spaces admit a Lagrangian fibration, which aids in our study. We give the
following description:

Theorem 1.4 (Theorem 7.2). The K3 surface in the fixed-point locus of 𝜄∗ acting on 𝐾𝐴(0, 𝑙, 𝑠) is
elliptically fibered with four singular fibers of type 𝐼1 and 10 singular fibers of type 𝐼2.

The singular fibers in this elliptic fibration agree with a natural elliptic fibration on the Kummer K3
surface 𝐾1(𝐴) when A is (1, 3)-polarized – a necessary condition for 𝐾𝐴(0, 𝑙, 𝑠) to be a fourfold. The
K3 surface appears to be closely connected to the relative Jacobian of 𝐾1(𝐴) → P

1.
We also describe the isolated points in the fixed-point locus using the Abel map for the curves in |𝐿 |.

Outline

In Section 2, we provide a brief introduction to moduli spaces of sheaves, and Kummer-type varieties
arising from them, over arbitrary fields. In Section 3, we identify which automorphisms of 𝑀𝐴(𝑣) given
by translation and tensoring by a degree 0 line bundle restrict to automorphisms of 𝐾𝐴(𝑣), and then show
how these give rise to the description of the symplectic automorphisms discussed in Theorem 1.3. We
also begin the analysis of the fixed-point loci for the symplectic involutions. In Section 4, we study the
middle cohomology of fourfolds 𝐾𝐴(𝑣), proving Theorem 1.1. In Section 5, we compare our results to
questions about derived equivalences between abelian surfaces and their generalized Kummer fourfolds.
Namely, we give criteria in Section 5.1 for when a derived equivalence between abelian surfaces A and
B induces an isomorphism between 𝐺𝐴(𝑣) and 𝐺𝐵 (𝑣), and we prove Corollary 1.2 in Section 5.2.

The second half of the paper is dedicated to studying the fixed-point locus of 𝜄∗ for fourfolds
𝐾𝐴(0, 𝑙, 𝑠) over C, including the proof of Theorem 1.4. In Section 6, we study the general geometry of
𝐾𝐴(0, 𝑙, 𝑠) and the fixed-point locus, and then focus on the elliptic fibers of the K3 surface in Section 7.
In Section 8, we describe the isolated points in the fixed-point locus.

Notation

We write the standard involution on an abelian surface A, the morphism multiplying by −1 in the group
law of A, as 𝜄 : 𝐴 → 𝐴. We write 𝐾𝑛 (𝐴) for the generalized Kummer variety of dimension 2𝑛. In
particular, we write 𝐾1(𝐴) for the Kummer K3 surface of A.

For a smooth projective variety X over a field k, let 𝑋�̄� := 𝑋 ×𝑘 �̄� . We denote by 𝐻 (𝑋�̄� ,Zℓ) the ℓ-adic
Mukai lattice of X, which is the direct sum of the even cohomology twisted into weight zero:

𝐻 (𝑋�̄� ,Zℓ) :=
⊕dim 𝑋

𝑖=0 𝐻2𝑖
ét (𝑋�̄� ,Zℓ (𝑖)).

This lattice is given the usual Mukai pairing. For 𝑋 = 𝐴 an abelian surface, (𝛼, 𝛽) = −𝛼0𝛽4+𝛼2𝛽2−𝛼4𝛽0.
We will always assume that our Mukai vectors v satisfy the conditions given in Setting 2.4 unless
indicated otherwise.

Throughout, 𝐷 (𝑋) denotes the bounded derived category of coherent sheaves on X.
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2. Moduli spaces over arbitrary fields

Let A be an abelian surface defined over an arbitrary field k.
Definition 2.1. Let 𝜔 ∈ 𝐻4

ét(𝐴�̄� ,Zℓ (2)) be the numerical equivalence class of a point on 𝐴�̄� . A Mukai
vector on A is an element of

𝑁 (𝐴) := Z ⊕ NS(𝐴) ⊕ Z𝜔,

where 𝑁 (𝐴) is a subgroup of 𝐻 (𝐴�̄� ,Zℓ) under the natural inclusion.
Given a coherent sheaf F on A, we assign to it a Mukai vector 𝑣(F) ∈ 𝑁 (𝐴) given by its rank, the

Néron-Severi class of its determinantal line bundle and its Euler characteristic. We will write this as
𝑣(F) = (𝑟, 𝑙, 𝑠).

By fixing a Mukai vector v and a polarization H on A, we can construct the moduli space 𝑀𝐴,𝐻 (𝑣)
parametrizing H-semistable sheaves on A. We use the more compact notation 𝑀𝐴(𝑣). We ask that the
Mukai vector satisfies the following conditions in order to ensure that the moduli space is nicely behaved
(i.e., is a nonempty, smooth, projective variety over k).
Definition 2.2.
(a) A Mukai vector 𝑣 ∈ 𝑁 (𝐴) is geometrically primitive if its image under 𝑁 (𝐴) → 𝑁 (𝐴�̄� ) is primitive

in the lattice.
(b) A Mukai vector (𝑟, 𝑙, 𝑠) is positive if one of the following is satisfied:

(i) 𝑟 > 0
(ii) 𝑟 = 0, l is effective and 𝑠 ≠ 0

(iii) 𝑟 = 0, 𝑙 = 0 and 𝑠 < 0.
(c) A polarization 𝐻 ∈ Pic(𝐴) is v-generic if every H-semistable sheaf with Mukai vector v defined

over �̄� is H-stable.
A polarization is often v-generic if it is not contained in a locally finite union of certain hyperplanes

in NS(𝐴�̄� )R defined in [28, Def. 4.C.1], but this is not always enough to ensure genericity (see, for
example, [15, Ex. 1.7]).

When 𝑣2 = 0 and H is v-generic, Mukai showed that 𝑀𝐻 (𝑣) is an abelian surface [46, Rmk. 5.13].
We focus on the higher-dimensional case.
Proposition 2.3. Let 𝑣 ∈ 𝑁 (𝐴) be a geometrically primitive and positive Mukai vector with 𝑣2 ≥ 2, and
let H be a v-generic polarization on A. Then, 𝑀𝐴(𝑣) is a nonempty, smooth, projective, geometrically
irreducible variety of dimension 𝑣2 + 2 over k.
Proof. The projectivity and smoothness are shown in [17, Prop. 6.9], which relies on classic results in
[44] as well as [34] for the construction of moduli spaces of semistable sheaves over arbitrary fields.
Geometric irreducibility of 𝑀𝐴(𝑣) follows from [29, Thm. 4.1] (note that the authors work over C, but
their proof holds for any algebraically closed field). Finally, the dimension claim follows from [44, Cor.
0.2] once we know 𝑀𝐴(𝑣) is nonempty; nonemptiness is a consequence of [56, Thm. 0.1] along with a
lifting argument as in [17, Prop. 6.9] when the field has positive characteristic. �

Let 𝑣 := (𝑟, 𝑙, 𝑠) be a Mukai vector as in Proposition 2.3 and let

Φ𝑃 : 𝐷 (𝐴) → 𝐷 ( �̂�)

denote the Fourier–Mukai transform on A, which has kernel the Poincaré bundle P on 𝐴× �̂�. In [56, Thm.
4.1], Yoshioka proves over C that the Albanese variety of 𝑀𝐻 (𝑣) is 𝐴 × �̂� and fixing any F0 ∈ 𝑀𝐻 (𝑣),
we define the Albanese morphism as follows:

𝑀𝐴(𝑣) → �̂� × 𝐴 (2.1)
F ↦→ (det(F) ⊗ det(F0)

−1, det(Φ𝑃 (F)) ⊗ det(Φ𝑃 (F0))
−1)
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This construction also shows that over an arbitrary field k, the following map gives the Albanese torsor
of 𝑀𝐻 (𝑣):

alb : 𝑀𝐴(𝑣) → Pic𝑙𝐴×Pic𝑚
�̂�

(2.2)

F ↦→ (det(F), det(Φ𝑃 (F))),

where m is the Néron-Severi class in the Mukai vector Φ𝑃 (𝑣) := (𝑠, 𝑚, 𝑟), which is the negative of the
Poincaré dual of l by [45, Prop. 1.17].

Setting 2.4. Let A be an abelian surface defined over a field k. Let 𝑣 := (𝑟, 𝑙, 𝑠) ∈ 𝑁 (𝐴) be a geometrically
primitive and positive Mukai vector with 𝑣2 ≥ 6 and char 𝑘 � 𝑣2

2 . Let H be a v-generic polarization on
A. Fix (𝐿, 𝑀) a pair of line bundles in Pic𝑙 (𝐴) × Pic𝑚 ( �̂�). Let 𝐾𝐴(𝑣) be the fiber of alb over (𝐿, 𝑀).

OverC, [56, Thm. 0.2] shows that 𝐾𝐴(𝑣) is a hyperhähler variety, and the following result generalizes
this to other fields.

Proposition 2.5 [56, Thm. 0.2], [17, Prop. 6.9]. Suppose we have data as in Setting 2.4. Then, 𝐾𝐴(𝑣)
is a smooth, projective symplectic variety of dimension 𝑣2 − 2 and is deformation equivalent to the
generalized Kummer variety 𝐾 (𝑣2−2)/2(𝐴).

For 𝐾𝐴(𝑣) over a field of characteristic zero, which we may assume is a subfield of C, 𝐾𝐴(𝑣)C is a
hyperkähler variety. In positive characteristic, Fu and Li [17, Def. 3.1] define a symplectic variety X to
be a smooth connected variety, where 𝜋ét

1 (𝑋) = 0 and X admits a nowhere degenerate closed algebraic
2-form.

We are interested in symplectic involutions on 𝐾𝐴(𝑣). We will show in Theorem 3.15 that these all
involve the induced action of the standard involution 𝜄 on A. Pullback 𝜄∗ sends degree 0 line bundles
on A to their inverses. For any line bundle L ∈ Pic(𝐴), the multiplication by n map has the property
that [𝑛]∗L � L𝑛2

⊗ 𝑀 for some 𝑀 ∈ Pic0 (𝐴). Thus, L and 𝜄∗L differ by a degree 0 line bundle, so are
always in the same Néron-Severi class.

In order for 𝜄∗ to give a well-defined morphism on 𝐾𝐴(𝑣), 𝐾𝐴(𝑣) must be a fiber of the Albanese
morphism over a pair of symmetric line bundles L and M, which we prefer to do when possible for
notational simplicity. In the case of generalized Kummer varieties 𝐾𝑛−1(𝐴) or varieties 𝐾𝐴(𝑣) whose
Mukai vector has trivial Néron-Severi class, it is always possible to choose the fiber over the structure
sheaves of A and �̂�. For other choices of Mukai vector, we show in Lemma 2.6 below that over an
algebraically closed field, we may always choose such a pair of symmetric line bundles.

Lemma 2.6. Let A be an abelian variety over an algebraically closed field k. Then, any class in NS(𝐴)
has a symmetric representative. Moreover, there is a short exact sequence of the following form, where
Picsym (𝐴) is the subgroup of all symmetric line bundles:

0 → Pic0(𝐴) [2] → Picsym (𝐴) → NS(𝐴) → 0.

Proof. The action of 𝜄∗ on the following short exact sequence

0 → Pic0 (𝐴) → Pic(𝐴) → NS(𝐴) → 0

gives rise to the long exact sequence

0 → Pic0(𝐴) [2] → Pic(𝐴)sym → NS(𝐴) → 𝐻1 (Z/2Z, Pic0 (𝐴)) → · · · ,

where NSsym(𝐴) = NS(𝐴) since, for any line bundle L, 𝜄∗L is in the same Néron-Severi class as L. The
group 𝐻1 (Z/2Z, Pic0 (𝐴)) is trivial since crossed homomorphisms correspond to elements in Pic0 (𝐴)
and principal crossed homomorphisms correspond to choices of element in Pic0(𝐴) that have a square
root, which is all of them, since we are working over an algebraically closed field. �
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The proof above requires the field k to be algebraically closed, but we will often work over a
nonclosed field. In that case, the existence of a symmetric line bundle in a given Néron-Severi class
is not guaranteed. Rather than working over a finite extension of the ground field in order to acquire
a symmetric bundle, we will simply alter 𝜄∗ by a correction factor to get an associated involution on
𝐾𝐴(𝑣) (see Construction 3.10).

3. Symplectic involutions on 𝐾𝐴(𝑣)

In [8, Cor. 5(2)], the authors show that, for 𝑋 = 𝐾𝑛−1(𝐴) over C, the kernel of

𝜈 : Aut 𝑋 → O(𝐻2 (𝑋,Z))

is isomorphic to Z/2Z� (Z/𝑛Z)4, generated by 𝜄 and translation by elements of 𝐴[𝑛]. In fact, this group
of automorphisms is isomorphic to Z/2Z � (Z/𝑛Z)4 for any hyperkähler variety X of Kum𝑛−1-type,
since it is a deformation invariant [21, Thm. 2.1]. Moreover, when dim 𝑋 = 4, ker 𝜈 contains all of the
symplectic involutions [31, Thm. 7.5(i)]. Markman identifies a subgroup Γ𝑣 � (Z/𝑛Z)4 of ker 𝜈 when
𝑋 = 𝐾𝐴(𝑣) as coming from the kernel of 𝜙 defined below [38, §10.1]. In this section, we give an explicit
description of ker 𝜈 for 𝐾𝐴(𝑣)�̄� when we are in the more general Setting 2.4 and k is arbitrary; this will
allow us to understand the action of the Galois group on the fixed-point loci of the involutions in ker 𝜈.

In Section 3.1, we identify which automorphisms of 𝑀𝐴(𝑣) given by translation and tensoring by
a degree 0 line bundle restrict to automorphisms of 𝐾𝐴(𝑣) and show they form a group isomorphic
to (Z/𝑛Z)4. We also identify the group of such automorphisms when v is not primitive. The other
automorphism needed to generate ker 𝜈 is 𝜄∗ when 𝐾𝐴(𝑣) is the Albanese fiber over symmetric line
bundles; in Section 3.2, we produce an involution 𝜅 to replace 𝜄∗ in the more general setting. We then
study the fixed loci of the compositions of 𝜅 with the automorphisms produced in Section 3.1. In
Section 3.3, we show that these compositions are symplectic and act trivially on 𝐻2(𝐾𝐴(𝑣),Z).

3.1. Automorphisms from translation and tensor

In this section, we work with data as in Setting 2.4, with the additional assumption that k is an
algebraically closed field, and we define 𝑛 := 𝑣2

2 . Because 𝑘 = �̄� and char 𝑘 � 𝑛, we have 𝐴[𝑛] �
(Z/𝑛Z)4.

We recall that given a line bundle L ∈ Pic(𝐴), 𝜙L : 𝐴→ �̂� is defined by 𝜙L(𝑥) := 𝑡∗𝑥L⊗L−1, where
𝑡𝑥 : 𝐴 → 𝐴 is translation by a point 𝑥 ∈ 𝐴. We denote by 𝐿𝑦 ∈ Pic0(𝐴) the line bundle corresponding
to a point 𝑦 ∈ �̂�. Note that 𝜙L is dependent only on the Néron-Severi class of L, so we will use the
notation 𝜙 [L] .

Pullback by the translation map and tensoring by degree 0 line bundles give automorphisms of
𝑀𝐴(𝑣), and we are interested in when these automorphisms respect the Albanese morphism. That is, we
identify in Theorem 3.1 below which of the 𝐿𝑦 ⊗ 𝑡

∗
𝑥 ∈ Aut𝑀𝐴(𝑣) restrict to automorphisms of 𝐾𝐴(𝑣).

Theorem 3.1. Let v be a Mukai vector as in Setting 2.4. There are exactly 𝑛4 elements (𝑥, 𝑦) ∈ 𝐴 × �̂�
for which the automorphism 𝐿𝑦 ⊗ 𝑡

∗
𝑥 on 𝑀𝐴(𝑣) restricts to an automorphism on 𝐾𝐴(𝑣). These elements

form a subgroup

𝐺𝐴(𝑣) � (𝐴 × �̂�) [𝑛],

whose set of k-points is isomorphic to (Z/𝑛Z)4.
The elements of 𝐺𝐴(𝑣) are the solutions to the following equations on �̂� and A, where l and m are

the Néron-Severi classes of L and M:

𝜙𝑙 (𝑥) = −𝑟𝑦 and 𝜙𝑚(𝑦) = 𝑠𝑥. (3.1)
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Equivalently, 𝐺𝐴(𝑣) is the kernel of the following isogeny:

𝜙 : 𝐴 × �̂�→ 𝐴 × �̂� (3.2)
(𝑥, 𝑦) ↦→ (𝜙𝑚 (𝑦) − 𝑠𝑥, 𝜙𝑙 (𝑥) + 𝑟𝑦).

The proof of Theorem 3.1 requires analysis of 𝜙𝑙 and 𝜙𝑚. We will crucially need the following lemma.

Lemma 3.2 (Yoshioka [56, Lem. 4.2]).

𝜙𝑚 ◦ 𝜙𝑙 = −𝜒 · 1𝐴 and 𝜙𝑙 ◦ 𝜙𝑚 = −𝜒 · 1�̂�,

where 𝜒 := 𝜒(𝐿) = 𝜒(𝑀) = 𝑙2

2 = 𝑛 + 𝑟𝑠.

Additionally, we recall that for any F ∈ 𝐷 (𝐴),

Φ𝑃 (𝑡
∗
𝑥F) = 𝐿−𝑥 ⊗ Φ𝑃 (F) and Φ𝑃 (F ⊗ 𝐿𝑦) = 𝑡

∗
𝑦Φ𝑃 (F).

This follows from [43, (3.1)]. Though the statement is not quite identical to the one we give here, it
immediately follows from biduality of the Poincaré bundle [26, 9.12].

Proof of Theorem 3.1. The main issue in this proof is that maps of the form 𝐿𝑦 ⊗ 𝑡
∗
𝑥 are not, in general,

well-defined as automorphisms on 𝐾𝐴(𝑣). Given F ∈ 𝐾𝐴(𝑣), 𝐿𝑦 ⊗ 𝑡∗𝑥F has the same Mukai vector as
F but may not have the same image under the Albanese morphism. For instance, pullback by 𝑡∗𝑥 , in
general, preserves Néron–Severi classes of line bundles and acts trivially on the structure sheaf, but it
does not act trivially on all line bundles.

We therefore seek the (𝑥, 𝑦) ∈ 𝐴 × �̂� that satisfy the following conditions:

𝐿 = det(F) = det(𝐿𝑦 ⊗ 𝑡
∗
𝑥F) = 𝐿⊗𝑟

𝑦 ⊗ 𝑡∗𝑥 det(F) = 𝐿⊗𝑟
𝑦 ⊗ 𝑡∗𝑥𝐿

𝑀 = det(Φ𝑃 (F)) = det(Φ𝑃 (𝐿𝑦 ⊗ 𝑡
∗
𝑥 (F))) = det(𝑡∗𝑦 (𝐿−𝑥 ⊗ Φ𝑃 (F)))

= 𝑡∗𝑦 (𝐿
⊗𝑠
−𝑥 ⊗ det(Φ𝑃 (F))) = 𝑡∗𝑦 (𝐿

⊗𝑠
−𝑥 ⊗ 𝑀) = 𝐿⊗𝑠

−𝑥 ⊗ 𝑡∗𝑦𝑀.

We may rewrite these conditions as the equations (3.1). Equivalently, these (𝑥, 𝑦) are the kernel of the
map 𝜙 in (3.2).

Precomposing the map 𝜙 with 𝜓 : 𝐴 × �̂� → 𝐴 × �̂�, where 𝜓(𝑥, 𝑦) = (𝜙𝑚 (𝑦) − 𝑟𝑥, 𝜙𝑙 (𝑥) + 𝑠𝑦), and
applying Lemma 3.2, we have

𝜙 ◦ 𝜓(𝑥, 𝑦) = 𝜙 ◦ (𝜙𝑚(𝑦) − 𝑟𝑥, 𝜙𝑙 (𝑥) + 𝑠𝑦)

= (𝜙𝑚(𝜙𝑙 (𝑥) + 𝑠𝑦) − 𝑠(𝜙𝑚(𝑦) − 𝑟𝑥), 𝜙𝑙 (𝜙𝑚(𝑦) − 𝑟𝑥) + 𝑟 (𝜙𝑙 (𝑥) + 𝑠𝑦))

= (−𝜒 · 𝑥 + 𝑟𝑠𝑥,−𝜒 · 𝑦 + 𝑟𝑠𝑦) = −𝑛(𝑥, 𝑦).

Thus, 𝜙 ◦ 𝜓 = [−𝑛], so 𝜙 is surjective and is hence an isogeny. Similarly, 𝜓 ◦ 𝜙 = [−𝑛] and 𝐺𝐴(𝑣) �
(𝐴 × �̂�) [𝑛].

We show 𝐺𝐴(𝑣) � (Z/𝑛Z)4 in Lemma 3.6. This will require an understanding of preimages of
elements under 𝜙𝑙 and 𝜙𝑚, which we study in Claims 3.4 and 3.5. �

Remark 3.3. Since the maps 𝜙𝑙 and 𝜙𝑚 are determined by the Néron–Severi classes of L and M, the
proof of Theorem 3.1 shows that the automorphisms of 𝑀𝐴(𝑣) given by elements of 𝐺𝐴(𝑣) will restrict
to automorphisms of not just one, but any fiber of the Albanese morphism on 𝑀𝐴(𝑣).

Furthermore, for any (𝑥, 𝑦) ∈ (𝐴 × �̂�) [𝑛], the automorphism 𝐿𝑦 ⊗ 𝑡∗𝑥 induces a permutation of the
Albanese fibers and if (𝑥, 𝑦) ∉ 𝐺𝐴(𝑣), this permutation does not have any fixed fibers.

If we extend the domain of det× detΦ𝑃 to elements of 𝐷 (𝐴) with Mukai vector v (by mapping to
the Grothendieck group before taking determinants), 𝐿𝑦 ⊗ 𝑡

∗
𝑥 acts on the fibers of this map as well.

Before proving Lemma 3.6, we need results on the kernels of 𝜙𝑙 and 𝜙𝑚:
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Claim 3.4. Let 𝑝 ≠ char 𝑘 be a prime and 𝜒 ≠ 0. Suppose 𝑝𝑞 is the highest power of p dividing 𝜒.
Then, the group of p-power torsion points in ker 𝜙𝑙 � ker 𝜙𝑚 is

(Z/𝑝𝑛1Z)2 × (Z/𝑝𝑛2Z)2,

where 0 ≤ 𝑛1 ≤ 𝑛2 and 𝑛1 + 𝑛2 = 𝑞. If 𝑛1 > 0, then L and M are 𝑝𝑛1 -st powers of other line bundles.

If L and M are separable, we may define their polarization type to be the termwise product of pairs
(𝑝𝑛1 , 𝑝𝑛2 ) as p varies over primes dividing 𝜒 (cf. [6, §2]).

Proof. Since ker 𝜙𝑙 � ker 𝜙−𝑙 and 𝜒(𝐿) ≠ 0, we may assume that L is ample. The proof of Riemann–
Roch for abelian varieties in [47, §16] implies that the degree of 𝜙𝑙 is 𝜒2. The structure of ker 𝜙𝑙∩𝐴[𝑝𝑞]
is then determined by Lemma 3.2 and the fact that the Weil pairing 𝑒𝐿 on the p-torsion is skew-symmetric
[47, §20, Thm. 1]. Since 𝜙𝑚 is the negative of the dual of 𝜙𝑙 [6, §2], the group structure of p-power
torsion points in ker 𝜙𝑚 is isomorphic to that in ker 𝜙𝑙 . The last statement is a consequence of [47, §23,
Thm. 3]. �

The images of any two elements of the same order under the compositions 𝜙𝑙 ◦ 𝜙𝑚 or 𝜙𝑚 ◦ 𝜙𝑙 will
have the same order. However, 𝜙𝑙 and 𝜙𝑚 do not respect orders in this way.

Claim 3.5. Let 𝑝 ≠ char 𝑘 be a prime dividing 𝜒, and assume that l and m are not p-th multiples of
other classes, so 𝑛1 = 0. Suppose 𝑝𝑑 | 𝜒 for some 𝑑 ∈ N.

(a) Suppose 𝑢 ∈ 𝐴[𝑝𝑑] ∩ker 𝜙𝑙 . Then, the preimage of u in �̂�[𝑝𝑑] under 𝜙𝑚 is of the form 𝑏+ (Z/𝑝𝑑Z)2

for some 𝑏 ∈ �̂�[𝑝𝑑].
(b) Suppose 𝑣 ∈ �̂�[𝑝𝑑] ∩ker 𝜙𝑚. Then, the preimage of v in �̂�[𝑝𝑑] vnder 𝜙𝑙 is of the form 𝑎+ (Z/𝑝𝑑Z)2

for some 𝑎 ∈ 𝐴[𝑝𝑑].

Now, suppose 𝑝𝑞 = 𝜒.

(c) Suppose 𝑢 ∈ 𝐴 and 𝜙𝑙 (𝑢) has order 𝑝𝑐 . Then, the preimage of u in �̂� under 𝜙𝑚 is of the form
𝑏 + (Z/𝑝𝑞Z)2 for some 𝑏 ∈ �̂�[𝑝𝑐+𝑞].

(d) Suppose 𝑣 ∈ �̂� and 𝜙𝑚(𝑣) has order 𝑝𝑐 . Then, the preimage of v in 𝐴 under 𝜙𝑙 is of the form
𝑎 + (Z/𝑝𝑞Z)2 for some 𝑏 ∈ �̂�[𝑝𝑐+𝑞].

Proof. (a) By Lemma 3.2, the composition 𝜙𝑙 ◦ 𝜙𝑚 is given by multiplication by −𝜒. Thus, 𝜙𝑚 ◦ 𝜙𝑙 acts
on 𝐴[𝑝𝑑] as the zero map, and hence,

im 𝜙𝑚 |�̂�[𝑝𝑑 ] ⊆ 𝐴[𝑝
𝑑] ∩ ker 𝜙𝑙 .

By Claim 3.4, 𝐴[𝑝𝑑] ∩ ker 𝜙𝑙 has 𝑝2𝑑 elements and 𝜙𝑚 acting on �̂�[𝑝𝑑] is a 𝑝2𝑑-to-1 map. It follows
by counting that im 𝜙𝑚 |�̂�[𝑝𝑑 ] = 𝐴[𝑝

𝑑] ∩ ker 𝜙𝑙 . By Claim 3.4, the preimage of u is as stated.
Part (b) follows analogously.
(c) By Lemma 3.2, the preimage of 𝜙𝑙 (𝑢) under 𝜙𝑙 ◦ 𝜙𝑚 consists of elements of order 𝑝𝑐+𝑞 . By

Lemma 3.4, the result follows.
Part (d) follows analogously. �

The following result is proved using a case-by-case argument. The explicit argument given has
the advantage of aiding in the analysis of examples. See [38, Lemma 10.1] for an approach using
deformations over C.

Lemma 3.6. The solutions to the equations (3.1) form a group isomorphic to (Z/𝑛Z)4 � (𝐴 × �̂�) [𝑛].

Proof. Case 1: 𝜒 = 0.
Both L and M must have degree 0, so 𝜙𝑙 and 𝜙𝑚 are both the 0-morphism. The equations (3.1)

simplify to

0 = −𝑟𝑦 and 0 = 𝑠𝑥.
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Furthermore, 𝑛 = −𝑟𝑠. Since 𝑣 = (𝑟, 𝑙, 𝑠) is positive and 𝑣2 ≥ 4, we must have 𝑟 > 0 and 𝑠 < 0. The
solutions consist of all products of |𝑠 |-torsion points on A and r-torsion points on �̂�.

The group of solutions is isomorphic to (Z/𝑟Z)4 × (Z/|𝑠 |Z)4, hence (Z/𝑛Z)4, since in this case,
primitivity of the Mukai vector implies r and s are relatively prime.

Now, let p be a prime divisor of n and 𝑝𝑞 be the highest power of p dividing n. We treat the remaining
cases by analyzing solutions in (𝐴 × �̂�) [𝑝𝑞]. We may then conclude by using the Sun Zi Remainder
Theorem.

Case 2: 𝜒 ≠ 0 and at least one of r or s is relatively prime with p.
Suppose r is relatively prime with p. Fix an arbitrary 𝑥 ∈ 𝐴[𝑝𝑞]. The equation 𝜙𝑙 (𝑥) = −𝑟𝑦 then has

exactly one solution y because multiplication by −𝑟 acts bijectively on �̂�[𝑝𝑞].
Now we check that (𝑥, 𝑦) is a solution to (3.1): Applying 𝜙𝑚, we have 𝜙𝑚 ◦ 𝜙𝑙 (𝑥) = −𝑟𝜙𝑚(𝑦). Using

Lemma 3.2, we then have −𝑟𝑠𝑥 = −𝑟𝜙𝑚(𝑦). Since x and y are 𝑝𝑞-torsion, multiplication by −𝑟 acts
bijectively, implying 𝑠𝑥 = 𝜙𝑚(𝑦).

Thus, for each 𝑥 ∈ 𝐴[𝑝𝑞], there is one 𝑦 ∈ �̂�[𝑝𝑞] so that (𝑥, 𝑦) is a solution to (3.1). The projection
map (𝑥, 𝑦) ↦→ 𝑥 gives an isomorphism from solutions to (3.1) to 𝐴[𝑝𝑞] � (Z/𝑝𝑞Z)4.

If s is relatively prime with p, an analogous argument shows there is exactly one solution (𝑥, 𝑦) to
(3.1) for each 𝑦 ∈ �̂�[𝑝𝑞] and that, again, the group of all solutions is isomorphic to (Z/𝑝𝑞Z)4.

Cases 1 and 2 have covered all cases where r and s are not both divisible by p. Going forward, we
assume 𝑝 | 𝑟 and 𝑝 | 𝑠. If char(𝑘) ≠ 0, our assumption in Setting 2.4 that char(𝑘) � 𝑛 implies in the
following cases that char(𝑘) ≠ 𝑝, and so we may apply Claim 3.4. By the primitivity of the Mukai
vector, 𝑛1 = 0 and 𝑛2 is equal to the highest power of p dividing 𝜒.

Let j be the highest power of p dividing r and k be the highest power of p dividing s. If r or s is 0, we
choose the convention that j or k is ∞.

In each of Cases 3, 4, 5, we handle in stages the situations where q becomes higher and higher relative
to j and k. From now on, we assume 𝑗 ≥ 𝑘 . If 𝑘 > 𝑗 , the argument is analogous.

Case 3: 𝜒 ≠ 0, 0 < 𝑘 ≤ 𝑗 and 𝑞 ≤ 𝑗 . We observe that 𝑝𝑞 is the highest power of p that divides 𝜒.
Solutions (𝑥, 𝑦) ∈ (𝐴 × �̂�) [𝑝𝑞] to the first equation in (3.1) are precisely those where 𝜙𝑙 (𝑥) = 0. By

Claim 3.4, the group of such x is isomorphic to (Z/𝑝𝑞Z)2.
Fix such an x. We observe that 𝑠𝑥 ∈ 𝐴[𝑝𝑞] and 𝜙𝑙 (𝑠𝑥) = 0. By Claim 3.5(a), the preimage of 𝑠𝑥

under 𝜙𝑚 in �̂�[𝑝𝑞] is of the form 𝑏+ (Z/𝑝𝑞Z)2 for some 𝑏 ∈ �̂�[𝑝𝑞]. Thus, there are 𝑝4𝑞 total solutions.
The projection (𝑥, 𝑦) ↦→ 𝑥 gives a surjective group homomorphism 𝐺𝐴(𝑣) � (Z/𝑝𝑞Z)2. The kernel

of this map consists of all solutions where 𝑥 = 0, which by Claim 3.4 is isomorphic to (Z/𝑝𝑞Z)2. Since
𝐺𝐴(𝑣) � (𝐴× �̂�) [𝑝𝑞] � (Z/𝑝𝑞Z)8, this short exact sequence shows it must be isomorphic to (Z/𝑝𝑞Z)4.

In Cases 4 and 5, we make a reduction argument. We observe that for any (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣), (𝑠𝑥, 𝑠𝑦) ∈
𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝𝑞−𝑘 ]. In each of Cases 4 and 5, we will show that the map

𝐺𝐴(𝑣)
·𝑠
−→ 𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝𝑞−𝑘 ] (3.3)

given by multiplication by s is surjective and 𝑝4𝑘 -to-1. This argument may be repeated to reduce each
case to previous cases.

Case 4: 𝜒 ≠ 0, 0 < 𝑘 ≤ 𝑗 < 𝑞 and 𝑞 ≤ 𝑗 + 𝑘 .
We note that 𝑝𝑞 | 𝜒. Since 𝑞 − 𝑘 ≤ 𝑗 , the argument in Case 3 shows that

𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝𝑞−𝑘 ] � (Z/𝑝𝑞−𝑘Z)4. (3.4)

Let (𝑢, 𝑣) ∈ 𝐺𝐴(𝑣)∩(𝐴× �̂�) [𝑝
𝑞−𝑘 ]. We seek (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣) < (𝐴× �̂�) [𝑝𝑞], where (𝑠𝑥, 𝑠𝑦) = (𝑢, 𝑣).

First, we search for elements y, where 𝜙𝑚(𝑦) = 𝑢 and 𝑠𝑦 = 𝑣. Thus, we look at the preimage of u under
𝜙𝑚 and analyze which of those elements give v when multiplied by s.
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Note that 𝜙𝑙 (𝑢) = −𝑟𝑣 = 0. Since u is 𝑝𝑞−𝑘 -torsion, it is also 𝑝𝑞-torsion. So by Claim 3.5(a), the
preimage of u under 𝜙𝑚 in �̂�[𝑝𝑞] is of the form 𝑏 + (Z/𝑝𝑞Z)2, where 𝑏 ∈ �̂�[𝑝𝑞]. Multiplying by s
gives a 𝑝2𝑘 -to-1 map on the following cosets:

𝑏 + (Z/𝑝𝑞Z)2 ·𝑠
−→ 𝑠𝑏 + (Z/𝑝𝑞−𝑘Z)2.

We will now show that v is in the image of this map: the preimage of 𝑠𝑢 under 𝜙𝑚 in �̂�[𝑝𝑞] is of the form
𝑣 + (Z/𝑝𝑞Z)2. The preimage of 𝑠𝑢 under 𝜙𝑚 that is 𝑝𝑞−𝑘 -torsion is thus of the form 𝑣 + (Z/𝑝𝑞−𝑘Z)2 and
has exactly 𝑝2(𝑞−𝑘) elements. Now, the elements of 𝑠𝑏+ (Z/𝑝𝑞−𝑘Z)2 are 𝑝𝑞−𝑘 -torsion, there are 𝑝2(𝑞−𝑘)

of them and their image under 𝜙𝑚 is 𝑠𝑢. Thus, these sets are equal, implying 𝑣 ∈ 𝑠𝑏 + (Z/𝑝𝑞−𝑘Z)2.
Thus, there are 𝑝2𝑘 elements 𝑦 ∈ �̂�[𝑝𝑞] with the desired properties.

Now we search for elements x, where 𝜙𝑙 (𝑥) = −𝑟𝑦 = − 𝑟
𝑠 𝑣 and 𝑠𝑥 = 𝑢. Note that since 𝑗 ≥ 𝑘 ,

− 𝑟
𝑠 = 𝑐𝑝𝑒

𝑑 for some c, d relatively prime with p. We may define multiplying by 1
𝑑 on p-power torsion

points by taking the preimage under multiplication by d since it is a bijection on such points. We examine
the preimage of − 𝑟

𝑠 𝑣 under 𝜙𝑙 and analyze which of those elements give u when multiplied by s.
Note 𝜙𝑚(− 𝑟

𝑠 𝑣) = −𝑟𝑢 = 0. So by Claim 3.5(b), the preimage of − 𝑟
𝑠 𝑣 under 𝜙𝑙 is of the form

𝑎 + (Z/𝑝𝑞Z)2, where 𝑎 ∈ 𝐴[𝑝𝑞].
Multiplying by s gives a 𝑝2𝑘 -to-1 map on the following cosets:

𝑎 + (Z/𝑝𝑞Z)2 ·𝑠
−→ 𝑠𝑎 + (Z/𝑝𝑞−𝑘Z)2.

We will now show that u is in the image of this map: The preimage of −𝑟𝑣 under 𝜙𝑙 in 𝐴[𝑝𝑞] is of the
form 𝑢+(Z/𝑝𝑞Z)2. The preimage of−𝑟𝑣 under 𝜙𝑙 that is 𝑝𝑞−𝑘 -torsion is thus of the form 𝑢+(Z/𝑝𝑞−𝑘Z)2.
The elements of 𝑠𝑎 + (Z/𝑝𝑞−𝑘Z)2 are 𝑝𝑞−𝑘 -torsion and their image under 𝜙𝑙 is −𝑟𝑣. Thus, these sets
are equal, implying 𝑢 ∈ 𝑠𝑎 + (Z/𝑝𝑞−𝑘Z)2. In summary, there are 𝑝2𝑘 elements 𝑥 ∈ 𝐴[𝑝𝑞], where
𝜙𝑙 (𝑥) = − 𝑟

𝑠 𝑣 = −𝑟𝑦 and 𝑠𝑥 = 𝑢.
This shows that (3.3) is a surjective 𝑝4𝑘 -to-1 map. Since multiplication by s decreases the order of

the p-power torsion of an element by exactly 𝑝𝑘 , by (3.4) we may conclude that 𝐺𝐴(𝑣) � (Z/𝑝𝑞Z)4.

Case 5: 𝜒 ≠ 0, 0 < 𝑘 ≤ 𝑗 < 𝑞 and 𝑗 + 𝑘 < 𝑞. In this case, 𝑝 𝑗+𝑘 divides 𝜒 and no higher powers of p
may divide 𝜒.

By the argument in Case 4, we have

𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝 𝑗+𝑘 ] � (Z/𝑝 𝑗+𝑘Z)4. (3.5)

We will first extend our result for solutions of order up to 𝑝 𝑗+2𝑘 . For convenience, define 𝑡 :=
min{𝑞, 𝑗 + 2𝑘}.

Let

(𝑢, 𝑣) ∈ 𝐺𝐴(𝑣) ∩ ((𝐴 × �̂�) [𝑝𝑡−𝑘 ] \ (𝐴 × �̂�) [𝑝 𝑗 ]).

We seek

(𝑥, 𝑦) ∈ 𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝𝑡 ]

so that (𝑠𝑥, 𝑠𝑦) = (𝑢, 𝑣). First, we search for elements y, where 𝜙𝑚(𝑦) = 𝑢 and 𝑠𝑦 = 𝑣; thus, we look at
the preimage of u under 𝜙𝑚 and analyze which of those elements give v when multiplied by s.

If 𝜙𝑙 (𝑢) = 0, then the argument from Case 4 shows that there are 𝑝2𝑘 elements 𝑦 ∈ �̂�[𝑝𝑡 ], where
𝜙𝑚(𝑦) = 𝑢 and 𝑠𝑦 = 𝑣.

If 𝜙𝑙 (𝑢) ∈ �̂�[𝑝𝑘 ] \ {0}, then by Claim 3.5(c), the preimage of u under 𝜙𝑚 in �̂�[𝑝𝑡 ] is of the form
𝑏 + (Z/𝑝 𝑗+𝑘Z)2, where 𝑏 ∈ �̂�[𝑝𝑡 ] \ �̂�[𝑝 𝑗+𝑘 ].
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Note that 𝜙𝑙 (𝜙𝑚(𝑏)) = −𝑟𝑣 and by Lemma 3.2, −𝑟𝑠𝑏 = −(𝑛 + 𝑟𝑠)𝑏 = −𝑟𝑣. Multiplication by s gives
a 𝑝2𝑘 -to-1 map on the following cosets:

𝑏 + (Z/𝑝 𝑗+𝑘Z)2 ·𝑠
−→ 𝑠𝑏 + (Z/𝑝 𝑗Z)2.

We will now show that v is in the image of this map.
The preimage of 𝑠𝑢 under 𝜙𝑚 in �̂�[𝑝 𝑗+𝑘 ] is of the form 𝑣 + (Z/𝑝 𝑗+𝑘Z)2. The part of 𝑣 + (Z/𝑝 𝑗+𝑘Z)2

whose image under multiplication by−𝑟 is−𝑟𝑣 is of the form 𝑣+(Z/𝑝 𝑗Z)2. Since 𝜙𝑚 maps 𝑠𝑏+(Z/𝑝 𝑗Z)2

to 𝑠𝑢 and multiplying this coset by −𝑟 gives −𝑟𝑣, by counting elements, 𝑠𝑏 + (Z/𝑝 𝑗Z)2 = 𝑣 + (Z/𝑝 𝑗Z)2.
Hence, 𝑣 ∈ 𝑠𝑏 + (Z/𝑝 𝑗Z)2. Thus, there are 𝑝2𝑘 elements 𝑦 ∈ 𝑏 + (Z/𝑝 𝑗+𝑘Z)2, where 𝜙𝑚(𝑦) = 𝑢 and
𝑠𝑦 = 𝑣.

Now we search for elements x where 𝜙𝑙 (𝑥) = −𝑟𝑦 = − 𝑟
𝑠 𝑣 and 𝑠𝑥 = 𝑢. We examine the preimage of

− 𝑟
𝑠 𝑣 under 𝜙𝑙 and analyze which of those elements give u when multiplied by s.
If 𝜙𝑚(− 𝑟

𝑠 𝑣) = −𝑟𝑢 = 0, we may conclude using the arguments in Case 4. Otherwise, by Claim 3.5(d),
the preimage of − 𝑟

𝑠 𝑣 under 𝜙𝑙 in 𝐴[𝑝𝑡 ] is of the form 𝑎 + (Z/𝑝 𝑗+𝑘Z)2 where 𝑎 ∈ 𝐴[𝑝𝑡 ] \ 𝐴[𝑝 𝑗+𝑘 ]. Note
that 𝜙𝑚(𝜙𝑙 (𝑎)) = −𝑟𝑢 and by Lemma 3.2, −𝑟𝑠𝑎 = −𝑟𝑢.

Multiplying by s gives a 𝑝2𝑘 -to-1 map on cosets:

𝑎 + (Z/𝑝 𝑗+𝑘Z)2 ·𝑠
−→ 𝑠𝑎 + (Z/𝑝 𝑗Z)2.

We will now show that u is in the image of this map. The preimage of −𝑟𝑣 under 𝜙𝑙 is of the form
𝑢 + (Z/𝑝 𝑗+𝑘Z)2. The part of 𝑢 + (Z/𝑝 𝑗+𝑘Z)2 whose image under multiplication by −𝑟 is −𝑟𝑢 is of the
form 𝑢 + (Z/𝑝 𝑗Z)2. We have shown that 𝜙𝑙 maps 𝑠𝑎 + (Z/𝑝 𝑗Z)2 to −𝑟𝑣 and multiplying this coset by
−𝑟 gives −𝑟𝑢. By counting elements, we have the set equality 𝑠𝑎 + (Z/𝑝 𝑗Z)2 = 𝑢 + (Z/𝑝 𝑗Z)2. Hence,
𝑢 ∈ 𝑠𝑎 + (Z/𝑝 𝑗Z)2. Thus, there are 𝑝2𝑘 elements 𝑥 ∈ 𝑎 + (Z/𝑝 𝑗+𝑘Z)2, where 𝜙𝑙 (𝑥) = − 𝑟

𝑠 𝑣 and 𝑠𝑥 = 𝑢.
Thus, the following map is surjective and 𝑝4𝑘 -to-1:

𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝𝑡 ]
·𝑠
−→ 𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝𝑡−𝑘 ] . (3.6)

If 𝑞 ≤ 𝑗 + 2𝑘 , we may now conclude, in combination with (3.5), that 𝐺𝐴(𝑣) � (Z/𝑝𝑞Z)4.
If 𝑞 > 𝑗 + 2𝑘 , (3.6) shows that 𝐺𝐴(𝑣) ∩ (𝐴 × �̂�) [𝑝 𝑗+2𝑘 ] � (Z/𝑝 𝑗+2𝑘Z)4. The above argument

may be repeated for solutions of orders up to 𝑝 𝑗+3𝑘 and then upward inductively to conclude that
𝐺𝐴(𝑣) � (Z/𝑝𝑞Z)4. �

Example 3.7. (a) For 𝐾2(𝐴) � 𝐾𝐴(1, 0,−3), l and m are the trivial Néron-Severi classes (these are
treated in general by Case 1 of the proof of Lemma 3.6), so 𝜙𝑙 (𝑥) = 0 and 𝜙𝑚(𝑦) = 0. The equations (3.1)
simplify to 0 = −𝑦 and 0 = −3𝑥, which recovers the fact that the group of symplectic automorphisms
for 𝐾2(𝐴) is generated by 𝜄 and translation by elements of 𝐴[3] [8, Cor. 5(2)].

(b) In Sections 6–8, we consider fourfolds 𝐾𝐴(𝑣), where 𝑣 = (0, 𝑙, 𝑠) for l primitive and 𝜒 = 3. If
𝑠 ≡ 𝑠′ mod 3, then 𝐺𝐴(0, 𝑙, 𝑠) = 𝐺𝐴(0, 𝑙, 𝑠′), leaving only three possible distinct groups of this form,
which are described by a combination of Cases 2 and 3 of Lemma 3.6. Case 2 shows that𝐺𝐴(0, 𝑙, 1) and
𝐺𝐴(0, 𝑙, 2), though in general distinct, each have one element (𝑥, 𝑦) ∈ (𝐴 × �̂�) [3] for every 𝑦 ∈ �̂�[3]:
for any 𝑦 ∈ �̂�[3], there is one 𝑥 ∈ ker 𝜙𝑙 so that 𝑡∗𝑦𝑀 � 𝐿𝑥 ⊗ 𝑀 . However, we see from Case 3 that
𝐺𝐴(0, 𝑙, 0) is the product of ker 𝜙𝑙 and ker 𝜙𝑚.

The assumption in Theorem 3.1 that v is primitive is necessary for𝐺𝐴(𝑣) to be isomorphic to (Z/𝑛Z)4.
In the case where 𝑣 = 2𝑣0 for 𝑣0 a primitive Mukai vector with 𝑣2

0 = 2, which is used to construct
O’Grady sixfolds, the solutions to the equations (3.1) are precisely of the form (𝐴 × �̂�) [2] � (Z/2Z)8,
as is shown in [42, Lem. 5.1]. We generalize this result by extending Theorem 3.1 to find all solutions
to (3.1) for any Mukai vector.

In the following result, we alter our hypotheses by naming the primitive vector of Setting 2.4 𝑣0 and
considering a multiple of 𝑣0.
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Corollary 3.8. Let 𝑣 = (𝑟, 𝑙, 𝑠) be a Mukai vector on an abelian surface A so that 𝑣 = 𝑑𝑣0, where
𝑣0 = (𝑟0, 𝑙0, 𝑠0) is primitive and 𝑛 := 𝑣2

0
2 .

Then, the group 𝐺𝐴(𝑣) of solutions (𝑥, 𝑦) ∈ 𝐴 × �̂� to the following equations

𝜙𝑙 (𝑥) = −𝑟𝑦 and 𝜙𝑚(𝑦) = 𝑠𝑥 (3.7)

is isomorphic to (Z/𝑑𝑛Z)4 × (Z/𝑑Z)4.

Proof. Let m and 𝑚0 be the respective Néron-Severi classes determined by Φ𝑃 . We see from the
definition of 𝜙𝑙 that 𝜙𝑙 = 𝑑 ·𝜙𝑙0 and likewise, 𝜙𝑚 = 𝑑 ·𝜙𝑚0 : if we choose (𝐿0, 𝑀0) ∈ Pic𝑙0 (𝐴) ×Pic𝑚0 ( �̂�)
and 𝐿 := 𝐿⊗𝑑

0 , 𝑀 := 𝑀 ⊗𝑑
0 , then for any 𝑥 ∈ 𝐴, we have

𝜙𝑙 (𝑥) := 𝑡∗𝑥𝐿 ⊗ 𝐿−1 = 𝑡∗𝑥𝐿
⊗𝑑
0 ⊗ (𝐿⊗𝑑

0 )−1 = (𝑡∗𝑥𝐿0 ⊗ 𝐿
−1
0 )⊗𝑑 = 𝑑 · 𝜙𝑙0 (𝑥).

Since 𝜙𝑙0 and 𝜙𝑚0 are group homomorphisms, we have, for any (𝑥, 𝑦) ∈ 𝐴 × �̂�,

𝜙𝑙 (𝑥) = 𝜙𝑙0 (𝑑𝑥) and 𝜙𝑚(𝑦) = 𝜙𝑚0 (𝑑𝑦).

Thus, a pair (𝑥, 𝑦) ∈ 𝐴 × �̂� is a solution to (3.7) if and only if

𝜙𝑙0 (𝑑𝑥) = −𝑟0𝑑𝑦 and 𝜙𝑚0 (𝑑𝑦) = 𝑠0𝑑𝑥,

or equivalently, (𝑑𝑥, 𝑑𝑦) solves the equations (3.1) given by 𝑣0. By Theorem 3.1, the set of solutions to
the equations (3.1) given by 𝑣0 is isomorphic to (Z/𝑛Z)4 � 𝐺𝐴(𝑣0). We may conclude by observing
that the set of solutions to (3.7) is given by exactly the elements of 𝐴 × �̂� that are in 𝐺𝐴(𝑣0) after being
multiplied by d. �

3.2. Involutions and fixed loci

Let A be an abelian surface over an arbitrary field k. If 𝐾𝐴(𝑣) is a fiber over symmetric line bundles,
then 𝜄∗ gives an involution of 𝐾𝐴(𝑣). However, if symmetric bundles do not exist in the appropriate
Néron-Severi classes over k, we show here how to define an involution 𝜅 to replace 𝜄∗. For the remainder
of the section, we fix a set of data as in Setting 2.4 and hence, fix a variety 𝐾𝐴(𝑣) over k.

We first give a lemma that will allow us to construct the involution 𝜅.

Lemma 3.9. Suppose we have an additional choice of line bundles 𝐿 ′ ∈ Pic𝑙 (𝐴), 𝑀 ′ ∈ Pic𝑚( �̂�) over k.
Let 𝐾𝐴(𝑣)

′ := alb−1(𝐿 ′, 𝑀 ′). Then, there is an element (𝑎, 𝑏) ∈ (𝐴 × �̂�) (𝑘) so that 𝐿𝑏 ⊗ 𝑡∗𝑎 : 𝐾𝐴(𝑣) →
𝐾𝐴(𝑣)

′ is an isomorphism over k. It is unique up to composition with elements in 𝐺𝐴(𝑣) (𝑘).

Proof. Recall that for any (𝑥, 𝑦) ∈ 𝐴 × �̂�, applying 𝐿𝑦 ⊗ 𝑡
∗
𝑥 to an element F ∈ 𝐾𝐴(𝑣), we have

det(𝐿𝑦 ⊗ 𝑡
∗
𝑥F) = 𝐿⊗𝑟

𝑦 ⊗ 𝑡∗𝑥𝐿, and det(Φ𝑃 (𝐿𝑦 ⊗ 𝑡
∗
𝑥F)) = 𝐿⊗𝑠

−𝑥 ⊗ 𝑡∗𝑦𝑀.

We also recall that the morphism 𝜙 : 𝐴 × �̂�→ 𝐴 × �̂� from (3.2) is an isogeny defined over k and sends
sends (𝑥, 𝑦) to

(𝑡∗𝑦𝑀 ⊗ 𝑀−1 ⊗ 𝐿⊗𝑠
−𝑥 , 𝑡

∗
𝑥𝐿 ⊗ 𝐿−1 ⊗ 𝐿⊗𝑟

𝑦 ).

The element (𝑎, 𝑏) desired is precisely a preimage of (𝐿 ′ ⊗ 𝐿−1, 𝑀 ′ ⊗ 𝑀−1) ∈ (𝐴 × �̂�) (𝑘) under 𝜙.
Finally, 𝐿𝑏 ⊗ 𝑡∗𝑎 : 𝐾𝐴(𝑣) → 𝐾𝐴(𝑣)

′ is an isomorphism since it has an inverse 𝐿−𝑏 ⊗ 𝑡∗−𝑎. �
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Construction 3.10. Applying 𝜄∗ gives an isomorphism from 𝐾𝐴(𝑣) to alb−1 (𝜄∗𝐿, 𝜄∗𝑀). By Lemma 3.9,
there is an (𝑎, 𝑏) ∈ (𝐴 × �̂�) (𝑘) such that 𝐿𝑏 ⊗ 𝑡∗𝑎 maps isomorphically from alb−1(𝜄∗𝐿, 𝜄∗𝑀) back to
𝐾𝐴(𝑣). So we have the following automorphism defined over k:

𝜅 : 𝐾𝐴(𝑣) → 𝐾𝐴(𝑣)

F ↦→ 𝐿𝑏 ⊗ 𝑡∗𝑎 𝜄
∗F .

Remark 3.11. We note that 𝜅 is an involution. More generally, for any (𝑐, 𝑑) ∈ 𝐴 × �̂�, the morphism
𝐿𝑑 ⊗ 𝑡∗𝑐 𝜄

∗ (which in general is an automorphism of 𝑀 (𝑣) but perhaps not of 𝐾 (𝑣)) is an involution on
𝑀𝐴(𝑣). Indeed, (𝜄 ◦ 𝑡𝑐)2 = id on A and 𝐿𝑑 is degree 0 and hence, fixed under pullback by translation;
thus, for any F ∈ 𝑀𝐴(𝑣), we have:

(𝐿𝑑 ⊗ 𝑡∗𝑐 𝜄
∗) ◦ (𝐿𝑑 ⊗ 𝑡∗𝑐 𝜄

∗)(F) = 𝐿𝑑 ⊗ 𝑡∗𝑐 𝜄
∗𝐿𝑑 ⊗ 𝑡∗𝑐 𝜄

∗𝑡∗𝑐 𝜄
∗(F)

= 𝐿𝑑 ⊗ 𝑡∗𝑐𝐿
−1
𝑑 ⊗ F = 𝐿𝑑 ⊗ 𝐿−1

𝑑 ⊗ F = F .

The following are thus involutions of 𝐾𝐴(𝑣), where (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣) (𝑘):

𝜅 (𝑥,𝑦) := 𝐿𝑦 ⊗ 𝑡
∗
𝑥𝜅.

Under the simplifying assumption that L and M are symmetric, we may instead denote these involu-
tions as

𝜄(𝑥,𝑦) := 𝐿𝑦 ⊗ 𝑡
∗
𝑥 𝜄

∗.

Lemma 3.12. Let 𝑛 := 𝑣2

2 be odd. Assume 𝑘 = �̄� and that L and M are symmetric, so 𝜄∗ is an involution
on 𝐾𝐴(𝑣). Then, Fix(𝜄(𝑥,𝑦) ) is a translation of Fix(𝜄(0,0) ); that is, there exists (𝑢, 𝑤) ∈ 𝐺𝐴(𝑣) so that

Fix(𝜄(𝑥,𝑦) ) = 𝐿𝑤 ⊗ 𝑡∗𝑢 (Fix(𝜄(0,0) )).

More generally, without the assumption that L and M are symmetric, there exists (𝑢, 𝑤) ∈ 𝐺𝐴(𝑣) so that

Fix(𝜅 (𝑥,𝑦) ) = 𝐿𝑤 ⊗ 𝑡∗𝑢 (Fix(𝜅 (0,0) )).

Proof. Let F ∈ 𝐾𝐴(𝑣) be in the fixed locus of 𝜄∗. Pick (𝑢, 𝑤) ∈ 𝐺𝐴(𝑣) so that 2𝑤 = 𝑦 and 2𝑢 = 𝑥,
which is possible since n is odd. For instance, when 𝑣2

2 = 3, 𝐾𝐴(𝑣) is a fourfold and the elements of
𝐺𝐴(𝑣) are all three-torsion, so we may choose (−𝑥,−𝑦).

Then, 𝐿𝑤 ⊗ 𝑡∗𝑢F must be fixed by the involution

𝐿𝑤 ⊗ 𝑡∗𝑢 𝜄
∗(𝐿−𝑤 ⊗ 𝑡∗−𝑢) = 𝐿2𝑤 ⊗ 𝑡∗2𝑢 𝜄

∗.

The other direction of the containment is similar, as is the case with 𝜄∗ replaced by 𝜅. �

Proposition 3.13. Let 𝑛 := 𝑣2

2 be odd, assume 𝑘 = �̄� and let 𝐿 ′ ∈ Pic𝑙 (𝐴) and 𝑀 ′ ∈ Pic𝑚( �̂�) be
symmetric line bundles (cf. Lemma 2.6). Fix an involution 𝜅 as in Construction 3.10 on 𝐾𝐴(𝑣). Then,
the fixed locus of 𝜅 in 𝐾𝐴(𝑣) is isomorphic to the fixed locus of 𝜄∗ = 𝜄(0,0) in 𝐾𝐴(𝑣)

′.

Proof. By Lemma 3.9, there is an (𝑥, 𝑦) ∈ 𝐴 × �̂� so that 𝐿𝑦 ⊗ 𝑡
∗
𝑥 gives an isomorphism from 𝐾𝐴(𝑣) to

𝐾𝐴(𝑣)
′. The composition

(𝐿−𝑦 ⊗ 𝑡
∗
−𝑥) ◦ 𝜄

∗ ◦ (𝐿𝑦 ⊗ 𝑡
∗
𝑥)

may be rearranged to 𝐿−2𝑦 ⊗ 𝑡
∗
−2𝑥 𝜄

∗, where 𝐿−2𝑦 ⊗ 𝑡
∗
−2𝑥 gives an isomorphism from alb−1(𝜄∗𝐿, 𝜄∗𝑀) to

𝐾𝐴(𝑣). Thus, by the uniqueness statement of Lemma 3.9, there is an element (𝑢, 𝑤) ∈ 𝐺𝐴(𝑣) for which
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𝐿𝑤 ⊗ 𝑡∗𝑢 ◦ 𝐿−2𝑦 ⊗ 𝑡
∗
−2𝑥 is equal to the map 𝐿𝑏 ⊗ 𝑡

∗
𝑎 in the definition of 𝜅. Then, 𝐿−𝑦 ⊗ 𝑡∗−𝑥 Fix(𝜄∗) is equal

to Fix(𝜅 (−𝑢,−𝑤) ), which is isomorphic to Fix(𝜅) by Lemma 3.12. �

Finally, we give the following general result on the action of the Galois group on the geometric fixed
loci.

Proposition 3.14. Let k be an arbitrary field. For (𝑥, 𝑦) ∈ 𝐺𝐴�̄�
(𝑣), the action of 𝜎 ∈ Gal(𝑘/𝑘) sends

the fixed locus of 𝜅 (𝑥,𝑦) in 𝐾𝐴(𝑣)�̄� to the fixed locus of 𝜅 (𝜎−1𝑥,𝜎−1𝑦) .

Proof. Suppose F is fixed by 𝜅 (𝑥,𝑦) . We use the equality 𝑡𝑥 ◦ 𝜎 = 𝜎 ◦ 𝑡𝜎−1𝑥 and the observation that 𝜎
commutes with 𝜄 and, moreover, 𝜅, since 𝜅 is defined over the ground field k, to simplify the following
equation:

𝜎∗F � 𝜎∗(𝐿𝑦 ⊗ 𝑡
∗
𝑥𝜅F) � 𝜎∗𝐿𝑦 ⊗ 𝜎

∗𝑡∗𝑥𝜅F � 𝜎∗𝐿𝑦 ⊗ 𝑡
∗
𝜎−1𝑥

𝜅(𝜎∗F).

Then, we have 𝜎∗𝐿𝑦 � 𝐿𝜎−1𝑦 , which we may verify using Φ𝑃 : 𝐷 (𝐴) → 𝐷 ( �̂�):

Φ𝑃 (𝐿−𝜎−1𝑦 ⊗ 𝜎
∗𝐿𝑦) � 𝑡

∗
−𝜎−1𝑦

𝜎∗𝑘 (−𝑦) [−𝑔] � 𝜎∗𝑡∗−𝑦𝑘 (−𝑦) [−𝑔]

� 𝜎∗𝑘 (0�̂�) [−𝑔] � 𝑘 (0�̂�) [−𝑔] . �

3.3. Symplectic automorphisms and involutions

Let A be an abelian surface over C. In the following lemma, we give a generalization of [8, Cor. 5(2)]
to hyperkähler varieties 𝐾𝐴(𝑣) over C.

Theorem 3.15. Suppose we are in Setting 2.4 and we fix an involution 𝜅 as in Construction 3.10. Then,
the kernel of

𝜈 : Aut(𝐾𝐴(𝑣)) → O(𝐻2 (𝐾𝐴(𝑣),Z)) (3.8)

consists of automorphisms of the form 𝐿𝑦 ⊗ 𝑡∗𝑥 and of the form 𝜅 (𝑥,𝑦) := 𝐿𝑦 ⊗ 𝑡∗𝑥𝜅 for (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣).
Thus, for any (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣), the automorphism 𝐿𝑦 ⊗ 𝑡∗𝑥 is symplectic. The 𝜅 (𝑥,𝑦) are symplectic
involutions of 𝐾𝐴(𝑣), and when dim𝐾𝐴(𝑣) = 4, these are all of the symplectic involutions.

Remark 3.16. While 𝜅 is not unique, by Lemma 3.9, the collection of elements in ker 𝜈 is independent
of the choice made in Construction 3.10.

Proof. Elements of (𝑥, 𝑦) ∈ 𝐴 × �̂� act on 𝑀𝐴(𝑣) via 𝐿𝑦 ⊗ 𝑡
∗
𝑥 . Abelian varieties are path-connected, so

the action of any element in 𝐴 × �̂� is homotopic to the identity, which implies the induced action on
𝐻2 (𝑀𝐴(𝑣),Z) is trivial. If (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣), then Theorem 3.1 shows that the action of 𝐿𝑦 ⊗ 𝑡

∗
𝑥 restricts

to 𝐾𝐴(𝑣). By [56, Thm. 0.2(2)], the restriction map 𝐻2 (𝑀𝐴(𝑣),Z) → 𝐻2(𝐾𝐴(𝑣),Z) is a surjection.
Therefore, 𝐿𝑦 ⊗ 𝑡

∗
𝑥 acts trivially on 𝐻2 (𝐾𝐴(𝑣),Z) as well.

By [56, Thm. 0.2(2)], there is an isomorphism

𝐻2(𝐾𝐴(𝑣),Z) � 𝑣⊥,

where 𝑣⊥ ⊂ 𝐻𝑒𝑣𝑒𝑛 (𝐴,Z) is the orthogonal complement to v under the Mukai pairing. Since 𝜄∗ acts by
−1 on 𝐻1 (𝐴,Z), it acts trivially on 𝐻𝑒𝑣𝑒𝑛 (𝐴,Z).

If we assume L and M are symmetric, 𝜄∗ is an automorphism of 𝐾𝐴(𝑣) and therefore must act trivially
on 𝐻2 (𝐾𝐴(𝑣),Z). If L and M are not both symmetric, since we are working over an algebraically closed
field, we observe that 𝜅 is a composition of translation to an Albanese fiber over symmetric bundles,
application of 𝜄∗ on that fiber and translation back (cf. proof of Proposition 3.13). Thus, 𝜅 will act
trivially on 𝐻2(𝐾𝐴(𝑣),Z) as well.
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By the discussion above, ker 𝜈 contains 2𝑛4 elements, so by Theorem 3.1, we have identified all of
them. The automorphisms in this kernel are clearly symplectic as the symplectic form generates part of
𝐻2 (𝐾𝐴(𝑣),C).

For any nontrivial choice of (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣), 𝐿𝑦 ⊗ 𝑡∗𝑥 is not an involution, but by Section 3.2, 𝜅 (𝑥,𝑦)
is an involution on 𝐾𝐴(𝑣).

Finally, suppose dim𝐾𝐴(𝑣) = 4. By [31, Thm. 7.5(i)], all of the symplectic involutions of 𝐾𝐴(𝑣) act
trivially on 𝐻2(𝐾𝐴(𝑣),Z). �

4. The middle cohomology of fourfolds 𝐾𝐴(𝑣)

In this section, we work with data as in Setting 2.4 with the additional assumption that 𝑣2 = 6, so
𝐾𝐴(𝑣) is a fourfold. We will prove results characterizing the middle cohomology of 𝐾𝐴(𝑣) when k has
characteristic 0 in Section 4.1. We use these results to characterize the cohomology similarly when k
has positive characteristic in Section 4.2 via a brief lifting argument.

4.1. Results in characteristic zero

Assume 𝐾𝐴(𝑣) is defined over an arbitrary field k of characteristic zero, so we may assume without
loss of generality that �̄� ↩→ C. In this case, we can identify the Galois representations which make
up the middle cohomology of 𝐾𝐴(𝑣). This will depend on understanding the fixed loci of 𝜅 (𝑥,𝑦) for
(𝑥, 𝑦) ∈ 𝐺𝐴�̄�

(𝑣).

Proposition 4.1. Suppose 𝑘 = �̄� . The fixed locus of any involution 𝜅 (𝑥,𝑦) for (𝑥, 𝑦) ∈ 𝐺𝐴(𝑣) on a
fourfold 𝐾𝐴(𝑣) consists of a K3 surface and 36 isolated points.

Proof. First, suppose 𝑘 = C. Work of Hassett and Tschinkel [21] and Tarí [54] shows that the statement
is true for 𝐾2(𝐴). A discussion of the isolated fixed points in this case is given in Section 6.1.

Every hyperkähler fourfold 𝐾𝐴(𝑣) is deformation equivalent to 𝐾2(𝐴) and by [21, Thm. 2.1], its
group of symplectic involutions is also a deformation invariant. Thus, as in Kapfer and Menet [31, Thm.
7.5], the fixed loci are related by deformation as well, so the statement holds for 𝐾𝐴(𝑣).

Now let k be any algebraically closed field of characteristic zero. Since A is defined over k, we can
assume without loss of generality that 𝑘 ↩→ C. Let 𝐾𝐴(𝑣)C := 𝐾𝐴(𝑣) ×𝑘 C and consider the Cartesian
square

𝐾𝐴(𝑣)C
�̃�(𝑥,𝑦) ��

��

𝐾𝐴(𝑣)C

��
𝐾𝐴(𝑣)

𝜅(𝑥,𝑦) �� 𝐾𝐴(𝑣),

where �̃� (𝑥,𝑦) is formed by replacing 𝜅 with its extension to C, which we call 𝜅. By Theorem 3.15, �̃� (𝑥,𝑦)
is a symplectic involution, and by the argument above, Fix( �̃� (𝑥,𝑦) ) is a K3 surface 𝑍 := 𝑍 (𝑥,𝑦) ⊂ 𝐾𝐴(𝑣)C
plus 36 isolated points.

By [14, Rmk. 3 following Thm 2.3],

Fix( �̃� (𝑥,𝑦) ) = Fix(𝜅 (𝑥,𝑦) ) ×𝑘 C.

This descent of the fixed-point locus means that Fix(𝜅 (𝑥,𝑦) ) consists of a surface 𝑆 := 𝑆 (𝑥,𝑦) ⊂ 𝐾𝐴(𝑣)
along with 36 k-points. We claim that S is a K3 surface. Indeed, we see via the valuative criterion of
properness, using the fact that Fix(𝜅 (𝑥,𝑦) ) is a closed subscheme of𝐾𝐴(𝑣), that 𝑆 → Spec 𝑘 is proper. By
flat base change, we have that 𝐻1(𝑆,O𝑆) ⊗C � 𝐻1 (𝑍,O𝑍 ) = 0, and 𝐻0(𝑆, 𝜔𝑆) ⊗C � 𝐻0 (𝑍, 𝜔𝑍 ) = C,
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so 𝜔𝑆 has a nonvanishing global section and hence, is trivial. Finally, S is smooth by [11, Lem. 4.1],
which completes the proof. �

See [30] for further discussion of these fixed-point loci in hyperkählers of Kummer type.
Let k now be arbitrary. Let 𝑆 (𝑥,𝑦) ⊂ 𝐾𝐴(𝑣)�̄� be the K3 surface in Fix(𝜅 (𝑥,𝑦) ) and 𝑠 (𝑥,𝑦) ∈

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) the image of [𝑆 (𝑥,𝑦) ] ∈ CH2 𝐾𝐴(𝑣)�̄� under the cycle class map CH2 𝐾𝐴(𝑣)�̄� →

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)).

Lemma 4.2. For 𝜎 ∈ Gal( �̄�/𝑘), the induced action on the cycle classes 𝑠 (𝑥,𝑦) for (𝑥, 𝑦) ∈ 𝐺𝐴�̄�
(𝑣) is

given by

𝜎∗𝑠 (𝑥,𝑦) = 𝑠 (𝜎𝑥,𝜎𝑦) ∈ 𝐻
4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)).

Proof. By [40, Prop. 9.2], the cycle class map is Galois equivariant, so 𝜎∗𝑠 (𝑥,𝑦) is the cycle class of
[𝜎∗𝑆 (𝑥,𝑦) ] ∈ CH2 𝐾𝐴(𝑣)�̄� . As in the proof of [40, Prop. 9.2], we have that [𝜎∗𝑆 (𝑥,𝑦) ] is the preimage
of 𝑆 (𝑥,𝑦) under 𝜎∗ : 𝐾𝐴(𝑣)�̄� → 𝐾𝐴(𝑣)�̄� . By Proposition 3.14, (𝜎∗)−1(𝑆 (𝑥,𝑦) ) = 𝑆 (𝜎𝑥,𝜎𝑦) . Thus, we
conclude that 𝜎∗𝑠 (𝑥,𝑦) = 𝑠 (𝜎𝑥,𝜎𝑦) , as desired. �

Definition 4.3. For a finite Galois module G, let Qℓ [𝐺] be the Qℓ-vector space with basis given by G,
where the action of the Galois group on Qℓ [𝐺] is determined by the action on G: for 𝜎 ∈ Gal( �̄�/𝑘) and∑

𝑔𝑖 ∈𝐺 𝑎𝑖𝑔𝑖 ∈ Qℓ [𝐺],

𝜎 ·
∑
𝑔𝑖 ∈𝐺

𝑎𝑖𝑔𝑖 =
∑
𝑔𝑖 ∈𝐺

𝑎𝑖 (𝜎 · 𝑔𝑖).

We call Qℓ [𝐺] the permutation representation.

Recall that when k is not algebraically closed, the group𝐺𝐴�̄�
(𝑣) naturally has the structure of a finite

Gal( �̄�/𝑘)-module.

Theorem 4.4. There is an isomorphism of Galois representations

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) � Sym2 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) ⊕ 𝑉,

where V is the 80-dimensional subrepresentation of Qℓ [𝐺𝐴�̄�
(𝑣)] such that

Qℓ [𝐺𝐴�̄�
(𝑣)] � 𝑉 ⊕ Qℓ ,

and the trivial representation Qℓ is the span of (0, 0) ∈ 𝐺𝐴�̄�
(𝑣).

Remark 4.5. As will be shown in Lemma 5.7, the action of the Galois group on 𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)),

and hence Sym2 𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)), is determined by the action on 𝐻2

ét(𝐴�̄� ,Qℓ (1)).

Proof. By Theorem 3.1, we have 34 = 81 involutions

𝜅 (𝑥,𝑦) : 𝐾𝐴(𝑣)�̄� → 𝐾𝐴(𝑣)�̄�
F ↦→ 𝐿𝑦 ⊗ 𝑡

∗
𝑥𝜅F ,

where (𝑥, 𝑦) ∈ 𝐺𝐴�̄�
(𝑣).

As in the proof of Proposition 4.1, let 𝐾𝐴(𝑣)C := 𝐾𝐴(𝑣) ×𝑘 C and �̃� (𝑥,𝑦) : 𝐾𝐴(𝑣)C → 𝐾𝐴(𝑣)C the
base change of 𝜅 (𝑥,𝑦) . By Proposition 4.1, Fix( �̃� (𝑥,𝑦) ) contains a K3 surface 𝑍 (𝑥,𝑦) ⊂ 𝐾𝐴(𝑣)C. This
gives 81 distinct K3 surfaces in 𝐾𝐴(𝑣)C, where the distinctness follows from [21, Thm. 2.1]. Via the
cycle class map, these 81 surfaces give corresponding classes 𝑧 (𝑥,𝑦) ∈ 𝐻4 (𝐾𝐴(𝑣)C,Q).
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Similarly, there are K3 surfaces 𝑆 (𝑥,𝑦) ⊂ 𝐾𝐴(𝑣)�̄� and corresponding cohomology classes 𝑠 (𝑥,𝑦) ∈

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) such that 𝑆 (𝑥,𝑦) ×�̄� C = 𝑍 (𝑥,𝑦) ⊂ 𝐾𝐴(𝑣)C. Under the comparison and smooth base

change isomorphisms

𝐻4 (𝐾𝐴(𝑣)C,Q) ⊗Q Qℓ (2) � 𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)),

the classes 𝑧 (𝑥,𝑦) correspond to the classes 𝑠 (𝑥,𝑦) .
By [31, Thm. 7.5(ii)], the pair (𝐾𝐴(𝑣)C, �̃� (𝑥,𝑦) ) is deformation equivalent to the pair (𝐾2(𝐴C), 𝑡𝜏 ◦

[− Id] [ [3] ] ) for some 𝜏 ∈ 𝐴C [3]. In particular, these complex manifolds are diffeomorphic and so they
have isomorphic cohomology rings. By [21, Prop. 4.3] (see also the discussion in [31, §6.4]), the Qℓ-
span of {𝑧 (𝑥,𝑦) − 𝑧 (0,0) }(𝑥,𝑦) ∈𝐺𝐴C

(𝑣) is an 80-dimensional vector space of 𝐻4 (𝐾𝐴(𝑣)C,Qℓ (2)) which is
a direct sum complement to the subspace Sym2 𝐻2(𝐾𝐴(𝑣)C,Qℓ (1)).

Since the 𝑠 (𝑥,𝑦) in 𝐻4(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) correspond to the 𝑧 (𝑥,𝑦) , it follows that

𝑉 := SpanQℓ {𝑠 (𝑥,𝑦) − 𝑠 (0,0) }(𝑥,𝑦) ∈𝐺𝐴�̄� (𝑣 )

is an 80-dimensional subspace of 𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) which is a direct sum complement to

Sym2 𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)).

By Lemma 4.2, we know that for 𝜎 ∈ Gal( �̄�/𝑘),

𝜎∗(𝑠 (𝑥,𝑦) ) = 𝑠 (𝜎𝑥,𝜎𝑦) .

Thus, V is a Galois-invariant subspace of 𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)). Noting that Qℓ [𝐺𝐴�̄�

(𝑣)] is semisimple
by Maschke’s Theorem – the Galois action factors through a finite group representation determined by
the finite extension of k over which 𝐺𝐴�̄�

(𝑣) is defined – and that 𝜎∗(𝑠 (0,0) ) = 𝑠 (0,0) , this shows that V
is the 80-dimensional subrepresentation of Qℓ [𝐺𝐴�̄�

(𝑣)] such that

Qℓ [𝐺𝐴�̄�
(𝑣)] � 𝑉 ⊕ Qℓ ,

where the trivial representation corresponds to (0, 0) ∈ 𝐺𝐴�̄�
(𝑣). Hence, 𝐻4

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) has the
decomposition as stated. �

4.2. Results in positive characteristic via lifting

In this section we observe that, because Kummer varieties 𝐾𝐴(𝑣) defined over a field of positive
characteristic lift to characteristic 0 [17], we may use Theorem 4.4 to give a similar description of the
middle cohomology.

Proposition 4.6. Suppose we have data as in Setting 2.4, where the base field k has characteristic 𝑝 > 0.
Then,

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) � Sym2 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) ⊕ 𝑉 ′,

where 𝑉 ′ is the 80-dimensional subrepresentation of Qℓ [𝐺𝐴�̄�
(𝑣)] such that

Qℓ [𝐺𝐴�̄�
(𝑣)] � 𝑉 ′ ⊕ Qℓ ,

and the trivial representation Qℓ is the span of (0, 0) ∈ 𝐺𝐴�̄�
(𝑣).

Proof. As explained in the proof of [17, Prop. 6.9], it is possible to lift 𝐾𝐴(𝑣) to characteristic 0 by
lifting its defining data. That is, the data (𝐴, 𝑣, 𝐻, 𝐿, 𝑀) defined over k has a lift (A, 𝑣𝑊 ,H,L,M) to
a complete discrete valuation ring W of characteristic zero with residue field k and field of fractions
𝐹 := Frac𝑊 . Note that all of this lifting data can be recovered from a lift of (𝐴, 𝐻, 𝐿). Indeed, lifting
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A automatically gives us a lift of �̂�, and lifting line bundles on �̂� amounts to lifting their Néron–Severi
class; a lift of the Néron–Severi class of M is given by the Néron–Severi class of det(ΦP (L)). Call the
specialization of 𝑣𝑊 to the generic fiber 𝑣𝐹 .

There is a surjection of Galois groups

Gal(�̄�/𝐹) � Gal( �̄�/𝑘) (4.1)

which is given by restricting automorphisms to the ring of integers of �̄� and then passing to the quotient
�̄� . By the smooth base change theorem [1, Exp. XVI, Corollaire 2.2], for ℓ ≠ 𝑝, there are isomorphisms

𝐻2
ét(𝐾𝐴�̄�

(𝑣𝐹 ),Qℓ (1)) � 𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)), and

𝐻4
ét(𝐾𝐴�̄�

(𝑣𝐹 ),Qℓ (2)) � 𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)),

(4.2)

which are equivariant with respect to the action of Gal(�̄�/𝐹) on the left and Gal( �̄�/𝑘) on the right,
compatible with (4.1).

The isomorphisms of (4.2) are compatible with the ring structure on cohomology, so the isomorphism
𝐻4

ét(𝐾𝐴�̄�
(𝑣𝐹 ),Qℓ (2)) � 𝐻4

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) restricts to an isomorphism

Sym2 𝐻2
ét(𝐾𝐴�̄�

(𝑣),Qℓ (1)) � Sym2 𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)),

which is again compatible with the respective Galois group actions.
Let the following be the decomposition given by Theorem 4.4:

𝐻4
ét(𝐾𝐴�̄�

(𝑣𝐹 ),Qℓ (2)) � Sym2 𝐻2
ét(𝐾𝐴�̄�

(𝑣𝐹 ),Qℓ (1)) ⊕ 𝑉,

and let 𝑉 ′ ⊂ 𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) be the vector space complement to Sym2 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)). Using
the fact that V is a Gal(�̄�/𝐹) subrepresentation of 𝐻4

ét(𝐾𝐴�̄�
(𝑣𝐹 ),Qℓ (2)), we conclude that

𝐻4
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (2)) � Sym2 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) ⊕ 𝑉 ′

as Gal( �̄�/𝑘) representations. In particular, there is an isomorphism 𝑉 � 𝑉 ′ which is equivariant with
respect to the action of Gal(�̄�/𝐹) on the left and Gal( �̄�/𝑘) on the right, again compatible with (4.1).

The subgroup𝐺𝐴�̄�
(𝑣𝐹 ) � (𝐴�̄� × �̂��̄� ) [3] is given by equations (3.1) determined by 𝑣𝐹 , which is part

of our lifted data. Thus, since the action of Gal(�̄�/𝐹) on V is given by 𝐺𝐴�̄�
(𝑣), the action of Gal( �̄�/𝑘)

on 𝑉 ′ must be the one determined analogously by 𝐺𝐴�̄�
(𝑣). �

5. Relation to derived equivalences

There are a number of results related to derived equivalences of smooth, projective symplectic varieties.
For example, if X and Y are derived equivalent smooth complex projective surfaces, then 𝐷 (Hilb𝑛 𝑋) �
𝐷 (Hilb𝑛 𝑌 ) [51, Prop. 8]. If X and Y are K3 surfaces, then the converse holds, and if two moduli
spaces of stable sheaves 𝑀𝑋 (𝑣) and 𝑀𝑌 (𝑣

′) are derived equivalent, then X and Y are also derived
equivalent [5, Cor. 9.7]. If X and Y are derived equivalent K3 surfaces over any field k, then the ℓ-adic
étale cohomologies of any moduli 𝑀𝑋 (𝑣) and 𝑀𝑌 (𝑣

′) of equal dimension are isomorphic as Gal( �̄�/𝑘)
representations [15, Thm. 2]. However, it is still an open question when such moduli are derived
equivalent.

In the direction of symplectic varieties of Kummer type, complex abelian surfaces A and B are
derived equivalent if and only if there is an isomorphism 𝐾1(𝐴) � 𝐾1(𝐵) between their associated
Kummer K3 surfaces [24, 53]. This result has also been proved for abelian surfaces over fields of odd
characteristic [36]; the relation between Kummer surfaces and twisted derived equivalence of abelian
surfaces has been examined in [35, Thm. 6.5.2]. While A and �̂� are always derived equivalent over their
field of definition, it is not known exactly when there is a derived equivalence between the generalized
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Kummer fourfolds 𝐾2(𝐴) and 𝐾2( �̂�). Recently, it was shown that, over an algebraically closed field of
characteristic zero, they are derived equivalent when A has a polarization of exponent coprime to 3 [37,
Theorem 1].

Given these results, we ask the following two questions, which we examine in Sections 5.1 and 5.2,
respectively.

Question 1. Suppose we have a derived equivalence of abelian surfaces 𝐷𝑏 (𝐴) � 𝐷𝑏 (𝐵). How do the
groups 𝐺𝐴(𝑣) introduced in Section 3 interact with the Rouquier isomorphism 𝐴 × �̂� � 𝐵 × �̂�?

Question 2. Under what conditions are irreducible symplectic fourfolds of Kummer type derived
equivalent?

Throughout this section, we will assume we are working with data as in Setting 2.4 and that all
varieties 𝐾𝐴(𝑣) are an Albanese fiber over symmetric line bundles.

5.1. Compatibility with the Rouquier isomorphism

Proposition 5.1 (Rouquier, cf. [26, Prop. 9.45]). Let A and B be abelian varieties and 𝐹 : 𝐷 (𝐴) → 𝐷 (𝐵)
a derived equivalence. There is an isomorphism 𝑓 : 𝐴 × �̂�→ 𝐵 × �̂�, called the Rouquier isomorphism,
which maps (𝑎, 𝛼) ∈ 𝐴× �̂� to the unique element (𝑏, 𝛽) ∈ 𝐵×�̂� so that the following diagram commutes:

𝐷 (𝐴)
𝐹 ��

𝐿𝛼⊗𝑡
∗
𝑎

��

𝐷 (𝐵)

𝐿𝛽⊗𝑡
∗
𝑏

��
𝐷 (𝐴)

𝐹 �� 𝐷 (𝐵).

(5.1)

The following proposition gives some results addressing Question 1.

Proposition 5.2. Let A and B be abelian surfaces over a field k, and let 𝑣 = (𝑟, 𝑙, 𝑠) ∈ 𝑁 (𝐴) and
𝑣′ = (𝑟 ′, 𝑙 ′, 𝑠′) ∈ 𝑁 (𝐵).

Let 𝐹 : 𝐷 (𝐴) → 𝐷 (𝐵) be a derived equivalence such that 𝐹 (𝑣) = 𝑣′. Then, the base change of the
Rouquier isomorphism to the algebraic closure �̄� restricts to a group scheme isomorphism

𝑓�̄� : 𝐺𝐴�̄�
(𝑣)

∼
−→ 𝐺𝐵�̄�

(𝑣′) (5.2)

under any of the following conditions:

(a) For any elements F ,G ∈ 𝑀𝐴(𝑣) such that alb(F) = alb(G), we have det(𝐹 (F)) = det(𝐹 (G)) and
det(Φ𝑃 ◦ 𝐹 (F)) = det(Φ𝑃 ◦ 𝐹 (G));

(b) F is a stability-preserving Fourier–Mukai transform; that is, if 𝐸 ∈ 𝑀𝐴(𝑣), then 𝐹 (𝐸) is in 𝑀𝐵 (𝑣
′);

or
(c) 𝑘 = C and 𝑣2

2 = 3 (i.e., 𝐾𝐴(𝑣) is a fourfold).

We note that the isomorphism (5.2) implies that the actions of Gal( �̄�/𝑘) on 𝐺𝐴�̄�
(𝑣) and 𝐺𝐵�̄�

(𝑣′)
are isomorphic.

Proof. Let (𝑎, 𝛼) ∈ 𝐺𝐴�̄�
(𝑣). By Remark 3.3, to prove that (𝑏, 𝛽) := 𝑓�̄� (𝑎, 𝛼) ∈ 𝐺𝐵�̄�

(𝑣′), it suffices
to produce an element H ∈ 𝐷 (𝐵), where 𝑣(H) = 𝑣′, det(H) = det(𝐿𝛽 ⊗ 𝑡∗𝑏H), and det(Φ𝑃 (H)) =
det(Φ𝑃 (𝐿𝛽 ⊗ 𝑡∗𝑏H)).

Under condition (a), for any F ∈ 𝑀𝐴(𝑣), we may take H := 𝐹 (F). In this case, we have 𝐿𝛽 ⊗ 𝑡
∗
𝑏H =

𝐹 (𝐿𝛼 ⊗ 𝑡∗𝑎F). Since

det(F) = det(𝐿𝛼 ⊗ 𝑡∗𝑎F) and det(Φ𝑃 (F)) = det(Φ𝑃 (𝐿𝛼 ⊗ 𝑡∗𝑎F)),

condition (a) allows us to conclude that H has the needed property.
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Under condition (b), F restricts to an isomorphism 𝑀𝐴(𝑣) → 𝑀𝐵 (𝑣
′) and by the universal property

of the Albanese morphism, there is a commutative diagram as follows:

𝑀𝐴(𝑣)

alb
��

𝐹 �� 𝑀𝐵 (𝑣
′)

alb
��

Pic𝑙 (𝐴) × Pic𝜆 ( �̂�) ∃ ����� Pic𝑙′ (𝐴) × Pic𝜆′ ( �̂�)

Thus, F satisfies condition (a).
By [21, Prop. 4.3] if 𝐾𝐴(𝑣) is a fourfold, the intersection of the fixed loci of 𝜅 and (𝐿𝛼 ⊗ 𝑡∗𝑎)𝜅 acting

on 𝐾𝐴(𝑟, 𝑙, 𝑠) is nonempty. For instance, in 𝐾2(𝐴), the intersection of Fix(𝜅) and Fix(𝜅 (𝜏,0) ) where
𝜏 ∈ 𝐴[3] (cf. Lemma 3.12) contains (0, 𝜏,−𝜏).

Let G be an element in this intersection. It is thus fixed by 𝐿𝛼 ⊗ 𝑡∗𝑎. Following the diagram above, we
see that H := 𝐹 (G) is fixed by 𝐿𝛽 ⊗ 𝑡∗𝑏 and thus, F satisfies the needed condition. �

Remark 5.3. The barrier to a proof of Proposition 5.2 under more general conditions is that it is not
known that a general Fourier–Mukai equivalence will respect the Albanese morphism acting on 𝑀𝐴(𝑣).

The proof of Proposition 5.2 under condition (c) hinges on the selection of an element fixed by
the automorphisms from Theorem 3.1. We anticipate that analogous results are available for higher-
dimensional varieties of Kummer type. For instance, in 𝐾𝑛−1(𝐴), the intersection between Fix(𝜄(0,0) )
and Fix(𝜄(𝜏,0) ) where 𝜏 ∈ 𝐴[𝑛] contains (0, 𝜏, 2𝜏, . . . , (𝑛 − 1)𝜏).

Example 5.4. (a) For any abelian surface A we have the Fourier–Mukai equivalence Φ𝑃 : 𝐷 (𝐴) →

𝐷 ( �̂�). For any Mukai vector v on A, condition (a) of Proposition 5.2 is satisfied for 𝐹 = Φ𝑃 since
Φ𝑃 ◦ Φ𝑃 = 𝜄∗ ◦ [−2]. If 𝑣 := (𝑟, 𝑙, 𝑠), then 𝑣′ := 𝐹 (𝑣) = (𝑠, 𝑚, 𝑟) [56, Lemma 3.1], and 𝐺𝐴�̄�

(𝑣) and
𝐺 �̂��̄�

(𝑣′) are very closely related via the canonical identification between an abelian surface and the
dual of its dual. By Theorem 3.1, the elements in 𝐺𝐴�̄�

(𝑣) satisfy the equations shown in (3.1) and the
elements of 𝐺 �̂��̄�

(𝑣′) satisfy the equations

𝜙𝑚(𝑦) = −𝑠𝑥, 𝜙𝑙 (𝑥) = 𝑟𝑦 for (𝑦, 𝑥) ∈ �̂� × ˆ̂𝐴

Thus, (𝑥, 𝑦) ∈ 𝐺𝐴�̄�
(𝑣) if and only if (−𝑦, 𝑥) ∈ 𝐺 �̂��̄�

(𝑣′).
(b) Let A be an abelian surface defined over a field k of characteristic 0 with NS(𝐴) = Z𝑙 and 𝑙2 = 2𝑛.

By [20, Lem. 3.6], the Fourier–Mukai equivalence 𝐿 ⊗L (−) : 𝐷 (𝐴) → 𝐷 (𝐴) satisfies condition (a) of
Proposition 5.2; in fact, 𝑀𝐴(1, 0,−𝑛) � 𝑀𝐴(1, 𝑙, 0). Moreover, by [56, Prop. 3.5], applying the Fourier–
Mukai transformΦ𝑃 followed by a shift [−1] gives an isomorphism𝑀𝐴(1, 𝑙, 0) � 𝑀�̂�(0,−𝑙,−1), where
𝑙 is the Néron-Severi class of Φ𝑃 (1, 𝑙, 0). If l is an ample generator of NS(𝐴), then −𝑙 is an ample
generator of NS( �̂�).

The shift functor [1] acts on Mukai vectors by multiplication by−1, and in general,𝐺𝐴(𝑣) = 𝐺𝐴(−𝑣).
Thus, there are isomorphisms of group schemes

𝐺𝐴(1, 0,−𝑛) � 𝐺𝐴(1, 𝑙, 0) � 𝐺 �̂�(0,−𝑙,−1),

though as discussed in Remark 3.7, the groups 𝐺𝐴(1, 0,−𝑛) and 𝐺𝐴(1, 𝑙, 0) are distinct subgroups of
(𝐴 × �̂�) [𝑛].

5.2. Derived equivalence of fourfolds of Kummer type

The following result provides some information on Question 2 and allows us to produce an example
where two such varieties over a number field k are not derived equivalent over k.
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Proposition 5.5. Let A and B be isogenous abelian surfaces over a finitely generated field k of charac-
teristic 0. Let v and 𝑣′ be Mukai vectors with 𝑣2 = 𝑣′2 = 6, so that 𝐾𝐴(𝑣) and 𝐾𝐵 (𝑣

′) are fourfolds. If
𝐾𝐴(𝑣) and 𝐾𝐵 (𝑣

′) are derived equivalent over k, then Qℓ [𝐺𝐴�̄�
(𝑣)] and Qℓ [𝐺𝐵�̄�

(𝑣′)] are isomorphic
as Gal( �̄�/𝑘)-representations.

We begin with a lemma about the orthogonal complement to v in the Mukai lattice.

Lemma 5.6. Let A be an abelian surface over a field k and v a Mukai vector with 𝑣2 ≥ 2. Let
𝑣⊥ ⊂ �̃� (𝐴�̄� ,Qℓ) be the orthogonal complement to v under the Mukai pairing. Then, there is a Galois
equivariant isomorphism 𝑣⊥ � 𝐻2

ét(𝐴�̄� ,Qℓ (1)) ⊕ Qℓ .

Proof. Let 𝑤 := (1, 0,−𝑛) for 𝑛 := 𝑣2

2 ≥ 1, and note that

𝑤⊥ = 𝐻2
ét(𝐴�̄� ,Qℓ (1)) ⊕ Qℓ 〈(1, 0, 𝑛)〉.

We will show that 𝑣⊥ � 𝑤⊥. For any 𝑦 ∈ �̃� (𝐴�̄� ,Qℓ) with 𝑦2 ≠ 0, let reflection through y be given by

𝑥 ↦→ 𝑥 −
2〈𝑥, 𝑦〉
𝑦2 𝑦.

Observe that (𝑣 − 𝑤)2 ≠ 0 or (𝑣 + 𝑤)2 ≠ 0, and so reflection through 𝑣 − 𝑤 or 𝑣 + 𝑤 gives an isometry
�̃� (𝐴�̄� ,Qℓ)

∼
−→ �̃� (𝐴�̄� ,Qℓ) which sends v to ±𝑤. Thus, the isometry restricts to a Galois equivariant

isomorphism 𝑣⊥
∼
−→ 𝑤⊥. �

Lemma 5.7. Let A be an abelian surface over a field k and v a Mukai vector with 𝑣2 ≥ 6. Then, there is
a Galois equivariant isomorphism

𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) � 𝐻2

ét(𝐴�̄� ,Qℓ (1)) ⊕ Qℓ .

Proof. By [56, Thm. 0.2(2)], along with the comparison theorem for singular and étale cohomology and
the smooth base change theorem, we have a Galois equivariant isomorphism 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) � 𝑣⊥
(In fact, this isomorphism exists over Zℓ , while the isomorphism of Lemma 5.6 may only exist overQℓ).
This combined with Lemma 5.6 gives the result. �

Proof of Proposition 5.5. Suppose that 𝐾𝐴(𝑣) and 𝐾𝐵 (𝑣
′) are derived equivalent, so they have isomor-

phic sums of even cohomologies after Tate twists [22, Lem. 3.1]: 𝐻 (𝐾𝐴(𝑣)�̄� ,Qℓ) � 𝐻 (𝐾𝐵 (𝑣
′)�̄� ,Qℓ).

We know that the zeroth and top cohomologies of 𝐾𝐴(𝑣) and 𝐾𝐵 (𝑣
′) are trivial Galois representations,

and Lemma 5.7 gives that

𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) � 𝐻2

ét(𝐴�̄� ,Qℓ (1)) ⊕ Qℓ .

By Theorem 4.4 and Poincáre duality (cf. [23]), it follows that there is an isomorphism of Galois modules

𝐻 (𝐾𝐴(𝑣),Qℓ) � Q⊕4
ℓ ⊕ 𝐻2

ét(𝐴�̄� ,Qℓ (1))⊕2 ⊕ Sym2 𝐻2
ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)) ⊕ 𝑉𝐴,

where𝑉𝐴 := 𝑉 from Theorem 4.4. There is a similar isomorphism for 𝐻 (𝐾𝐵 (𝑣
′),Qℓ) involving𝑉𝐵. We

will check that these representations are semisimple, so that we can reduce to a comparison of𝑉𝐴 and𝑉𝐵.
By [13, Thm. 3] and its extension to finitely generated fields of characteristic 0 in [57, Thm. 4.3],

𝐻2
ét(𝐴�̄� ,Qℓ) is a semisimple representation, and thus so is Sym2 𝐻2

ét(𝐾𝐴(𝑣)�̄� ,Qℓ (1)). The Gal( �̄�/𝑘)-
representationQℓ [𝐺𝐴�̄�

(𝑣)] factors through a finite group representation, determined by the finite exten-
sion of k over which 𝐺𝐴�̄�

(𝑣) is defined, and so by Maschke’s theorem, it is also semisimple. Thus, the
representation𝐻 (𝐾𝐴(𝑣),Qℓ) is semisimple. The same also holds for𝐻 (𝐾𝐵 (𝑣

′),Qℓ), so applying Schur’s
Lemma, this allows us to cancel isomorphic representations in the direct sums for 𝐻 (𝐾𝐴(𝑣),Qℓ) and
for 𝐻 (𝐾𝐵 (𝑣

′),Qℓ). Since A and B are isogenous, there is an isomorphism 𝐻2
ét(𝐴�̄� ,Qℓ) � 𝐻2

ét(𝐵�̄� ,Qℓ),
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so along with the observations above, we are reduced to an isomorphism 𝑉𝐴 � 𝑉𝐵. This extends to an
isomorphism Qℓ [𝐺𝐴�̄�

(𝑣)] � Qℓ [𝐺𝐵�̄�
(𝑣′)], as desired. �

We use this result to give a negative answer to Question 2 in the case of generalized Kummer varieties
𝐾2(𝐴) and 𝐾2( �̂�).

Corollary 5.8. For an abelian surface A defined over a number field k for whichQℓ [𝐴[3]] andQℓ [ �̂�[3]]
are not isomorphic as Galois modules over k, 𝐾2(𝐴) � 𝐾𝐴(1, 0,−3) and 𝐾2( �̂�) � 𝐾𝐴(3, 0,−1) are not
derived equivalent over k.

Proof. We have 𝐺𝐴�̄�
(1, 0,−3) = 𝐴[3] and by the discussion in Example 5.4(a), 𝐺𝐴�̄�

(3, 0,−1) =
𝐺 �̂��̄�

(1, 0,−3) = �̂�[3]. The result then follows by Proposition 5.5. �

In [16] the authors exhibit an abelian surface A defined over a number field k where Qℓ [𝐴[3]] and
Qℓ [ �̂�[3]] are not isomorphic as Galois modules over k.

Remark 5.9. If A is an abelian surface as in the proof of Corollary 5.8, any derived equivalence between
𝐾2(𝐴) and 𝐾2( �̂�) would have to be defined over a field larger than k. Moreover, the kernel of such a
derived equivalence could not be constructed out of only universal bundles, since such bundles would
naturally be defined over k, and the derived equivalence would descend.

Remark 5.10. The argument in Corollary 5.8 cannot be used to rule out derived equivalences between
𝐾2(𝐴) and 𝐾2( �̂�) in many contexts; for instance, it does not work when A is principally polarized, since
such a polarization would give an isomorphism between 𝐴[3] and �̂�[3].

Proposition 5.5 also holds for Kummer varieties over fields of positive characteristic that satisfy the
hypotheses of Proposition 4.6; Tate’s theorem gives the needed semisimplicity result [55]. However,
over a finite field in general, Tate’s isogeny theorem implies there is an isomorphism between the Tate
modules 𝑇ℓ𝐴 and 𝑇ℓ �̂�. Thus, it would not be possible to use the approach of Corollary 5.8 to rule out a
derived equivalence between 𝐾2(𝐴) and 𝐾2( �̂�) if A was defined over a finite field.

6. A (1, 3)-polarized example: Lagrangian fibrations

In this and the following sections, we consider an extended example where we work over C.
Let (𝐴, 𝐿) be a polarized abelian surface where L is symmetric, NS(𝐴) = Z𝑙 for 𝑙 := 𝑐1 (𝐿) and

𝑙2 = 6, so L is a (1, 3)-polarization (see Claim 3.4). Let 𝐾𝐴(0, 𝑙, 𝑠) be as in Setting 2.4 and assume
𝑀 ∈ Pic𝑚 ( �̂�) is also symmetric. We will see below that the spaces 𝐾𝐴(0, 𝑙, 𝑠) are fibered over P2 in
Jacobians of irreducible genus 4 curves, and while they can be identified fiberwise as s varies, their
global geometry differs: the discriminant of the Beauville–Bogomolov–Fujiki form on Pic(𝐾𝐴(0, 𝑙, 𝑠))
changes, so these moduli spaces are not, in general, birational.

We consider the fixed locus of 𝐾𝐴(0, 𝑙, 𝑠) under the action of 𝜄∗, which we refer to as Fix(𝜄∗). By
Lemma 3.12, the fixed locus of any symplectic involution on 𝐾𝐴(0, 𝑙, 𝑠) is a translation of Fix(𝜄∗). The
moduli space 𝐾𝐴(0, 𝑙, 𝑠) parametrizes rank 1 stable sheaves, or equivalently, rank 1 torsion-free sheaves,
supported on irreducible curves in A. When the supporting curves are smooth, these sheaves are line
bundles on the curves, but we also encounter curves with nodal singularities, in which case the space of
rank 1 torsion-free sheaves naturally compactifies the space of line bundles.

In this section, we give necessary background and show that there is a natural fibration of𝐾𝐴(0, 𝑙, 𝑠) in
abelian surfaces such that Fix(𝜄∗) ⊂ 𝐾𝐴(0, 𝑙, 𝑠) contains an elliptically fibered K3 surface. In Section 7,
we will analyze the singular fibers of this K3 surface, and in Section 8 we will analyze the isolated
points of the fixed locus.

For comparison, we first give a description of Fix(𝜄∗) in 𝐾𝐴(1, 0,−3) here.
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6.1. Fix(𝜄∗) for 𝐾2(𝐴)

The points in 𝐾2(𝐴) � 𝐾𝐴(1, 0,−3) consist of 0-dimensional length 3 subschemes of A for which the
support sums to 0. It was shown in [21, Thm. 4.4] that Fix(𝜄∗) contains the Kummer K3 surface

{(𝑎1, 𝑎2, 𝑎3) | 𝑎1 = 0, 𝑎2 = −𝑎3, 𝑎2 ≠ 0} (6.1)

as well as a unique isolated point supported at the identity element 0.
Any length 3 subscheme in Fix(𝜄∗) containing a point 𝑎 ∈ 𝐴 in its support that is not fixed by

𝜄∗ must be of the form (0, 𝑎,−𝑎), which is in the Kummer K3 surface described above. Thus, the
remaining isolated points in Fix(𝜄∗) found by Tarí [54] must consist of triples of three distinct points of
𝐴[2] � (Z/2Z)4 that sum to 0. The identity element cannot be contained in such a triple. Once we have
chosen two of the points, the third is forced, and length 3 subschemes are unordered, so we have

1
3
(15

2
)
= 35

such isolated points.

6.2. Stable sheaves and compactifications of the Jacobian

Let Pic𝑑 (𝐶) be the set of degree d line bundles on any curve C. We write Pic𝑑𝐶 for the Picard scheme
of degree d on a curve C, and we use Pic𝑑𝐶 to denote the moduli scheme parametrizing rank 1 degree
d torsion-free sheaves on the mildly singular curves C that arise in this paper, which are all Gorenstein
and, moreover, have planar singularities.

If C is elliptic, Pic𝑑𝐶 � 𝐶 for any d, and this fact has some generalizations to compactified Jacobians
of singular genus 1 curves that we will find useful.

Proposition 6.1 [33, §3, p. 14],[12, Ex. 39]. Let C be a genus 1 reduced curve that is irreducible and
nodal. Then, Pic𝑑𝐶 � 𝐶 for any d.

The Abel map [33, Def. 1.0.5] and a generalization of it for compactified Jacobians of Gorenstein
curves is useful to our arguments. We use the development of this map given by Kass in [33], though
we do not need the full power of Kass’s theory.

Generalized divisors on C are nonzero subsheaves of the sheaf of the total quotient ring of C, 𝐼𝐷 ⊂ K,
that are coherent O𝐶 -modules. These divisors generalize Cartier divisors, which they coincide with
when 𝐼𝐷 is a line bundle. An effective generalized divisor on C is a 0-dimensional closed subscheme
𝑍 ⊂ 𝐶, meaning the following generalization of the Abel map continues to have the intuitive quality of
sending points to corresponding elements in Pic−𝑑𝐶 [33, Def. 5.0.7], [2, Thm. 8.5]:

𝛼 : Hilb𝑑
𝐶 → Pic−𝑑𝐶 (6.2)

[𝐷] ↦→ 𝐼𝐷

When the degree d is greater than or equal to the arithmetic genus g, this map is surjective and generically
has fibers isomorphic to P𝑑−𝑔. If D is an effective generalized divisor, 𝛼−1([𝐼𝐷]) is the complete linear
system |𝐷 |. If 𝑔 = 𝑑, the map is generically injective. The locus where 𝛼 is non-injective in this case is
the exceptional locus 𝐶1

𝑑 , which consists of divisors D whose image under the canonical map lies on a
hyperplane. Such divisors 𝐷, 𝐷 ′ are linearly equivalent if there are canonical divisors 𝐾, 𝐾 ′ such that
𝐾 − 𝐷 = 𝐾 ′ − 𝐷 ′.

Related to Proposition 6.1, this generalized Abel map is an isomorphism when C is a nodal genus-1
curve.
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6.3. The Lagrangian fibration of 𝐾𝐴(0, 𝑙, 𝑠)

Since 𝑙2 = 6, 𝐾𝐴(0, 𝑙, 𝑠) is 4-dimensional, and since NS(𝐴) = Z𝑙 for 𝑙 := 𝑐1 (𝐿), the curves 𝐶 ∈ |𝐿 |
are irreducible. Hence, all rank 1 torsion-free sheaves are stable. Thus, 𝐾𝐴(0, 𝑙, 𝑠) parametrizes rank 1
torsion-free sheaves on irreducible curves 𝐶 ⊂ 𝐴 where 𝐶 ∈ |𝐿 |, which are generically line bundles.
Curves in this linear system have arithmetic genus 4 and by Riemann-Roch, the line bundles parametrized
by 𝐾𝐴(0, 𝑙, 𝑠) have degree 𝑑 := 𝑠 + 3.

We see that ℎ0 (𝐴, 𝐿) = 3 and ℎ1 (𝐴, 𝐿) = ℎ2(𝐴, 𝐿) = 0. Thus, there is a map sending elements of
𝐾𝐴(0, 𝑙, 𝑠) to their supports in the linear system |𝐿 |:

𝑓 : 𝐾𝐴(0, 𝑙, 𝑠) → P2 � |𝐿 | (6.3)
F ↦→ supp(F)

Lemma 6.2. Let 𝐶 ∈ |𝐿 | and ℎ𝐶 : 𝐶 ↩→ 𝐴 be the natural inclusion. The fiber of f over 𝐶 ∈ |𝐿 | is the
fiber over M of the following surjective morphism:

𝜑𝐶 : Pic𝑑𝐶 → Pic𝑚
�̂�

(6.4)

F ↦→ det(Φ𝑃 (ℎ𝐶∗F)).

This fiber 𝑓 −1(𝐶) = 𝜑−1
𝐶 (𝑀) is a translation of the fiber of the following map over 0𝐴:

𝑗𝐶 : Pic0
𝐶 → 𝐴 (6.5)

𝐼𝐷 → −Σ𝐷,

where Σ𝐷 is the sum of points in the divisor D using the group law on A.

When C is smooth, 𝑗𝐶 is the morphism given by the universal property of the Jacobian, which sends
a line bundle (e.g., O(𝑝 − 𝑞)) to 𝑝 − 𝑞.

Remark 6.3. We will analyze the 𝜄∗-invariant portion of 𝜑−1
𝐶 (𝑀) in later results. This lemma shows that

we may reduce to analyzing the 𝜄∗-invariant portion of the fiber of 𝑗𝐶 over 0𝐴, which we call ker 𝑗𝐶 ,
somewhat abusing notation in the singular case.

Proof. Recall that 𝐾𝐴(0, 𝑙, 𝑠) is the fiber of the Albanese map over (𝐿, 𝑀):

alb : 𝑀𝐴(0, 𝑙, 𝑠) → Pic𝑙𝐴×Pic𝑚
�̂�
. (6.6)

We consider the interaction of alb with f. Let C be the tautological family of curves in |𝐿 |. We may
identify the fiber of (6.6) over {𝐿} × Pic𝑚

�̂�
with the relative compactified Jacobian Pic𝑑C/P2 , which has

a map to supports 𝑔 : Pic𝑑C/P2 → |𝐿 |. Thus, there is an inclusion 𝐾𝐴(0, 𝑙, 𝑠) ↩→ Pic𝑑C/P2 making the
following diagram commute:

𝐾𝐴(0, 𝑙, 𝑠) �
� ��

𝑓 ����
���

���
���

Pic𝑑C/P2

𝑔

��
|𝐿 | � P2.

(6.7)

For any curve 𝐶 ∈ |𝐿 |, the fiber of g over C is Pic𝑑𝐶 , which is isomorphic to Pic𝑑𝐶 if C is smooth. The
morphism 𝜑𝐶 given in the statement of the lemma is the restriction of the Albanese morphism (6.6) on
𝑀𝐴(0, 𝑙, 𝑠) to Pic𝑑𝐶 . Using (6.7), we see the fiber of f over C is equal to the fiber of 𝜑𝐶 over M.
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Let L be a line bundle on C and p a point in C. As in [52, §17.2], applying det(Φ𝑃 (ℎ𝐶∗−)) to the
short exact sequence

0 → L → L ⊗ O(𝑝) → 𝑘 (𝑝) → 0

implies

𝜑𝐶 (L ⊗ O(𝑝)) = 𝜑𝐶 (L) ⊗ 𝑃𝑝 ,

where 𝑃𝑝 is the line bundle on �̂� corresponding to 𝑝 ∈ 𝐶 ⊂ 𝐴. Moreover, for any divisor D on C, we
have

𝜑𝐶 (L ⊗ O(𝐷)) = 𝜑𝐶 (L) ⊗ 𝑃Σ𝐷 ,

where 𝑃Σ𝐷 is the line bundle on �̂� corresponding to the point on A that comes from summing D using
the group law on A. If C is singular, this argument may be extended to ideal sheaves of generalized
divisors D. Thus, 𝜑𝐶 is a translation of the morphism 𝑗𝐶 of (6.5) by an element of Pic𝑑 (𝐶).

If C is smooth, the map induced by applying the universal property of the Jacobian to the inclusion
𝐶 ↩→ 𝐴 is surjective [10]; thus, 𝜑𝐶 is surjective as well.

Alternately, to prove 𝜑𝐶 is surjective for smooth curves C, we may observe that 𝜑𝐶 is equivariant
under the action of Pic0(𝐴) and the action of Pic0(𝐴) on Pic𝑚 �̂� is transitive. For singular C, if we
restrict 𝜑𝐶 to Pic𝑑𝐶 ⊂ Pic𝑑𝐶 , the same argument holds and so 𝜑𝐶 is surjective. �

In [20], Gulbrandsen shows that the map 𝑓 : 𝐾𝐴(0, 𝑙,−1) → P2 is a Lagrangian fibration. There is a
similar Lagrangian fibration of 𝐾𝐴(0, 𝑙, 𝑠) for any choice of s.

Proposition 6.4. For any s, the map 𝑓 : 𝐾 (0, 𝑙, 𝑠) → P2 is a Lagrangian fibration.

Proof. By [39, Thm. 1], it suffices to prove that f is surjective and its fibers are connected. By Lemma
6.2, the fiber of f over𝐶 ∈ |𝐿 | is the fiber of 𝜑𝐶 over M, which is nonempty since 𝜑𝐶 is surjective. Thus,
f is surjective. By [10, Lem. 2.6], the fibers of f over smooth curves are connected. By considering the
Stein factorization of f, we conclude that f has connected fibers. �

6.4. The Lagrangian fibration restricted to Fix(𝜄∗)

Since 𝐾 (0, 𝑙, 𝑠) is fibered over |𝐿 |, we begin by analyzing the action of 𝜄∗ on |𝐿 |.
The restriction of the Weil pairing 〈−, 𝜙𝐿 (−)〉 on points in A to 𝐴[2] yields a quadratic form

𝑞𝐿 : 𝐴[2] → 𝜇2. Since ker(𝜙𝐿) � (Z/3Z)2 (see Claim 3.4), it contains only the trivial element of 𝐴[2].
Hence, 𝑞𝐿 is nondegenerate. Whether 𝑞𝐿 is even or odd as a quadratic form (cf. [52, p. 63], [9, §3])
determines several facts about the action of 𝜄∗ on |𝐿 |.

Proposition 6.5. The action of 𝜄∗ on 𝐻0 (𝐴, 𝐿) decomposes into eigenspaces 𝐻0(𝐴, 𝐿)+ and 𝐻0(𝐴, 𝐿)−
with eigenvalues ±1. Furthermore,

dim(𝐻0 (𝐴, 𝐿)+) =

{
2 if 𝑞𝐿 is even
1 if 𝑞𝐿 is odd

dim(𝐻0(𝐴, 𝐿)−) =

{
1 if 𝑞𝐿 is even
2 if 𝑞𝐿 is odd.

We call the 1-dimensional and 2-dimensional eigenspaces, respectively,

𝑉hyp and 𝑉ell.

For generic A, any curve 𝐶 ∈ P𝑉hyp is smooth and hyperelliptic, and there are 10 points in 𝐴[2] though
which it passes. If 𝑞𝐿 is even, then 0𝐴 is among these 10 points. The remaining 6 points in 𝐴[2] are the
base locus of P𝑉ell. If 𝑞𝐿 is odd, then 0𝐴 is among these 6 points.
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The space𝑉hyp was named for the fact that the curves in it are hyperelliptic. The name𝑉ell was chosen
because, by Riemann–Hurwitz, quotients 𝐶/𝜄 of smooth curves 𝐶 ∈ P𝑉ell are elliptic.

Proof. Calculations on the dimensions of 𝐻0 (𝐴, 𝐿)± and the number of points through which these
curves pass have been carried out in [9, §3], [10, §3] and [48]. See [7, Ch. 4] and [52, Ch. 13] for further
details. �

By Proposition 4.1, Fix(𝜄∗) consists of a K3 surface and 36 isolated points. Here, we study the
geometry of the K3 surface.

Proposition 6.6. The K3 surface in Fix(𝜄∗) is elliptically fibered.

Proof. By Proposition 6.5,

|𝐿 | 𝜄
∗

= P𝑉ell � P𝑉hyp � P1 � P0,

and thus, Fix(𝜄∗) is fibered over P1 � P0.
By Lemma 6.2, the fiber of 𝐾𝐴(0, 𝑙, 𝑠) over C is the fiber of 𝜑𝐶 over M. Let 𝐶 ∈ |𝐿 | 𝜄

∗ be smooth. By
Remark 6.3, to determine the dimension of the 𝜄∗-invariant parts of this fiber, we examine the eigenvalues
of the action of 𝜄∗ on the tangent space of ker 𝑗𝐶 .

We have a short exact sequence on tangent spaces

0 → 𝑇0 ker 𝑗𝐶 → 𝑇0 Pic0
𝐶 → 𝑇0𝐴→ 0.

The tangent space 𝑇0𝐴 is 𝐻1 (𝐴,O𝐴), and it is 2-dimensional with 𝜄∗ acting as multiplication by −1.
The tangent space 𝑇0 Pic0

𝐶 is 𝐻1 (𝐶,O𝐶 ) � 𝐻0(𝐶, 𝜔𝐶 )
∗, which is 4-dimensional. On the other hand,

tensoring the short exact sequence

0 → O𝐴(−𝐶) → O𝐴 → O𝐶 → 0

with 𝐿 � O𝐴(𝐶) gives

0 → O𝐴 → 𝐿 → O𝐶 (𝐶) → 0.

By adjunction, O𝐶 (𝐶) � 𝜔𝐶 , so we have the following long exact sequence:

0 → 𝐻0(𝐴,O𝐴) → 𝐻0(𝐴, 𝐿) → 𝐻0(𝐶, 𝜔𝐶 ) → 𝐻1(𝐴,O𝐴) → 0.

The map 𝐻0(𝐴,O𝐴) → 𝐻0(𝐴, 𝐿) sends the generator of the 1-dimensional space 𝐻0(𝐴,O𝐴) to [𝐶].
Putting all of this together, the eigenvalues and dimensions of eigenspaces of 𝜄∗ acting on the tangent
space of ker 𝑗𝐶 are equal to those of 𝜄∗ acting on 𝐻0 (𝐴, 𝐿)/[𝐶].

Suppose 𝐶 ∈ P𝑉hyp. Then, by Proposition 6.5, the eigenvalues of 𝜄∗ acting on 𝐻0 (𝐴, 𝐿)/[𝐶] are
both the same: if 𝑞𝐿 is even, they are both +1, and if 𝑞𝐿 is odd, they are both −1. In each case, these
eigenvalues are different from the eigenvalue of the action of 𝜄∗ on [𝐶]. If, instead, 𝐶 ∈ P𝑉ell, then for
𝑞𝐿 even or odd, the eigenvalues of 𝜄∗ acting on 𝐻0(𝐴, 𝐿)/[𝐶] are +1 and −1.

The tangent space of the fiber of Fix(𝜄∗) over 𝐶 ∈ P𝑉hyp � P𝑉ell is isomorphic to the eigenspace of 𝜄∗
acting on 𝑇0 ker 𝑗𝐶 with the same eigenvalue as the action of 𝜄∗ on [𝐶]. Thus, Fix(𝜄∗) has 0-dimensional
fibers over P𝑉hyp and generically 1-dimensional fibers over P𝑉ell � P1. For any 𝐶 ∈ P𝑉ell that is smooth,
the fiber of 𝑗𝐶 over 0𝐴 is 2-dimensional and so must be an abelian surface. Since 𝜄∗ acts with two different
eigenvalues on the tangent space of ker 𝑗𝐶 , it must be, up to isogeny, the product of two elliptic curves.

Generically, curves 𝐶 ∈ P𝑉ell are smooth, and as mentioned above, 𝐶/𝜄 is an elliptic curve. Since the
quotient map 𝐶 → 𝐶/𝜄 is a ramified cyclic double cover mapping between smooth varieties, pullback
induces an inclusion Pic0(𝐶/𝜄) ↩→ Pic0 (𝐶). We may represent any point in the image as O(𝑥 + 𝜄(𝑥)) for
some 𝑥 ∈ 𝐶. Such line bundles are in ker 𝑗𝐶 . Similarly, there is an inclusion of Pic𝑑

𝐶/ 𝜄
into (𝜑−1

𝐶 (𝑀)) 𝜄
∗ ,
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and by the tangent space calculation, we see that generically these elliptic curves Pic𝑑
𝐶/ 𝜄
� 𝐶/𝜄 are the

1-dimensional part of the fiber of f over C. �

In the case of 𝐾𝐴(0, 𝑙,−1), we are able to give the following refinement by a different argument.

Proposition 6.7. The fixed locus of 𝜄∗ on𝐾𝐴(0, 𝑙,−1) consists of the Kummer K3 surface𝐾1 (𝐴) � 𝐾1( �̂�)
and 36 isolated points.

Proof. Hassett and Tschinkel [21] and Tarí [54] showed that the fixed locus of a symplectic involution
on 𝐾2(𝐴) consists of the Kummer K3 surface 𝐾1(𝐴) and 36 additional isolated points.

As discussed in Example 5.4(b), a series of derived equivalences compatible with 𝜄∗ gives an
isomorphism 𝐾𝐴(0, 𝑙,−1) � 𝐾 �̂�(1, 0,−3). Hence, the K3 surface in the fixed locus of 𝜄∗ acting on
𝐾𝐴(0, 𝑙,−1) is isomorphic to 𝐾1( �̂�), which is isomorphic over C to 𝐾1(𝐴) [24, 53]. �

7. A (1, 3)-polarized example: Singular fibers of an elliptic K3

The proof of Proposition 6.6 shows that the fibration 𝐾𝐴(0, 𝑙, 𝑠) → |𝐿 | restricts to a fibration Fix(𝜄∗) →
P𝑉ell, and when 𝐶 ∈ P𝑉ell is smooth, the fiber of Fix(𝜄∗) over C is isomorphic to Pic𝑑

𝐶/ 𝜄
. It remains to

examine the fibers in Fix(𝜄∗) over curves in P𝑉ell that are singular. We show below that the singular
fibers are the same as the singular fibers of a natural elliptic fibration of the Kummer K3 of A, which
we now describe.

In [48], Naruki analyzes an elliptic fibration of Kummer K3 surfaces that are constructed from (1, 3)-
polarized abelian surfaces. He uses the linear system P𝑉ell of Proposition 6.5 to induce a linear system
we will call W on 𝐾1(𝐴), which yields an elliptic fibration 𝐾1(𝐴) → P

1 whose fibers are generically
𝐶/𝜄 for 𝐶 ∈ P𝑉ell. Since 𝐶 ∈ P𝑉ell must have arithmetic genus 4 and pass through at least 6 points in
𝐴[2], Riemann–Hurwitz shows that if 𝐶/𝜄 is a smooth elliptic curve, then C must be smooth as well
and pass through exactly 6 points in 𝐴[2].

Proposition 7.1 (Naruki [48, §4]). Under a genericity assumption on A [48, p. 224, (GA)], the linear
system W has:

(i) Four singular fibers of type 𝐼1.
(ii) Ten singular fibers of type 𝐼2. There is one fiber of this type for each point of 𝐴[2] that is not in the

base locus of P𝑉ell. The line in 𝐾1(𝐴) that is the blow up of this point is contained in the fiber.

We show that the same is true for Fix(𝜄∗):

Theorem 7.2. Let A be an abelian surface satisfying the hypotheses at the beginning of the section such
that the singular fibers of W consist of four fibers of type 𝐼1 and ten fibers of type 𝐼2, as in Proposition
7.1. Then, for any s, Fix(𝜄∗) ⊂ 𝐾𝐴(0, 𝑙, 𝑠) contains an elliptically fibered K3 whose singular fibers are
of the same type.

Proof. We split the proof into two parts. In Proposition 7.3 below, we show that there are 4 fibers of
type 𝐼1. In Proposition 7.4, we show that there are 10 fibers of type 𝐼2.

For topological reasons, this must be all of the one-dimensional locus of Fix(𝜄∗) ⊂ 𝐾𝐴(0, 𝑙, 𝑠).
Indeed, the 4 singular fibers of type 𝐼1 and 10 singular fibers of type 𝐼2 account for the fact that the
topological Euler number of a K3 surface is 24 [27, Rmk. 11.1.12]. �

Proposition 7.3. Let 𝐶 ∈ P𝑉ell be a curve inducing a genus 1 singular curve 𝐶/𝜄 of type 𝐼1 in W. Then,
Pic0

𝐶/ 𝜄
� Pic𝑑

𝐶/ 𝜄
is a singular curve of type 𝐼1 and includes into (ker 𝑗𝐶 ) 𝜄

∗ .

Proof. By assumption, the curve 𝐶/𝜄 is of type 𝐼1 and hence has arithmetic genus 1 with one nodal
singularity. Applying the Riemann–Hurwitz formula for singular curves [18, (1.2)] to the double cover
𝐶 → 𝐶/𝜄, we see the arithmetic genus 4 curve C has geometric genus 2 with 6 ramification points, so
it must have two singular points that are exchanged by 𝜄. We call these points x and 𝜄𝑥 and then write
[𝑥, 𝜄𝑥] for the singular point of 𝐶/𝜄.
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Consider the induced map on the normalizations of these curves: 𝐶𝜈 → (𝐶/𝜄)𝜈 . Since this is a
ramified double cover of curves, the pullback map Pic0((𝐶/𝜄)𝜈) → Pic0(𝐶𝜈) is an inclusion. We have
the following map between short exact sequences of groups:

0 �� C∗ ��� �

��

Pic0 (𝐶/𝜄) ��

��

Pic0 ((𝐶/𝜄)𝜈) ��
� �

��

0

0 �� C∗ ⊕ C∗ �� Pic0(𝐶) �� Pic0(𝐶𝜈) �� 0

The elements of C∗ correspond to all possible choices for identifying the two fibers over a given node.
The vertical maps are pullbacks along quotient maps, and C∗ → C∗ ⊕ C∗ is the diagonal map, which
corresponds to a choice of gluing a line bundle at the node on 𝐶/𝜄 getting mapped to the same choice
of gluing at each of the nodes on C. By the five lemma, the map Pic0(𝐶/𝜄) → Pic0(𝐶) is an injection.

The Abel map (see Section 6.2) shows the points in Pic−1
𝐶/ 𝜄

correspond to points on the curve 𝐶/𝜄,
and all its elements are line bundles except for the sheaf corresponding to the singular point of 𝐶/𝜄.

The pullback map Pic−1
𝐶/ 𝜄

→ Pic−2
𝐶 sends L([𝑥, 𝜄𝑥]) to L([𝑥] + [𝜄𝑥]), which is also not a line bundle

and maps to 0 under 𝜑𝐶 . Thus, this pullback map is an injection. The sheaf L([𝑥, 𝜄𝑥]) is fixed by 𝜄∗.
We may choose an isomorphism Pic−1

𝐶/ 𝜄
� Pic0

𝐶/ 𝜄
compatible with 𝜄∗ to see that Pic0

𝐶/ 𝜄
includes into

(ker 𝑗𝐶 ) 𝜄
∗ .

By Proposition 6.1, Pic0
𝐶/ 𝜄

is a singular curve of type 𝐼1. �

Proposition 7.4. Let 𝐶 ∈ P𝑉ell be a curve inducing a genus 1 singular curve X of type 𝐼2 in W. Then,
(ker 𝑗𝐶 ) 𝜄

∗ contains a curve of type 𝐼2.

Proof. By the discussion in [48], the curve X in the linear system W that corresponds to C is the
intersection of a line and a conic. The line in X is the blowup of a point 𝑞 ∈ 𝐴[2] that is one of the 10
such not in the base locus of P𝑉ell. The curve C thus has a node at q. The normalization 𝑓 : 𝐶𝜈 → 𝐶
inherits an action of 𝜄, and the quotient 𝐶𝜈/𝜄 is the conic contained in X. Thus, 𝐶𝜈 is hyperelliptic and
as a double cover of 𝐶𝜈/𝜄, it is ramified at 8 points, consisting of the six points 𝑝1, . . . , 𝑝6 in the base
locus of P𝑉ell and the two points above q (named 𝑞1, 𝑞2). By Riemann–Hurwitz, 𝐶𝜈 has genus 3. Thus,
C has arithmetic genus 4 and geometric genus 3, so the node at p is its unique singularity.

Via Altman and Kleiman’s presentation schemes [3], we have the following description of Pic0
𝐶 (cf.

[32, §3.3]). Pullback by the normalization map 𝑓 : 𝐶𝜈 → 𝐶 gives the short exact sequence on Picard
groups

0 → C∗ → Pic0 (𝐶) → Pic0(𝐶𝜈) → 0, (7.1)

where, again, the elements of C∗ correspond to all possible choices for identifying the two fibers over q.
The presentation scheme of f gives a P1-bundle 𝜋 : 𝑃→ Pic0

𝐶𝜈 , where the fiber over a point 𝐼 ′ ∈ Pic0
𝐶𝜈

is given by presentations of 𝐼 ′; that is, short exact sequences of sheaves on C of the following form:

0 → 𝐼 → 𝑓∗𝐼
′ → 𝑘 (𝑞) → 0.

It follows that 𝐼 ∈ Pic0
𝐶 , so there is a natural morphism 𝜅 : 𝑃 → Pic0

𝐶 , which is an isomorphism when
restricted to the preimage of Pic0

𝐶 ⊂ Pic0
𝐶 . For each 𝐼 ′ ∈ Pic0

𝐶𝜈 , there is a C∗ ⊂ P1 = 𝜋−1 (𝐼 ′), exactly
the C∗ of (7.1), which gets mapped injectively under 𝜅 into Pic0

𝐶 .
Furthermore, there is a closed embedding 𝜀′ : Pic0

𝐶𝜈 ×{𝑞1, 𝑞2} ↩→ 𝑃, which sends a pair (𝐼 ′, 𝑞𝑖) to
the presentation

0 → 𝑓∗𝐼
′(−𝑞𝑖) → 𝑓∗𝐼

′ → 𝑓∗(𝐼
′ |𝑞𝑖 ) → 0.
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This gives the description of the rest of the P1-fiber of 𝜋 over a point 𝐼 ′ ∈ Pic0
𝐶𝜈 : these are the two

points compactifying the C∗ described above. Thus, to complete the description of Pic0
𝐶 , it remains to

describe 𝜅 restricted to 𝜀′(Pic0
𝐶𝜈 ×{𝑞1, 𝑞2}).

Here, 𝜅 is 2-to-1, but does not just trivially glue the two copies of Pic0
𝐶𝜈 together. Rather, they are

glued with a twist:

𝜅𝜀′(𝐼 ′, 𝑞1) = 𝜅𝜀
′(𝐼 ′(𝑞1 − 𝑞2), 𝑞2).

Since 𝐶𝜈 is hyperelliptic, 2𝑞1 ∼lin 2𝑞2 and O(𝑞1 − 𝑞2) is 2-torsion in Pic0
𝐶𝜈 , which further implies that

𝜅𝜀′(𝐼 ′(𝑞1 − 𝑞2), 𝑞1) = 𝜅𝜀
′(𝐼 ′, 𝑞2).

With this observation in hand, we now describe the one-dimensional component of the locus of Pic0
𝐶

that is in (ker 𝑗𝐶 ) 𝜄
∗ . While we are working in Pic0

𝐶 , we will instead consider the fiber over 0𝐴 of 𝜑𝐶 .
By abuse of notation, we will also call this ker 𝜑𝐶 .

Claim 7.5. The locus of Pic0
𝐶 that is both fixed by 𝜄∗ and is in ker 𝜑𝐶 contains

𝜅
(
𝜋−1(O𝐶𝜈 ) ∪ 𝜋−1 (O𝐶𝜈 (𝑞1 − 𝑞2))

)
,

which is two copies of P1 intersecting at two points (i.e., a singular curve of type 𝐼2).

Proof. First, we observe that if 𝐼 ′ ∈ Pic0
𝐶𝜈 is fixed by 𝜄∗, and

0 → 𝐼 → 𝑓∗𝐼
′ → 𝑘 (𝑞) → 0

is a presentation of 𝐼 ′, then I is also fixed by 𝜄∗. Indeed, by push-pull, we know that 𝑓∗𝜄∗𝐼 ′ � 𝜄∗ 𝑓∗𝐼 ′. We
have the short exact sequence

0 → 𝜄∗𝐼 → 𝜄∗ 𝑓∗𝐼
′ → 𝜄∗𝑘 (𝑞) → 0,

so if 𝐼 ′ is fixed by 𝜄∗, then 𝐼 � 𝜄∗𝐼. Thus, if 𝐼 ′ is fixed, then the whole P1-fiber in P is pointwise fixed as
well. Note also that, given a short exact sequence 0 → 𝐼 → 𝑓∗𝐼

′ → 𝑘 (𝑞) → 0, if 𝐼 ∈ ker 𝜑𝐶 , then by
the discussion in the proof of Lemma 6.2 about the behavior of 𝜑𝐶 in short exact sequences, so are all
the other possible I giving presentations of 𝐼 ′.

Since there is a short exact sequence

0 → O𝐶 → 𝑓∗O𝐶𝜈 → 𝑘 (𝑞) → 0

and O𝐶 ∈ ker 𝜑𝐶 , we know any other kernels of presentations of 𝑓∗O𝐶𝜈 will as well. We also have that
O𝐶𝜈 is fixed by 𝜄∗, so it follows that 𝜅(𝜋−1 (O𝐶𝜈 )) is both fixed by 𝜄∗ and in ker 𝜑𝐶 .

The same holds for 𝜅(𝜋−1 (O𝐶𝜈 (𝑞1 − 𝑞2)): since 𝑞1 and 𝑞2 are fixed by 𝜄, O𝐶𝜈 (𝑞1 − 𝑞2) is fixed by
𝜄∗, and we will show that any presentation is sent to 0 by 𝜑𝐶 . For a presentation

0 → 𝐼 → 𝑓∗O𝐶𝜈 (𝑞1 − 𝑞2) → 𝑘 (𝑞) → 0,

applying the inclusion ℎ𝐶 : 𝐶 ↩→ 𝐴 and Φ𝑃 , we have

detΦ𝑃 (ℎ𝐶∗𝐼) ⊗ P𝑞 � detΦ𝑃 (ℎ𝐶∗ 𝑓∗O𝐶𝜈 (𝑞1 − 𝑞2)).

There is also a presentation

0 → 𝑓∗O𝐶𝜈 (−𝑞1) → 𝑓∗O𝐶𝜈 (𝑞1 − 𝑞2) → 𝑘 (𝑞) → 0, (7.2)
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which gives

detΦ𝑃 (ℎ𝐶∗ 𝑓∗O𝐶𝜈 (−𝑞1)) ⊗ P𝑞 � detΦ𝑃 (ℎ𝐶∗ 𝑓∗O𝐶𝜈 (𝑞1 − 𝑞2)),

and hence,

detΦ𝑃 (ℎ𝐶∗𝐼) � detΦ𝑃 (ℎ𝐶∗ 𝑓∗O𝐶𝜈 (−𝑞1)).

On the other hand, there is a presentation

0 → 𝑓∗O𝐶𝜈 (−𝑞1) → 𝑓∗O𝐶𝜈 → 𝑘 (𝑞) → 0, (7.3)

so 𝑓∗O𝐶𝜈 (−𝑞1) ∈ 𝜅(𝜋
−1 (O𝐶𝜈 )), which we showed above is in ker 𝜑𝐶 . Thus, the same is true for I.

It remains to show that these two P1’s in Pic0
𝐶 are glued together at two points. But this follows from

the description of Pic0
𝐶 , since

𝜅𝜀′(O𝐶𝜈 , 𝑞1) = 𝜅𝜀
′(O𝐶𝜈 (𝑞1 − 𝑞2), 𝑞2)

and

𝜅𝜀′(O𝐶𝜈 (𝑞1 − 𝑞2), 𝑞1) = 𝜅𝜀
′(O𝐶𝜈 , 𝑞2). �

While above we work in degree 0, we can twist by a degree d line bundle on C to get the description in
Pic𝑑𝐶 . This completes the proof of Proposition 7.4. �

Remark 7.6. It is interesting to consider (ker 𝑗𝐶 ) 𝜄
∗ in Propostion 7.4 from the point of view of the Abel

map. We consider the case where 𝑑 = −4. The fixed locus (ker 𝑗𝐶 ) 𝜄
∗
⊆ Pic−4

𝐶 contains all divisors of the
form −(𝑥 + 𝜄𝑥 + 𝑦 + 𝜄𝑦) for 𝑥, 𝑦 ∈ 𝐶, but the information from the Abel map alone does not make clear
which of these divisors get identified under linear equivalence in Pic−4

𝐶 . We will show that these divisors
are all contained in the curve from Proposition 7.4. We may choose an isomorphism Pic0

𝐶 � Pic−4
𝐶 by

subtracting four copies of a 2-torsion point 𝑝 ∈ 𝐶 not at the node. Let 𝑝′ ∈ 𝐶𝜈 be preimage of p under
the normalization map. Since 𝐶𝜈 is hyperelliptic, O𝐶𝜈 (−4𝑝′) � O𝐶𝜈 (−𝑥 ′ − 𝜄𝑥 ′ − 𝑦′ − 𝜄𝑦′), where 𝑥 ′
and 𝑦′ are the preimages of x and y in 𝐶𝜈 . There is a presentation

0 → O𝐶 (−𝑥 − 𝜄𝑥 − 𝑦 − 𝜄𝑦) → ( 𝑓∗O𝐶𝜈 ) (−4𝑝) → 𝑘 (𝑞) → 0,

so these divisors all lie in the P1 corresponding to the twist of 𝜅(𝜋−1 (O𝐶𝜈 )).
The divisors −(𝑥 + 𝜄𝑥 + 𝑦 + 𝜄𝑦) correspond to a two-dimensional family in Hilb4

𝐶 , but their image in
Pic−4

𝐶 is at most 1-dimensional, so they must lie in the exceptional locus of the Abel map. Since C is not
hyperelliptic, the canonical morphism gives a closed immersion into P3 and divisors in the exceptional
locus are those that lie on a hyperplane in P3; we see there must be an interaction of these planes with
the action of 𝜄, but the particulars of it are not immediately clear.

It would also be nice to have a description of the elements in Pic−4
𝐶 contained in the other copy of P1 in

(ker 𝑗𝐶 ) 𝜄
∗ . Since the canonical bundle𝜔𝐶 is fixed by 𝜄∗ and 𝑓 ∗𝜔𝐶 � 𝜔𝐶𝜈 ⊗O𝐶𝜈 (𝑞1+𝑞2) � O𝐶𝜈 (4𝑝′ +

𝑞1 + 𝑞2), line bundles on C which fit into presentations with middle term 𝑓∗
(
𝑓 ∗𝜔−1

𝐶 ⊗ O𝐶𝜈 (𝑥 ′ + 𝜄𝑥 ′)
)

lie
in the P1 corresponding to the twist of 𝜅(𝜋−1 (O𝐶𝜈 (𝑞1 − 𝑞2)). However, the question of exactly which
effective divisors give rise to these line bundles is again dependent on the geometry of the canonical
embedding.

Remark 7.7. In this section we have shown that the elliptic K3 surface in Fix(𝜄∗) has the same types
of singular fibers as those in the fibration of the Kummer K3 surface studied by Naruki [48]. By
Proposition 6.7 for 𝐾𝐴(0, 𝑙,−1), the K3 surface in the fixed-point locus is isomorphic to the Kummer
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K3 surface. However, it is not apparent that, in general, there is any kind of natural map from the K3
surface studied by Naruki to Fix(𝜄∗), or that these fixed-point loci are Kummer K3 surfaces.

8. A (1, 3)-polarized example: Isolated points

Finally, we seek a description of the 36 isolated points in Fix(𝜄∗). We will use a combination of the
Abel map and information about the geometry of 2-torsion points in a (1, 3)-polarized abelian surface
to finish our description of the fixed loci.

8.1. Geometry of 𝐴[2]

The description of the isolated points in Fix(𝜄∗) ⊂ 𝐾𝐴(0, 𝑙, 𝑠) will require an understanding of line
bundles on curves 𝐶 ∈ |𝐿 | 𝜄

∗ corresponding to divisors which sum to 0 in A.
As discussed in [4], the line bundle 𝐿2 on our (1, 3)-polarized abelian surface gives an embedding

of the desingularized Kummer K3 surface into P3. They describe an action of the Heisenberg group on
P3 that connects the geometry of the group action of elements 𝐴[2] to the corresponding lines in the
Kummer K3 surface.

We use notation from Hudson’s analysis of 𝐴[2] for principally polarized abelian surfaces [25, Ch.
1,§4], which has the same group structure: We write the group of points of 𝐴[2] in multiplicative
notation in terms of (a not minimal set of) generators 1, 𝐴, 𝐵, 𝐶, 𝐴′, 𝐵′, 𝐶 ′, where 1 is the identity. The
following multiplication tables hold:

𝐴 𝐵 𝐶

𝐴 1 𝐶 𝐵
𝐵 1 𝐴
𝐶 1

𝐴′ 𝐵′ 𝐶 ′

𝐴′ 1 𝐶 ′ 𝐵′

𝐵′ 1 𝐴′

𝐶 ′ 1

Following Naruki [48], we see the six points of 𝐴[2] that occur in the base locus of P𝑉ell must be a set
of six in the group that coincides with those that would lie on a plane in Hudson’s (16, 6) configuration,
and so we take the following six points to be in the base locus of P𝑉ell:

𝐴𝐵′, 𝐴𝐶 ′, 𝐵𝐶 ′, 𝐵𝐴′, 𝐶𝐴′, 𝐶𝐵′. (8.1)

Any possible choice of six points will have the same numerical properties described below as they will
differ by a translation.

The remaining ten points of 𝐴[2] are then:

1, 𝐴, 𝐴′, 𝐵, 𝐵′, 𝐶, 𝐶 ′, 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶 ′. (8.2)

We will need the following observations in our identification of the isolated fixed points:
Lemma 8.1.
(a) The product of any four distinct points in (8.1) cannot be the identity.
(b) Given any point in (8.2), there are exactly two ways to then choose three distinct points from those

in (8.1) so that the product of the four points is the identity.
(c) There are fifteen ways to choose four distinct points from among (8.2) so that their product is the

identity.
Proof. The results may be verified directly.

In part (b), for instance, if we choose 1, we have exactly

(1) (𝐴𝐵′) (𝐵𝐶 ′) (𝐶𝐴′) and (1) (𝐴𝐶 ′) (𝐵𝐴′) (𝐶𝐵′).
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In part (c), the fifteen possibilities are:

(1) (𝐴) (𝐴′) (𝐴𝐴′) (𝐴) (𝐵) (𝐶 ′) (𝐶𝐶 ′)

(1) (𝐵) (𝐵′) (𝐵𝐵′) (𝐴′) (𝐵′) (𝐶) (𝐶𝐶 ′)

(1) (𝐶) (𝐶 ′) (𝐶𝐶 ′) (𝐴) (𝐵′) (𝐶) (𝐵𝐵′)

(1) (𝐴𝐴′) (𝐵𝐵′) (𝐶𝐶 ′) (𝐴′) (𝐵) (𝐶 ′) (𝐵𝐵′)

(1) (𝐴) (𝐵) (𝐶) (𝐴′) (𝐵) (𝐶) (𝐴𝐴′)

(1) (𝐴′) (𝐵′) (𝐶 ′) (𝐴) (𝐵′) (𝐶 ′) (𝐴𝐴′)

(𝐴) (𝐴′) (𝐵𝐵′) (𝐶𝐶 ′) (𝐵) (𝐵′) (𝐴𝐴′) (𝐶𝐶 ′)

(𝐶) (𝐶 ′) (𝐴𝐴′) (𝐵𝐵′) �

8.2. The fiber of Fix(𝜄∗) over P𝑉hyp

Let 𝐶 ∈ P𝑉hyp � P0. For A a general (1, 3)-polarized abelian surface, C is smooth by [10, Lem. 3.4], so
the kernel of 𝜑𝐶 (6.4) is an abelian surface (see Proposition 6.4). The action ker 𝜑𝐶 inherits from 𝜄∗ on
𝐾 (0, 𝑙, 𝑠) is the action of [−1] on it as an abelian surface. Thus, there will be exactly 16 isolated fixed
points, consisting of the 2-torsion points on ker 𝜑𝐶 .

We may also analyze (ker 𝜑𝐶 ) 𝜄
∗ using the Abel map 𝛼 from (6.2). Since C is hyperelliptic, the

canonical morphism is the degree 2 morphism 𝜋 : 𝐶 → P1. The canonical divisors of C are of the form
𝜋−1 (𝑡1) +𝜋

−1 (𝑡2) +𝜋
−1 (𝑡3) for 𝑡1, 𝑡2, 𝑡3 ∈ P1. The sets of points in Hilb4

𝐶 which sum to 0 and are fixed by
𝜄∗ consist of points of the form 𝜋−1 (𝑡1) + 𝜋

−1 (𝑡2), which are all linearly equivalent, and of four distinct
2-torsion points that sum to 0.

From this point of view we find that the sixteen isolated points in Pic−4
𝐶 that sum to 0 and are fixed

by 𝜄∗ are (the negative of) the fifteen points given by Lemma 8.1(c) and the one point that is the image
under 𝛼 of all points of the form 𝜋−1(𝑡1) + 𝜋

−1 (𝑡2).
This argument may be used to show that the same result holds for Pic𝑑𝐶 . We can take the isomorphism

Pic−4
𝐶 � Pic𝑑𝐶 to be given by adding 𝑑 + 4 copies of a fixed 2-torsion point p, in which case the

isomorphism commutes with 𝜄∗. It is not always possible to choose this isomorphism so that it commutes
with taking the kernel of the summation map, but we may instead consider the elements in Pic𝑑𝐶 that sum
to (𝑑 + 4) · 𝑝, which amounts to simply performing this calculation in a different fiber of the Albanese
map (2.2), which is related to our preferred fiber by an isomorphism.

8.3. The fibers of Fix(𝜄∗) over P𝑉ell

In the last section, we found 16 of the 36 isolated points in Fix(𝜄∗). To find the rest we examine (ker 𝜑𝐶 ) 𝜄
∗

as C varies in P𝑉ell � P1.
If C is smooth, by our analysis of the tangent space of ker 𝜑𝐶 in the proof of Proposition 6.6,

(ker 𝜑𝐶 ) 𝜄
∗ is isomorphic to the elliptic curve 𝐶/𝜄, and there are no isolated points.

Let 𝐶 ∈ P𝑉ell be singular of type 𝐼1. Consider the modified Abel map

𝛼 : Hilb4
𝐶 → Pic−4

𝐶 .

The curve C passes through exactly six 2-torsion points (8.1) (cf. Proposition 7.3). By Lemma 8.1(a) the
only sets of four points on C that sum to 0 and are fixed by 𝜄∗ are those of the form (𝑥, 𝜄𝑥, 𝑦, 𝜄𝑦) for some
𝑥, 𝑦 ∈ 𝐶. Points of this form are already contained in the image of the pullback Pic0

𝐶/ 𝜄
� Pic−2

𝐶/ 𝜄 → Pic−4
𝐶 .

Thus, (ker 𝜑𝐶 ) 𝜄
∗
� 𝐶/𝜄, and there are no isolated points.

Now let 𝐶 ∈ P𝑉ell be singular of type 𝐼2. The curve C passes through seven points in 𝐴[2]: those in
the base locus of P𝑉ell (see (8.1)) as well as one additional 2-torsion point. The points in Hilb4

𝐶 that sum
to 0 and are fixed by 𝜄∗ are those of the form (𝑥, 𝜄𝑥, 𝑦, 𝜄𝑦) for some 𝑥, 𝑦 ∈ 𝐶, as well as any tuple of four
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2-torsion points that sum to 0. By Lemma 8.1(a,b), there are exactly two points of the latter form and
they are isolated from the points of the former form (cf. Remark 7.6). Thus the fiber of Fix(𝜄∗) over C
consists precisely of a singular curve of type 𝐼2 and two isolated fixed points. There are ten such singular
curves, and thus all of the 36 isolated points in Fix(𝜄∗) are now accounted for.

Remark 8.2. It would be interesting to use the presentation scheme description of Pic𝑑𝐶 , for 𝐶 ∈ P𝑉ell
singular, to identify the two isolated points in the fiber of Fix(𝜄∗) over C. For example, what line bundles
do they pull back to on 𝐶𝜈?
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