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Estimation of Divergence from Hardy–Weinberg
Form

Alan E. Stark
School of Mathematics and Statistics, University of Sydney, New South Wales, Australia

The Hardy–Weinberg (HW) principle explains how random mating (RM) can produce and maintain a pop-
ulation in equilibrium, that is, with constant genotypic proportions. When proportions diverge from HW
form, it is of interest to estimate the fixation index F, which reflects the degree of divergence. Starting from
a sample of genotypic counts, a mixed procedure gives first the orthodox estimate of gene frequency q
and then a Bayesian estimate of F, based on a credible prior distribution of F, which is described here.
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The HW distribution, usually called Hardy–Weinberg equi-
librium (HWE),

{q2, 2q(1 − q), (1 − q)2}, (1)

is widely used in population genetics as a base or platform
for development of theory and analysis (Edwards, 2008;
Hartl & Jones, 2006; Mayo, 2008; Penrose, 1972; Russell,
2006). In (1), q is the frequency (proportion) of one of
two alleles in the population. Stark and Seneta (2014) have
given a more general model, referred to as general mating
equilibrium (GME), which does not assume RM. There are
many examples in the genetics literature where genotypic
proportions close to HW proportions have been observed.
When subject to statistical test, they are found to be not sig-
nificantly different from HW proportions. In other cases, it
may be of interest to estimate the degree of divergence from
HW proportions, which is measured by an index F, some-
times called the fixation index, at other times the coefficient
of inbreeding. The GME model is partly characterized by the
marginal distribution of F, which is described below. Here,
given a sample of genotypic counts {nUU, nUT, nTT}, I sug-
gest that this distribution is a credible prior distribution of
F that can be employed to yield the posterior distribution
of F, a procedure called Bayesian, since it uses a formula
introduced by Bayes (1763).

The mating system is defined completely by the matrix C,
as described in the next section. Because the specification of
the limits of its elements requires some detail, a geometrical
description is used. However, this is simply a device to
simplify the presentation.

Much of the appeal of the HW model, as published by
Hardy (1908) and Weinberg (1908), is due to its appar-
ent simplicity. Weinberg (1909), in his review of the first
edition of Johannsen’s monumental book published in the
same year, states that Johannsen erred in attributing the
model to Hardy, since Weinberg said it was due to [Karl]
Pearson and, following Pearson, to himself. Stern (1943)
brought Weinberg’s paper to the attention of the genetics
community generally. Crow (1999) explains the slowness of
recognition of Weinberg’s contribution to genetic analysis
in the English-speaking world.

Li (1988) showed that it is possible to have HWE with
non-random mating (NRM), hence Li’s phrase ‘pseudo-
random mating’. The same possibility is implicit in a for-
mula of Stark (1980). Stark (2006a) showed that it is possible
to reach HW form with one round of NRM. It is still possible
to find statements that RM is a necessary condition for HW
proportions — for example, on page 664 of Russell (2006),
though this is by no means rare. Weinberg (1908) used the
HW distribution to analyze the inheritance of twinning in
man. Stark (2006b) noted that Weinberg’s analysis may need
to be modified in the light of Li’s paper. Stark and Seneta
(2012) show that a paper of a Russian mathematician S. N.
Bernstein was a fundamental, though largely unrecognized,
contribution to genetic analysis by reason of its connection
with the HW law.
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The GME model is more general than HWE, since it
applies to a range of values of F and so includes HWE (F =
0) as a special case.

Schull (1965) has a section on the estimation of the co-
efficient of inbreeding which he defines as:

F =
∑ ((

1

2

)ns+nd+1

(1 + F A )

)
,

where FA is the coefficient of inbreeding of any common
ancestor that makes the connecting link between a line of
ancestry tracing back from the sire and one tracing back
from the dam. The numbers of generations from sire and
dam to such a common ancestor are designated ns and nd

respectively. Schull says that this concept may be extended
to a population average coefficient of inbreeding. This inter-
pretation may be applied to F as used in this paper. Schull
describes practical and theoretical difficulties in estimat-
ing F, presumably based partly on experiences reported in
Schull et al. (1962). In particular, Schull gives an example
of the instability of some orthodox methods of estimating
F. Schull et al. (1962) estimated F to be about 0.006 in
their study. Neel and Schull (1954, p. 73) give the following
formula for the frequency with which recessively inherited
conditions arise from consanguineous marriages:

Fq + (1 − F )q2.

If the gene frequency of the deleterious gene is q=1/1,000
and F = 0.006, the condition is about seven times more
frequent in the inbred population than in a population in
which F = 0.

The need to estimate F arises in forensic investigations.
Balding and Nichols (1995) give a formula which contains F.
In explaining use of the formula, they say that F is analogous
to FST of Sewall Wright; that is, it concerns stratification of
populations in which gene frequencies vary from stratum to
stratum. Ayres and Balding (1998) use symbol f, ‘a param-
eter measuring departure from HW caused by inbreeding’.
They discuss a number of difficulties associated with esti-
mating f, including choice of prior distributions of f, but do
not consider the choice of a logical prior such as that given
here. They give a composite posterior distribution of f cal-
culated from a sample of Samoans resident in New Zealand,
which has a mode at about f = 0.05.

Cavalli-Sforza and Bodmer (1971, pp. 377–379) have a
short section on estimating F, having in mind deviation
from HWE due to inbreeding. This method would be clas-
sified as orthodox and so is outside the scope of this article.

In the next section, for convenience, I summarize the
essential features of GME. The following section gives the
marginal distribution of F, then the Bayesian estimation
procedure with the aid of an example, and finally a brief
discussion mainly about Fisher’s (1959) view of the appro-
priate use of Bayes’ formula.

The General Mating Equilibrium Model
We deal only with a single autosomal locus with two al-
leles U and T with frequencies in the population q and p
(q + p = 1). Throughout, q remains constant because this
is guaranteed by the nature of the selected mating system. A
set of frequencies of genotypes {UU, UT, TT} can be repre-
sented in terms of q and a measure of departure from HW
form F as, say, a′= {q2 + Fp q, 2p q − 2Fp q, p 2 + Fp q}.
These will vary according to F and will be denoted generally
by {f 0, f 1,f 2}, (f 0 + f 1 + f 2 = 1), that is f 0 = q2 + Fp q,
and so on.

The population is maintained in discrete generations
according to the mating scheme:⎡

⎣ UU × UU UU × UT UU × TT
UT × UU UT × UT UT × TT
TT × UU TT × UT TT × TT

⎤
⎦ (2)

with commensurate pairing frequencies given by the matrix

C =
⎡
⎣ f 00 f 01 f 02

f 10 f 11 f 12

f 20 f 21 f 22

⎤
⎦ . (3)

C is symmetric, that is f ij = f j i , with row and column
sums {f 0, f 1, f 2}. This triple of sums is the parental fre-
quency distribution.

Below we use C in the extended (row vector) form

u′ = {f 00, f 01, f 02, f 10, f 11, f 12, f 20, f 21, f 22}. (4)

To follow the progression of generations, we need
Mendel’s coefficients of heredity given in matrix form by

M =
⎡
⎣ 1 1/2 0 1/2 1/4 0 0 0 0

0 1/2 1 1/2 1/2 1/2 1 1/2 0
0 0 0 0 1/4 1/2 0 1/2 1

⎤
⎦ .

(5)

Then, the frequency distribution of juveniles is calculated
from

j ′ = (Mu)′

which in detail is

j =
{

f 00 + f 01 + f 10

2
+ f 11

4
,

f 01

2
+ f 02

+ f 10 + f 11 + f 12

2
+ f 20

+ f 21

2
,

f 11

4
+ f 12 + f 21

2
+ f 22

}′
. (6)

The population is in equilibrium, that is, the distribution
of juveniles is the same as that of adults, if and only if matrix
C has, in addition to the properties given above, the special
property

f 11 = 4f 02 = 4f 20. (7)
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FIGURE 1

Schematic illustration of the bounding region of admissible sets
of F, f11, and f01, for 1/4 < q < 1/2.
Note: The admissible region is defined by the vertices Q, V, Z, D,
E, A. The region defined by vertices O, Q, A, and E is not part of
the admissible region. The coordinates of the vertices are given in
Table 1. Coordinates of points of reference not shown on Table 1
are: O (−q

/
p, 0, 0); B ((p− 2q)/(3p), 0, 0); N ((2p− q)/(3p), 0, 0).

AXES for F, f11, f01

Ff01

f11

0

FIGURE 2

Orthogonal axes used to specify coordinates F, f11, and f01 for
given q.

The notation used here is a modified version of that given
in Stark and Seneta (2013, 2014).

By way of explanation, special condition (7), on the sys-
tem of mate choice, is that the frequency of mating pairs
heterozygote × heterozygote is four times the frequency of
each of the reciprocal mating pairs homozygote × opposite
homozygote. This applies to HWE under RM where the
first kind of mating has frequency (2pq)2 and each of the
second kind (q2) × (p2). Under this condition, the ‘loss’
of heterozygotes from the first kind of mating is exactly
compensated by the ‘gain’ from the second kind of mating.
Identity (7) allows for NRM as well as RM.

Matrix C is a complete description of the mating sys-
tem. However, the elements of C are subject to various
constraints that are conveniently delineated by a geometri-
cal figure that consists of two tetrahedrons, one of which
is contained within the other, as shown schematically in
Figure 1. For the reader’s convenience, the characteristics
of this figure are spelled out in more detail below using
schematics from Stark and Seneta (2014).

I assume first that q is fixed so C is defined by the
trio (F , f 11, f 01), which can be depicted by points in Eu-
clidean space using orthogonal coordinate axes as shown in
Figure 2. The regions of admissible points are of three main

q <= ¼ 
D

Z

V

O/A

FIGURE 3

Schematic illustration of the bounding region of admissible sets
of F, f11, and f01 for q � 1/4; vertex O replaces A when q < 1/4.

q = ½ 

D

VZ

NA

FIGURE 4

Schematic illustration of the bounding region of admissible sets
of F , f11, and f01 for q = 1/2.

¼ < q < ½ 

D

E

VQ

Z

A

FIGURE 5

Schematic illustration of the bounding region of admissible sets
of F, f11, and f01 for 1/4 < q < 1/2.

types, depending on q: (1) 1/4 < q < 1/2; (2) q ≤ 1/4; (3)
q = 1/2. The faces of the regions are planar, the planes de-
fined by f 11 = 0 (�1) and f 01 = 0 (�2) being two main
ones. The remaining planes are defined by the following
equations:

�3 4p qF − f 11 − 4f 01 + 4q2 = 0

�4 2p qF + f 11 + f 01 − 2p q = 0

�5 12p qF + 3f 11 + 4f 01 + 4p (p − 2q) = 0.

Only planes �1–�4 are relevant when q <¼. The respec-
tive admissible regions are shown schematically in Figures 5,
3, and 4.
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The Marginal Distribution of F
Case q ≤ 1/4

This section describes properties of the model depicted in
Figure 3 of Stark and Seneta, 2014 — reproduced here as
Figure 3. Suppose that it defines a trivariate distribution of
variables F, f11, and f01, which maintain a genotypic distribu-
tion {f 0 = q2 + Fp q, f 1 = 2p q − 2Fp q, f 2 = p 2 + Fp q}.
Suppose further that points are distributed uniformly
within the space enclosed by the bounding planes. For fixed
q ≤ 1/4, the volume enclosed is S = 4q2/(27p ). This can
be demonstrated by taking slices of the solid around values
of f11, giving triangles with base (4q − 3f 11)/(4p q), (p =
1 − q), and height (4q − 3f 11)/6. The area of a triangular
section is (16q2 − 24qf 11 + 9f 2

11)/(48p q). Integrating this
quantity with respect to f11 over the range 0 to 4q/3, which
are the limits of f11, gives the volume.

Suppose that a population with a particular gene fre-
quency q arrives randomly at some point within the defined
space. The value of F will be governed by the marginal dis-
tribution of F, here denoted by �(F). This function has the
following values:

�1(F ) = 2f 2
0 /S, −q/p ≤ F ≤ (p − 2q)/(3p ) (8)

�2(F ) = 2[q2 + (f 1 − f 0)(4f 0 − f 1)]/(9S),

(p − 2q)/(3p ) < F ≤ (2p − q)/(3p ) (9)

�3(F ) = f 2
1 /(2S), (2p − q)/(3p ) < F ≤ 1. (10)

The distribution of F, �(F), has mode (p – q)/(2p).
This can be demonstrated by differentiating �2(F) with re-
spect to F and equating the derivative to zero. The mode is
midway between (p − 2q)/(3p ) and (2p − q)/(3p ), con-
sistent with the fact that �(F) is symmetrical about the
mode. The distribution at the mode is f 0 = q

/
2, f 1 = q,

f 2 = (2p − q)
/

2.
The symmetry of �2(F) can be demonstrated by calcu-

lating the value of (f 1 − f 0)(4f 0 − f 1) at points equidis-
tant from modal F. For a point above the mode, take
F + = (p − q + �)/(2p ), (� > 0), and the correspond-
ing one below F − = (p − q − �)/(2p ). Taking first F −,
f 1 − f 0 = q(1 + 3�)/2, and 4f 0 − f 1 = q(1 − 3�), so
(f 1 − f 0)(4f 0 − f 1) = q2(1 − 9�2)/2. In the case of F +,
f 1 − f 0 = q(1 − 3�)/2, and 4f 0 − f 1 = q(1 + 3�) and
(f 1 − f 0)(4f 0 − f 1) = q2(1 − 9�2)/2.

The value of �1(F), namely 2f 2
0 , is equivalent to the area

of a right triangle with height f 01 = f 0 and base f 11 = 4f 0,
so that when F = F −, 2f 2

0 = q2(1 − �)2/2. Similarly, the
value of �3(F), namely f 2

1 /2, is equivalent to the area of a
right triangle with base f 11 = f 1 and height f 01 = f 1, so
that when F = F +, f 2

1 /2 = q2(1 − �)2/2. Thus, symmetry
of �(F) extends over the whole interval (–q/p, 1).

The distribution of F, �(F) has modal value 9/5 when
F = 1/5. This can be demonstrated by differentiating �2(F)
with respect to F and equating the derivative to zero.

TABLE 1

The Coordinates of the Vertices of the Admissible
Regions as Functions of q

V er tex F f11 f01

A −(p− q)2
/

4pq) 0 q − 1
/

4
V 1 0 0
D (p− 2q)

/
(3p) 4q

/
3 0

E −(1 − 4q + 6q2)
/

(6pq) 2(4q − 1)
/

3 0
Z (2p− q)

/
(3p) 0 2q

/
3

Q (3q − 1)
/

(3q) 0 0

Case q = 1/2

This section describes properties of the model depicted in
Figure 4 of Stark and Seneta (2014) — reproduced here
as Figure 4. For fixed q = 1/2, the volume enclosed is S =
1/27. The marginal distribution of F, here denoted by �(F),
has the following values:

�1(F ) = (1 + 3F )2/(24S), F ≤ 0 (11)

�2(F ) = (1 + 6F − 15F 2)/(24S),

0 < F ≤ 1/3 (12)

�3(F ) = f 2
1 /(2S), 1/3 < F ≤ 1. (13)

Differentiating �2(F) with respect to F and equating to
zero shows that the mode of �(F) is 1/5.

Case 1/4 < q < 1/2

This section describes properties of the model depicted in
Figure 2 of Stark and Seneta (2014) for 1

/
4 ≤ q ≤ 1/2—

reproduced here as Figure 5. The volume of the solid is

S = 16q3 − (4q − 1)3

108p q
. (14)

Depending on the value of q, the distribution of F is
defined using elements of the following set of functions of
q and F:

h1 = (1 − 4q + 6f 0)2/(3S) (15)

h2 = (2(1 − 4q + 6f 0)2 − (4f 0 − f 1)2)/(6S) (16)

h3 = 2(f 0)2/S (17)

h4 = 2(3f 0f 1 − q2)/(3S) (18)

h5 = (f 1)2/(2S) (19)

h6 = 2(3(f 0)2 − (f 1 − f 2)2)/(3S) (20)

h7 = (8f 1(1 − f 1) − (4(f 0)2 + 5(f 1)2

+4(f 2)2))/(6S). (21)

Figure 6 shows the marginal distribution of F for q =
38/111. The above functions are needed because the relative
order of various defining points change with changes of q.
The distribution of F is defined according to Table 2. For
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TABLE 2

Definition of the Marginal Distribution of F for 1/4 < q < 1/2

|q,F | h F h F h F h F h F h

q −> 1/4–1/3 1/4–1/3 1/3 1/3 1/3–3/8 1/3–3/8 3/8 3/8 3/8–1/2 3/8–1/2
F E–A 1 E–A 1 E–A 1 E–A 1 E–B 1
F A–Q 6 A–Q 6 A–B 6 A–Q 7 B–A 2
F Q–B 3 — — B–Q 7 — — A–Q 7
F B–N 4 Q–N 4 Q–N 4 Q–N 4 Q–N 4
F N–V 5 N–V 5 N–V 5 N–V 5 N–V 5

FIGURE 6

The marginal distribution of F for q = 38/111 (Pr_F stands for
probability density of F).

example, when q = 1/3, the function is

�(F ) = h1, h6, h4, h5 (22)

over the respective intervals of F: E–A, A–Q, Q–N, and N–V.
The distribution �(F) of F has mode (1 − 2q)/(2(1 −

q)). This gives the distribution of genotypes:

{f 0 = q
/

2, f 1 = q, f 2 = 1 − 3q/2}. (23)

The Estimation of F
Cavalli-Sforza and Bodmer (1971, p. 43) give data relating
to the MN blood-group locus: 47 M, 52 MN, and 12 N
individuals. There are 76 N genes from a total 222 and so
the frequency of gene N is q = 38/111. These are the counts
used to illustrate the estimation method. The method of
gene counting is the orthodox method of estimating q. I
treat this as the ‘true’ value of q although clearly the value
38/111 is subject to sampling error. The standard error of
estimate is available.

Figure 6 displays the (marginal) distribution of F using
q = 38/111which I employ as the prior distribution to get
the posterior distribution of F shown in Figure 7.

If the value of the fixation index is F, the genotypic pro-
portions in the population are as follows:

{f 0 = q2 + Fp q, f 1 = 2p q − 2Fp q, f 2 = p 2 + Fp q}.
(24)

FIGURE 7

The posterior distribution of F computed from genotypic counts
{12, 52, 47} from which q = 38/111 (Pr_F stands for probability
density of F).

Denoting the genotypic counts by {nUU, nUT, nTT}, the
(conditional) probability of observing these counts is as
follows:

C(F ) = n!

nUU! × nUT ! × nTT !
× f nUU

0 × f nUT
1 × f nTT

2 ,

(25)
where n is the sample size.

If P(F).dF is the prior probability that F lies in an in-
finitesimal interval containing F, then, following Thomas
Bayes, the posterior probability that it is in that interval is
as follows:

P′(F ).dF = P (F ) .dF × C(F )∫
P (F ) × C(F ).dF

. (26)

The posterior distribution of F from (26) for the above
counts is displayed in Figure 7.

Discussion
Fisher (1959) begins Chapter II as follows:

For the first serious attempt known to us to give a
rational account of the process of scientific inference
as a means of understanding the real world, in the
sense in which this term is understood by experimental
investigators, we must look back over two hundred
years to an English clergyman, the Reverend Thomas
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Bayes, whose life spanned the first half of the eighteenth
century.

In that chapter, Fisher touches on the views of various
eminent thinkers such as Gauss, Laplace, Montmort, de
Moivre, Boole, and Jeffreys. Most of the text dwells on the
problem of deciding whether an acceptable prior distribu-
tion is available; in particular, about when is there a suit-
able axiomatic prior. On this last point, on page 18, Fisher
makes the comment [about an axiomatic prior]: ‘ . . . the
question, more natural to an experimental investigator, of
whether, in the particular circumstances of the investiga-
tion, the knowledge implied by the postulate was or was not
in fact available’.

On pages 18–20, Fisher gives an example of what he
regards as a valid use of Bayes’ formula. It relates to deter-
mining the genotype of a black mouse mated to a brown
mouse. The critical point is whether there is knowledge of
the origin of the mouse being tested.

Scientific inference remains a contentious subject. Fisher
(1960, p. 197), using the phrase inverse probability for the
application of Bayes’ formula, writes: ‘Statements of inverse
probability . . . require for their truth the postulation of
knowledge beyond that obtained by direct observation.’
Good (1968, p. 7) states: ‘I regard it as mentally healthy to
believe that credibilities exist . . . ’. He says that a credibility
is ‘a rational intensity of conviction, implicit in the given
information, and such that if a person does not agree with
it he is wrong’. An alternative term is logical probability. I
regard the method described here as using a logical prior
probability distribution.

Smith (1959), an advocate for Bayesian methods, writes
as follows:

When Bayes’ Theorem can be applied, it is more in-
formative than a significance test, for it gives to each
hypothesis an exact probability of being true. A signif-
icance test, on the other hand, may ‘reject a hypothesis
at significance level P’, but P here is not the probabil-
ity that the hypothesis is true, and indeed the rejected
hypothesis may still be probably true if the odds are
sufficiently in its favour at the start. For example, in
human genetics there are odds of the order of 22:1 in
favour of two genes chosen at random being on differ-
ent chromosomes; so even if a test indicates departure
from independent segregation at the 5 per cent level of
significance, this is not very strong evidence in favour
of linkage.

Although his monograph is concerned mainly with clas-
sical (orthodox) statistical methods, Weir (1996) has a
section on Bayesian methods, including an example due
to Gunel and Wearden (1995) and another due to Lange
(1995). These use empirical, rather than logical, prior dis-
tributions. Weir gives classical methodology for estimating
F.

Acknowledgment
I thank the referee for suggesting ways to improve the
manuscript.

References
Ayres, K. L., & Balding, D. J. (1998). Measuring departures

from Hardy-Weinberg: A Markov chain Monte Carlo
method for estimating the inbreeding coefficient. Hered-
ity, 80, 769–777.

Balding, D. J., & Nichols, R. A. (1995). A method for quantify-
ing differentiation between populations at multi-allelic loci
and its implications for investigating identity and paternity.
Genetica, 96 , 3–12.

Bayes, T. (1763). An essay towards solving a problem in the
doctrine of chances. Philosophical Transactions of the Royal
Society, 53, 370–418.

Cavalli-Sforza, L. L., & Bodmer, W. F. (1971). The genetics of
human populations. San Francisco: W. H. Freeman and
Company.

Crow, J. F. (1999). Hardy, Weinberg and language impedi-
ments. Genetics, 152, 821–825.

Edwards, A. W. F. (2008). G. H. Hardy (1908) and Hardy-
Weinberg equilibrium. Genetics, 179, 1143–1150.

Fisher, R. A. (1959). Statistical methods and scientific inference
(2nd ed.). Edinburgh: Oliver and Boyd.

Fisher, R. A. (1960). The design of experiments (7th ed.). Edin-
burgh: Oliver and Boyd.

Good, I. J. (1968). The estimation of probabilities: An essay on
modern Bayesian methods. Cambridge, MA: The MIT Press.

Gunel, E., & Wearden, S. (1995). Bayesian estimation and test-
ing of gene frequencies. Theoretical and Applied Genetics,
91, 534–543.

Hardy, G. H. (1908). Mendelian proportions in a mixed pop-
ulation. Science, 28, 49–50.

Hartl, D. L., & Jones, E. W. (2006). Essential genetics: A ge-
nomics perspective (4th ed.). Sudbury, MA: Jones and
Bartlett Publishers.

Lange, K. (1995). Applications of the Dirichlet distribution to
forensic match probabilities. Genetica, 96 , 107–117.

Li, C. C. (1988). Pseudo-random mating populations. In cele-
bration of the 80th anniversary of the Hardy-Weinberg law.
Genetics, 119, 731–737.

Mayo, O. (2008). A century of Hardy-Weinberg equilibrium.
Twin Research and Human Genetics, 11, 249–246.

Neel, J. V., & Schull, W. J. (1954). Human heredity. Chicago:
The University of Chicago Press.

Penrose, L. S. (1972). The biology of mental defect (4th ed.).
London: Sidgwick & Jackson.

Russell, P. J. (2006). iGenetics: A molecular approach (2nd ed.).
San Francisco, CA: Pearson Education.

Schull, W. J. (1965). Estimation of genetic parameters in pop-
ulation studies. In J. V. Neel, M. W. Shaw, & W. J. Schull
(Eds.), Genetics and the epidemiology of chronic diseases (pp.
45–60). Washington, DC: U. S. Department of Health, Ed-
ucation, and Welfare.

404 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2015.41 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2015.41


Divergence from Hardy–Weinberg Form

Schull, W. J., Yanase, T., & Nemoto, H. (1962). Kuroshima: The
impact of religion on an island’s genetic heritage. Human
Biology, 34, 271–298.

Smith, C. A. B. (1959). Some comments on the statistical
methods used in linkage investigations. American Journal
of Human Genetics, 11, 289–304.

Stark, A. E. (1980). Inbreeding systems: Classification by a
canonical form. Journal of Mathematical Biology, 10, 305.

Stark, A. E. (2006a). A clarification of the Hardy-Weinberg
law. Genetics, 174, 1695–1697.

Stark, A. E. (2006b). Stages in the evolution of the Hardy-
Weinberg law. Genetics and Molecular Biology, 29, 589–594.

Stark, A. E., & Seneta, E. (2012). On S. N. Bernstein’s deriva-
tion of Mendel’s law and ‘rediscovery’ of the Hardy-
Weinberg distribution. Genetics and Molecular Biology, 35,
388–394.

Stark, A. E., & Seneta, E. (2013). A reality check on Hardy-
Weinberg. Twin Research and Human Genetics, 16 , 782–789.

Stark, A. E., & Seneta, E. (2014). Hardy-Weinberg equilibrium
as foundational. International Journal of Statistics in Medical
Research, 3, 198–202.

Stern, C. (1943). The Hardy-Weinberg law. Science, 97 , 137–
138.
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